首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The duration of adrenocortical suppression resulting from a single IV dose of dexamethasone or dexamethasone sodium phosphate was determined in dogs. At 0800 hours, 5 groups of dogs (n = 4/group) were treated with 0.01 or 0.1 mg of either agent/kg of body weight or saline solution (controls). Plasma cortisol concentrations were significantly (P less than 0.01) depressed in dogs given either dose of dexamethasone or dexamethasone sodium phosphate by posttreatment hour (PTH) 2 and concentrations remained suppressed for at least 16 hours. However, by PTH 24, plasma cortisol concentrations in all dogs, except those given 0.1 mg of dexamethasone/kg, returned to control values. Adrenocortical suppression was evident in dogs given 0.1 mg of dexamethasone/kg for up to 32 hours. The effect of dexamethasone pretreatment on the adrenocortical response to ACTH was studied in the same dogs 2 weeks later. Two groups of dogs (n = 10/group) were tested with 1 microgram of synthetic ACTH/kg given at 1000 hours or 1400 hours. One week later, half of the dogs in each group were given 0.01 mg of dexamethasone/kg at 0600 hours, whereas the remaining dogs were given 0.1 mg of dexamethasone/kg. The ACTH response test was then repeated so that the interval between dexamethasone treatment and ACTH injection was 4 hours (ACTH given at 1000 hours) or 8 hours (ACTH given at 1400 hours). Base-line plasma cortisol concentrations were reduced in all dogs given dexamethasone 4 or 8 hours previously.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Adrenocortical function was assessed in dogs given a single intramuscular dose of either prednisone or triamcinolone acetonide (TCA; or saline solution to controls) to determine the duration of adrenocortical suppression caused by 2 commonly used glucocorticoids. The glucocorticoids were administered at recommended therapeutic doses; therefore, dogs given prednisone received a greater amount of glucocorticoid activity than did in dogs given TCA. Basal and ACTH-stimulated plasma cortisol concentrations, as determined by radioimmunoassay, were obtained once a week. Total intravascular eosinophil concentration and skin responses to intradermally injected histamine phosphate were quantitated. Dogs given TCA showed suppressed basal and ACTH-stimulated plasma cortisol concentrations 1 week after injection; the latter change persisted 2 weeks after injection. Adrenocortical function in 1 of 4 dogs given TCA remained suppressed for 4 weeks. In contrast, prednisone did not significantly alter adrenocortical function. Although intravascular eosinophil concentrations did not vary among groups, skin responses to intradermally injected histamine phosphate were reduced 6 days after prednisone and TCA were given.  相似文献   

3.
Effects of etomidate on adrenocortical function in canine surgical patients   总被引:1,自引:0,他引:1  
Adrenocortical function in canine surgical patients given etomidate at 1 of 2 dosages (1.5 mg/kg of body weight or 3 mg/kg, IV) was evaluated and compared with that of dogs given thiopental (12 mg/kg, IV). The adrenocortical function was evaluated by use of adrenocorticotropic hormone (ACTH) stimulation tests and determination of plasma cortisol concentrations at 0 minute (base line) and 60 minutes after ACTH administration. At 24 hours before administration of either drug (ie, induction of anesthesia), each dog had an increase in plasma cortisol concentration when given ACTH. The ACTH stimulation tests were repeated 2 hours after induction of anesthesia. Dogs given thiopental had base-line plasma cortisol concentrations greater than preinduction base-line values, but did not increase plasma cortisol in response to ACTH stimulation. Postinduction ACTH stimulation tests in dogs given etomidate at either dose indicated base-line and 60-minute plasma cortisol concentrations that were not different from preinduction base-line values. Therefore, adrenocortical function was suppressed 2 and 3 hours after the administration of etomidate in canine surgical patients.  相似文献   

