首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To optimize minituber production through aeroponics some horticultural management factors should be studied. Potato plantlets, cv Zorba, were grown aeroponically at two different plant densities (60 and 100 plants/m2). Plants showed an extended vegetative cycle of about 5 months after planting. A higher number of stolons was obtained at low plant densities. Tuber formation hastened when supplied N was reduced. Experiments on harvesting intervals (7, 10, and 14 days) indicated that for a density of 60 plants/m2, both number of minitubers and yield increased as harvesting interval decreased. Best results were achieved harvesting every 7 days: a total tuber yield of 118.6 g per plant was obtained (four times higher than for 100 plants/m2). Such a yield was composed, on the average, of 13.4 tubers with a mean tuber weight of 8.1 g. Harvesting intervals did not have an effect on the number of minitubers and yield for a density of 100 plants/m2. The best productivity obtained in this study was 800 minitubers/m2 for weekly harvests and a low plant density (60 plants/m2). We also studied the field performance of aeroponically produced minitubers vs those produced by hydroponics. Minituber behavior under field conditions was independent from the technique used for its production.  相似文献   

2.
Commercial potato minituber production systems aim at high tuber numbers per plant. This study investigated by which mechanisms planting density (25.0, 62.5 and 145.8 plants/m2) of in vitro derived plantlets affected minituber yield and minituber number per plantlet. Lowering planting density resulted in a slower increase in soil cover by the leaves and reduced the accumulated intercepted radiation (AIR). It initially also reduced light use efficiency (LUE) and harvest index, and thus tuber weights per m2. At the commercial harvest 10 weeks after planting (WAP), LUE tended to be higher at lower densities. This compensated for the lower AIR and led to only slightly lower tuber yields. Lowering planting density increased tuber numbers per (planted) plantlet in all grades. It improved plantlet survival and increased stem numbers per plant. However, fewer stolons were produced per stem, whereas stolon numbers per plant were not affected. At lower densities, more tubers were initiated per stolon and the balance between initiation and later resorption of tubers was more favourable. Early interplant competition was thought to reduce the number of tubers initiated at higher densities, whereas later-occurring interplant competition resulted in a large fraction of the initiated tubers being resorbed at intermediate planting densities. At low planting densities, the high number of tubers initiated was also retained. Shortening of the production period could be considered at higher planting densities, because tuber number in the commercial grade > 9 mm did not increase any more after 6 WAP.  相似文献   

3.
Summary Microtuber and minitubers of cv. Monalisa were produced in the laboratory and compared with normal seed tubers in a field experiment. These tubers were planted at similar plant densities (13.6 sprouts per m2) with two distances between rows (60 and 90 cm). Final ground cover was almost complete only in the plots derived from normal tubers and decreased with the size of the mother tubers. Normal seed, mini- and microtubers yielded respectively 50.8, 31.7, and 17.0 t/ha (means of two spacings). At close and wide spacing between rows, microtubers yielded respectively 27.3 and 6.7 t/ha, and minitubers 38.9 to 24.4 t/ha. Row spacing did not influence the yields from normal seed tubers. Total number of tubers per m2 was also affected and, as means of the two spacings, ranged from 107.8 with microtubers, 122.1 with minitubers, to 142.9 with normal tubers. Mother tuber type also affected the yield distribution in three tuber grades (<36, 36–55, and 55–80 mm) and micro and minitubers produced many small tubers. Multiplication rates and the possible use of different propagation sources are discussed.  相似文献   

4.
Summary Multiplication factors and progeny yield variation in crops from minitubers of five weight classes (ranging from 0.13–0.25 g to 2.00–3.99 g) and conventional seed tubers were studied in field experiments in three years. Multiplication factors were calculated as the number and weight of progeny tubers produced per planted tuber or per unit planted tuber weight. They were lower for the lighter minitubers when calculated per tuber and higher when calculated per weight. Yield variation was described by coefficients of variation for the number and weight of progeny tubers produced. Variation over individual plants of a crop was higher in stands from the lighter minitubers. Variation over plots within a field was sometimes higher for the lighter minitubers, but variation over years was similar for all minituber classes. Variation over plots in progeny tuber weight was higher for minitubers than for conventional tubers.  相似文献   