4.
OBJECTIVE: To determine whether low doses of synthetic ACTH could induce a maximal cortisol response in clinically normal dogs and to compare a low-dose ACTH stimulation protocol to a standard high-dose ACTH stimulation protocol in dogs with hyperadrenocorticism. DESIGN: Cohort study. ANIMALS: 6 clinically normal dogs and 7 dogs with hyperadrenocorticism. PROCEDURE: Each clinically normal dog was given 1 of 3 doses of cosyntropin (1, 5, or 10 micrograms/kg [0.45, 2.3, or 4.5 micrograms/lb] of body weight, i.v.) in random order at 2-week intervals. Samples for determination of plasma cortisol and ACTH concentrations were obtained before and 30, 60, 90, and 120 minutes after ACTH administration. Each dog with hyperadrenocorticism was given 2 doses of cosyntropin (5 micrograms/kg or 250 micrograms/dog) in random order at 2-week intervals. In these dogs, samples for determination of plasma cortisol concentrations were obtained before and 60 minutes after ACTH administration. RESULTS: In the clinically normal dogs, peak cortisol concentration and area under the plasma cortisol response curve did not differ significantly among the 3 doses. However, mean plasma cortisol concentration in dogs given 1 microgram/kg peaked at 60 minutes, whereas dogs given doses of 5 or 10 micrograms/kg had peak cortisol values at 90 minutes. In dogs with hyperadrenocorticism, significant differences were not detected between cortisol concentrations after administration of the low or high dose of cosyntropin. CLINICAL IMPLICATIONS: Administration of cosyntropin at a rate of 5 micrograms/kg resulted in maximal stimulation of the adrenal cortex in clinically normal dogs and dogs with hyperadrenocorticism.  相似文献   

5.
OBJECTIVE: To evaluate effect of alternate-day oral administration of prednisolone on endogenous plasma ACTH concentration and adrenocortical response to exogenous ACTH in dogs. ANIMALS: 12 Beagles. PROCEDURE: Dogs were allotted to 2 groups (group 1, 8 dogs treated with 1 mg of prednisolone/kg of body weight; group 2, 4 dogs given excipient only). During a 30-day period, blood samples were collected for determination of plasma ACTH and cortisol concentrations before, during, and after treatment with prednisolone. From day 7 to 23, prednisolone or excipient was given on alternate days. Sample collection (48-hour period with 6-hour intervals) was performed on days 1, 7, 15, 21, and 28; on other days, sample collection was performed at 24-hour intervals. Pre- and post-ACTH plasma cortisol concentrations were determined on days 3, 9, 17, 23, and 30. RESULTS: A significant difference was detected between treatment and time for group 1. Plasma ACTH concentrations significantly decreased for 18 to 24 hours after prednisolone treatment in group-1 dogs. At 24 to 48 hours, ACTH concentrations were numerically higher but not significantly different in group-1 dogs. Post-ACTH plasma cortisol concentration significantly decreased after 1 dose of prednisolone and became more profound during the treatment period. However, post-ACTH cortisol concentration returned to the reference range 1 week after prednisolone administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Single oral administration of 1 mg of prednisolone/kg significantly suppressed plasma ACTH concentration in dogs for 18 to 24 hours after treatment. Alternate-day treatment did not prevent suppression, as documented by the response to ACTH.  相似文献   

6.
Duration and magnitude of hypothalamic-pituitary-adrenal axis suppression caused by daily oral administration of a glucocorticoid was investigated, using an anti-inflammatory dose of prednisone. Twelve healthy adult male dogs were given prednisone orally for 35 days (0.55 mg/kg of body weight, q 12 h), and a control group of 6 dogs was given gelatin capsule vehicle. Plasma cortisol (baseline and 2-hour post-ACTH administration) and plasma ACTH and cortisol (baseline and 30-minutes post corticotropin-releasing hormone [CRH] administration) concentrations were monitored biweekly during and after the 35-day treatment period. Baseline plasma ACTH and cortisol and post-ACTH plasma cortisol concentrations were significantly (P less than 0.05) reduced in treated vs control dogs after 14 days of oral prednisone administration. By day 28, baseline ACTH and cortisol concentrations remained significantly (P less than 0.05) reduced and reserve function was markedly (P less than 0.0001) reduced as evidenced by mean post-CRH ACTH, post-CRH cortisol, and post-ACTH cortisol concentrations in treated vs control dogs. Two weeks after termination of daily prednisone administration, significant difference between group means was not evident in baseline ACTH or cortisol values, post-CRH ACTH or cortisol values, or post-ACTH cortisol values, compared with values in controls. Results indicate complete hypothalamic-pituitary-adrenal axis recovery 2 weeks after oral administration of an anti-inflammatory regimen of prednisone given daily for 5 weeks.  相似文献   

7.
Plasma cortisol responses of 19 healthy cats to synthetic ACTH and dexamethasone sodium phosphate (DSP) were evaluated. After administration of 0.125 mg (n = 5) or 0.25 mg (n = 6) of synthetic ACTH, IM, mean plasma cortisol concentrations increased significantly (P less than 0.05) at 15 minutes, reached a peak at 30 minutes, and decreased progressively to base-line values by 120 minutes. There was no significant difference (P greater than 0.05) between responses resulting from the 2 dosage rates. After administration of 1 mg of DSP/kg of body weight, IV (n = 7), mean plasma cortisol concentrations decreased at postadministration hour (PAH) 1, and were significantly lower than control cortisol concentrations at PAH 4, 6, 8, 10, and 12 (P less than 0.01). Administration of 0.1 mg of DSP/kg, IV (n = 8) or 0.01 mg of DSP/kg, IV (n = 14) induced results that were similar, but less consistent than those after the 1 mg of DSP/kg dosage. Mean plasma cortisol concentrations returned to base-line values by PAH 24. There was not a significant difference between the 3 doses (P greater than 0.05) at most times. Measurement of endogenous ACTH in 16 healthy cats revealed plasma ACTH of less than 20 to 61 pg/ml. Seemingly, administration of synthetic ACTH consistently induced a significant (P less than 0.05) adrenocortical response in healthy cats. On the basis of time-response studies, post-ACTH stimulation cortisol samples should be collected at 30 minutes after ACTH administration to ensure detection of peak adrenocortical response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Summary

A review is given of the available literature concerning the relationship between the bovine pituitary‐adrenocortical axis and milk yield in dairy cattle. A severe drop in milk yield (more than 50%) can be induced by a single or repeated intramuscular injection of at least 200 IU ACTH or by a single intramuscular injection of 14.6 mg dexamethasone. Sixty minutes after an intravenous injection, both 200 IU ACTH and 100 mg cortisol are equivalent to a plasma cortisol concentration of at least 31 ng/ml. Thus the decrease in milk yield after an intramuscular injection of more than 200 IU ACTH can hardly be induced by cortisol only. The fact that bovine plasma hardly binds any dexamethasone, in sharp contrast with bovine mammary epithelial tissue, is a possible explanation of the special part which dexamethasone plays in milk yield.  相似文献   

9.
Three groups of eight normal dogs each were orally given prednisone at doses of 0.22 mg/kg of body weight/day, 0.55 mg/kg/day, or 1.1 mg/kg on alternate mornings. Four dogs served as nontreated controls. Samples were obtained from members of each group to determine baseline serum cortisol and ACTH-stimulated cortisol values and histologic features in the lateral thoracic skin before prednisone administration, and after 1, 2, 3, and 4 weeks of administration. Some animals from each group were necropsied after 1, 2, 3, and 4 weeks of prednisone administration. Each course of prednisone administration resulted in adrenocortical atrophy and hypofunction, but adrenocortical suppression was less severe and slower in onset in the group given prednisone on alternate days. Extra-adrenal effects observed were atrophy of the skin and focal, fatty change of the liver. These changes were most evident in dogs given daily pharmacologic doses of prednisone (0.55 mg/kg/day). Fewer extra-adrenal effects were observed in dogs given alternate-day therapy. There were no extra-adrenal lesions in the dogs given equivalent glucocorticoid replacement doses (0.22 mg/kg/day).  相似文献   

10.
Adrenocortical function was assessed in horses given multiple IM doses of dexamethasone to determine the duration of adrenocortical suppression and insufficiency caused by 2 commonly used dosages of dexamethasone (0.044 and 0.088 mg/kg of body weight). Dexamethasone was administered at 5-day intervals for a total of 6 injections. Daily blood samples were collected. The plasma was frozen and later assayed for cortisol. An ACTH response test was determined 2 days before the first injection of dexamethasone and again 8 days after the last dexamethasone injection. Maximum suppression of plasma cortisol was observed in horses given both dosages of dexamethasone (0.044 and 0.088 mg/kg). Plasma cortisol concentrations returned to base-line values in all horses by 4 days after dexamethasone injection. Normal ACTH responses observed after 6 dexamethasone injections given at 5-day intervals indicated that measurable adrenal atrophy did not develop under the conditions of this study.  相似文献   

11.
The adrenocortical (plasma corticosteroid) responses in female dogs given porcine ACTH in gelatin (1-39 amino acid sequence) and synthetic ACTH (1-24 amino acid sequence) were compared. Sixteen dogs were used. Each dog underwent 4 different ACTH stimulation studies, these being done with a 4- to 8-week interval. The studies in each dog included injections of 2 doses of porcine ACTH--2.2 IU and 4.4 IU/kg of body weight--and of 2 doses of synthetic ACTH--0.25 mg/dog and 0.50 mg/dog. The dogs were arbitrarily allotted to 4 groups, each group being subjected to a given sequence of stimulation studies. The purpose in this project was to determine whether the established methods for synthetic and porcine ACTH stimulation tests had similar results. Statistical analysis of the 4 stimulation methods revealed no significance (P greater than 0.05) in the resting or poststimulation plasma corticosteroid concentrations. Thus, it was concluded that either recommended method using ACTH (porcine ACTH at 2.2 IU/kg or synthetic ACTH at 0.25 mg/dog) causes maximal secretion of adrenocortical reserve. Either ACTH preparation, using the established method, can be used interchangeably.  相似文献   

12.
The effect of orally administered ketoconazole on plasma cortisol concentration in dogs with hyperadrenocorticism was evaluated. Every 30 minutes from 0800 hours through 1600 hours and again at 1800 hours, 2000 hours, and 0800 hours the following morning, 15 clinically normal dogs and 49 dogs with hyperadrenocorticism had plasma samples obtained and analyzed for cortisol concentration. The mean (+/- SD) plasma cortisol concentration for the initial 8-hour testing period was highest in 18 dogs with adrenocortical tumor (5.3 +/- 1.6 micrograms/dl), lowest in 15 control dogs (1.3 +/- 0.5 micrograms/dl), and intermediate in 31 dogs with pituitary-dependent hyperadrenocorticism (PDH; 3.4 +/- 1.2 micrograms/dl). Results in each of the 2 groups of dogs with hyperadrenocorticism were significantly (P less than 0.05) different from results in control dogs, but not from each other. The same cortisol secretory experiment was performed, using 8 dogs with hyperadrenocorticism (5 with PDH; 3 with adrenocortical tumor) before and after administration at 0800 hours of 15 mg of ketoconazole/kg of body weight. Significant (P less than 0.05) decrease in the 8-hour mean plasma cortisol concentration (0.9 +/- 0.2 microgram/dl) was observed, with return to baseline plasma cortisol concentration 24 hours later. Twenty dogs with hyperadrenocorticism (11 with PDH, 9 with adrenocortical tumor) were treated with ketoconazole at a dosage of 15 mg/kg given every 12 hours for a half month to 12 months. The disease in 2 dogs with PDH failed to respond to treatment, but 18 dogs had complete resolution of clinical signs of hyperadrenocorticism and significant (P less than 0.05) reduction in plasma cortisol responsiveness to exogenous adrenocorticotropin (ACTH).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Plasma aldosterone concentrations were measured in response to adrenocorticotropic hormone (ACTH) gel administration in clinically normal dogs, in dogs with hypoadrenocorticism, and in dogs (with electrolyte abnormalities) that did not have hypoadrenocorticism. Baseline plasma aldosterone concentrations were determined from specimens obtained every 10 minutes for 3 hours from 2 dogs and every 30 minutes for 7.5 hours from 2 other dogs. During the evaluation period, plasma aldosterone concentrations varied by at least 50% in each dog. A randomized crossover design was used to compare changes in plasma aldosterone concentrations after administration of ACTH gel and physiologic NaCl solution. Dogs had significantly (P = 0.002) higher plasma aldosterone concentrations after administration of ACTH gel than after administration of NaCl solution. Plasma cortisol concentrations increased as expected after ACTH gel administration. Analysis of cortisol and aldosterone concentrations in the same specimens obtained at 7 sample collection times did not reveal significant linear correlation, and scatterplots did not indicate a nonlinear association. In addition, plasma aldosterone concentrations were determined in response to ACTH administration alone and to ACTH combined with a high dose of dexamethasone (0.1 mg/kg, IV). The plasma aldosterone response to ACTH alone was not significantly different from the response to ACTH combined with dexamethasone. For both tests, plasma aldosterone concentrations at 60 and 120 minutes after ACTH administration were significantly (P less than 0.0005 and P = 0.0001, respectively, increased, compared with base-line values. Six dogs with adrenocortical hypofunction, as determined by plasma cortisol concentrations before and after ACTH administration, had plasma aldosterone concentrations that were diminished or did not increase after ACTH administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Doses of 0.005-1.0 mg of ACTH1-24 given intravenously, intramuscularly or as an intramuscular depot injection caused increases in cortisol concentrations within 15 min in the plasma of ewes. There was, however, considerable animal-to-animal variation in maximum concentrations achieved. A curvilinear dose-response relationship to ACTH1-24 was obtained which was similar for each route of administration when expressed in terms of maximum cortisol concentrations. However, for a given dose, more prolonged release of cortisol occurred after i.m. injection compared to i.v., with maximum concentrations occurring 6 h after the depot formulation injection. Five repeated daily doses of 1.0 mg depot ACTH1-24 resulted in no diminution of cortisol response indicating considerable synthesizing capacity of the adrenals in clinically normal ewes. Comparison of cortisol concentrations after an acute stressor (shearing) suggests that doses of ACTH1-24 greater than 0.25 mg are excessive for simulation of stress-induced adrenal activity.  相似文献   

15.
Three corticosteroid products (triamcinolone acetonide, fluocinonide, betamethasone valerate) and a control product composed of water, petrolatum, mineral oil, cetyl alcohol, steryl alcohol, sodium lauryl sulfate, cholesterol, and methylparaben each were applied topically to healthy dogs (5 dogs/product) once daily for 5 consecutive days. Plasma concentrations of immunoreactive adrenocorticotropic hormone (iACTH) and cortisol were determined before 1 microgram of ACTH/kg of body weight was given intravenously (pre-ACTH values) and cortisol was again measured 60 minutes after ACTH was given (post-ACTH values). Cortisol and iACTH concentrations were determined in each dog before, during, and after administration of the corticosteroid products. All 3 corticosteroids caused prompt and sustained pituitary-adrenocortical suppression. Compared with control applications, the application of corticosteroids resulted in significant reduction of plasma cortisol and iACTH concentrations by day 2 of treatment, and the lower concentrations continued to day 5. One week after the last application of the corticosteroids, plasma iACTH concentrations in the corticosteroid-treated dogs had returned to the range of values for the control dogs; however, pre- and post-ACTH cortisol concentrations remained suppressed in all corticosteroid-treated dogs. Two weeks after the last treatment, the pre-ACTH plasma cortisol concentrations of corticosteroid-treated dogs returned to those of the control dogs, but the post-ACTH plasma cortisol concentrations remained suppressed. By 3 weeks after the last treatment, post-ACTH plasma cortisol concentrations of dogs treated with triamcinolone acetonide had returned to the range of values for the control dogs, but remained suppressed in the other 2 groups of dogs. All indices of pituitary-adrenocortical activity were within the control range by 4 weeks after the last treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A combined dexamethasone suppression and cosyntropin (synthetic ACTH) stimulation test was developed in the dog so that information concerning pituitary gland (hypophysis) and adrenal gland competence could be provided in a single trial, during a short time span. Treatment of dogs with dexamethasone (0.1 mg/kg, IM) resulted in total suppression (below assay sensitivity or < 10 ng/ml) of plasma hydrocortisone (cortisol) at postinjection hour (PIH) 2 in 100% of the dogs, whereas suppression was inconsistent at PIH 1. Cosyntropin (0.5 U/kg, IV) administration to normal or dexamethasone-suppressed dogs increased plasma hydrocortisone concentration 3.5 to 4.5 times base-line values at PIH 1, which was the time of maximal effect. The combined test concept for adrenal gland function is valid, convenient (three sample collections; 3-hour period), and allows testing of adrenal gland response to dexamethasone suppression and ACTH stimulation in a single trial. The following test procedure for dogs is recommended: (i) collect base-line plasma sample (0900 hours) followed by injection of dexamethasone (0.1 mg/kg, IM); (ii) collect second plasma sample 2 hours after dexamethasone (to evaluate suppression of plasma hydrocortisone concentration) followed by the injection of cosyntropin (0.5 U/kg, IV); and (iii) collect a third plasma sample 1 hour later to evaluate plasma hydrocortisone concentration after cosyntropin stimulation.  相似文献   

17.
A review is given of the available literature concerning the relationship between the bovine pituitary-adrenocortical axis and milk yield in dairy cattle. A severe drop in milk yield (more than 50%) can be induced by a single or repeated intramuscular injection of at least 200 IU ACTH or by a single intramuscular injection of 14.6 mg dexamethasone. Sixty minutes after an intravenous injection, both 200 IU ACTH and 100 mg cortisol are equivalent to a plasma cortisol concentration of at least 31 ng/ml. Thus the decrease in milk yield after an intramuscular injection of more than 200 IU ACTH can hardly be induced by cortisol only. The fact that bovine plasma hardly binds any dexamethasone, in sharp contrast with bovine mammary epithelial tissue, is a possible explanation of the special part which dexamethasone plays in milk yield.  相似文献   

18.
Adrenal function was assessed in dogs after intramuscular administration of a single dose of methylprednisolone acetate (MPA). Twelve dogs were test challenged with adrenocorticotropic hormone (ACTH) and then assigned randomly to 1 of 3 groups and given MPA. Individual groups were test challenged with ACTH 2, 3, or 4 weeks later. All dogs were rechallenged 5 weeks after MPA administration. Plasma cortisol concentration was determined by radioimmunoassay. Basal plasma cortisol (time 0) was depressed on weeks 2 and 3, but not on weeks 4 and 5. Adrenal response to ACTH (increment of cortisol change) was suppressed on weeks 2, 4, and 5, but not on week 3. It was concluded that a single dose of MPA is capable of altering adrenal cortical function in dogs for at least 5 weeks.  相似文献   

19.
The effects of single IV administered doses of dexamethasone on response to the adrenocorticotropic hormone (ACTH) stimulation test (baseline plasma ACTH, pre-ACTH cortisol, and post-ACTH cortisol concentrations) performed 1, 2, and 3 days (experiment 1) or 3, 7, 10, and 14 days (experiment 2) after dexamethasone treatment were evaluated in healthy Beagles. In experiment 1, ACTH stimulation tests were carried out after administration of 0, 0.01, 0.1, 1, and 5 mg of dexamethasone/kg of body weight. Dosages greater than or equal to 0.1 mg of dexamethasone/kg decreased pre-ACTH plasma cortisol concentration on subsequent days, whereas dosages greater than or equal to 1 mg/kg also decreased plasma ACTH concentration. Treatment with 1 or 5 mg of dexamethasone/kg suppressed (P less than 0.05) post-ACTH plasma cortisol concentration (on day 3 after 1 mg of dexamethasone/kg; on days 1, 2, and 3 after 5 mg of dexamethasone/kg). In experiment 2, IV administration of 1 mg of dexamethasone/kg was associated only with low (P less than 0.05) post-ACTH plasma cortisol concentration in dogs on day 3. In experiment 2, pre-ACTH plasma cortisol and ACTH concentrations in dogs on days 3, 7, 10, and 14 and post-ACTH plasma cortisol concentration on days 7, 10, and 14 were not affected by dexamethasone administration. The results suggest that, in dogs, a single IV administered dosage of greater than or equal to 0.1 mg of dexamethasone/kg can alter the results of the ACTH stimulation test for at least 3 days. The suppressive effect of dexamethasone is dose dependent and is not apparent 7 days after treatment with 1 mg of dexamethasone/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The plasma cortisol response to exogenous ACTH (ACTH stimulation test) was evaluated in 22 dogs with hyperadrenocorticism caused by adrenocortical neoplasia. The mean basal cortisol concentration (6.3 microgram/dl) was high, but 7 dogs had basal cortisol concentrations that were within normal range. Administration of exogenous ACTH increased the plasma cortisol concentrations in each dog. Normal post-ACTH cortisol concentrations were found in 9 (41%) of the 22 dogs; 13 (59%) had an exaggerated increase in cortisol concentrations after ACTH administration. In 9 of 13 dogs with carcinoma and in 4 of 9 with adenoma, the cortisol response was exaggerated. The mean post-ACTH cortisol concentration in the dogs with carcinoma was approximately 4 times that of the dogs with adenoma; the 7 dogs with the highest concentrations had carcinoma. Repeat studies were performed in 6 dogs 2 to 8 weeks after initial testing. In 5 of the 6 dogs, repeat testing yielded data of similar diagnostic significance. One dog, however, had an abnormally high post-ACTH cortisol concentration at initial evaluation, but had only a minimal response to ACTH administration, with a normal post-ACTH cortisol concentration, at time of resting. Although ACTH stimulation testing is useful in diagnosing hyperadrenocorticism, it can not reliably separate dogs with hyperfunction adrenocortical tumors from clinically normal dogs or from dogs with pituitary-dependent hyperadrenocorticism (bilateral adrenocortical hyperplasia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号