5.
In hydroponics, nutrient management is the limiting factor to obtaining optimal production, and nitrogen (N) is the key component to consider when optimizing nutrient management in these types of systems. The objective of this study is to evaluate different combinations of N fertilizer concentrations in order to optimize the yield of basic seed potato minitubers in a three-phase hydroponic system. Treatments consisted of five combinations of N concentrations, applied before and after 21 days after plant transplant as follows, respectively: 1) 13 and 13, 2) 13 and 0, 3) 13 and 7.8, 4) 13 and 16, and 5) 13 and 26 mmol L?1. Propagation was performed by transplanting 3–4 cm potato plantlets cv. Agata from sprouts. There were significant effects of N treatments on all measured variables (root, leaf, stem, and plant dry weight and minituber number and weight). To obtain the maximum minituber number yield, 9.51 minitubers/plant, corresponding to 67 minitubers/m2, post 21-day adjusted N concentration was 18.4 mmol/L. Treatment 4 promoted higher basic seed potato minituber yield in a three-phase hydroponic system.  相似文献   

6.
为了探讨试管苗不同种植密度对马铃薯微型薯的影响,本试验设计了3个种植密度,即每平方米130株、225株及400株。结果表明:随种植密度的增加,总块茎数和总产量逐渐上升。每平方米400株是3种密度中的最佳栽培密度,获得块茎数多,产量最高,且中大薯、中小薯和小薯块茎数分别达到每平方米178个、475个及394个。  相似文献   

7.
Summary Performance of 20 potato genotypes was studied for seven agronomic characters in crops raised from minitubers and normal seed tubers. Correlation coefficients were computed between minituber crop and normal seed crop in order to study the selection efficiency at minituber crop level. The performance of normal seed crop was significantly better than the minituber crop for various characters including tuber yield and its components. Correlation coefficients between minituber and normal seed crop were significant for various characters except number of stems and number of tubers. Highest correlation coefficient (r=0.86) was for tuber yield followed by average tuber weight (r=0.67) and number of nodes (r=0.63). The results suggest that selection for tuber yield can be practised at the minituber crop level in potato breeding programmes  相似文献   

8.
Since the environment of the Mediterranean regions allows offseason production, potatoes are planted in autumn-winter and harvested in spring. During this period, potatoes are subjected to low temperatures and short day lengths which modify the growth characteristics of plants. For this reason, our analysis of competition response was conducted to better clarify the biological relationship between yield and plant density. Field trials were conducted in Sicily (south Italy), a highly representative area of early potato crop in the Mediterranean Basin, with the aim of studying effects of intraspecific competition on tuber yield and yield components. Ten planting densities (ranging from 3.0 to 8.0 plants m?2) were studied on cv. Spunta using “tuberpieces” with a different number of eyes (one eye or all the eyes in 1996; one eye, two eyes, or all the eyes in 1997). Intraspecific competition reduced the tuber yield of individual plants, which became gradually less evident with increasing plant density. Competition affected the number of tubers per plant in the lower plant populations only (from 3.0 to 5.8 plants m?2), whereas effects on average tuber weight were at times more marked in the higher populations (from 5.8 to 8.0 plants m?2) and at other times in the lower densities (from 3.0 to 5.8 plants m?2). As a consequence of increased plant density, and notwithstanding the higher intraspecific competition, the yield of tubers per unit area increased linearly. Regardless of the number of eyes per tuber-piece, when passing from the lower to the higher plant density, yield increased from 34.0 to 54.11 ha?1 in 1996 and from 39.9 to 56.7 t ha?1 in 1997.  相似文献   

9.
In vitro potato plantlets of cultivar (cv.) Shepody (Solatium tuberosum L.) were exposed to 12-or 16-hr photoperiods for 8 weeks. Plantlets were acclimatized to the greenhouse and grown under 14-hr photoperiods until they senesced, and minitubers were harvested. Greenhouse-grown potato plants developed from tissue-culture plantlets exposed to a 16-hr photoperiod were taller and had more nodes than plants developed from plantlets exposed to 12-hr photoperiods. However, yield data of minitubers from greenhousegrown plants indicated that the 12-hr photoperiodic treatment increased the numbers, dry weight and specific gravity of minitubers. A further advantage of the 12-hr photoperiodic treatment was the greater numbers of minitubers in the 15–40 g size class compared with tubers in the <15 g and >40 g size classes. Thus, for the cv. Shepody, plant height and node number of greenhouse-grown plants were not good indicators of minituber yield from that crop. Seed potato nuclear stock facilities producing minitubers should investigate the possibility of optimizing minituber production by exposing multiplication cultures to shorter daylengths.  相似文献   

10.
在马铃薯微型薯生产过程中,扦插时期不同,使马铃薯植株不同物候期所处的环境条件不同,严重影响植株生物学性状及微型薯产量。试管苗扦插生根主要受温度影响,光照通过影响温、湿度对生根起作用。密度不同,植株生长受到影响,微型薯数量与产量均不同。  相似文献   

11.
Summary The effect of varying plant population on the production of tubers from potato seedlings was investigated during 1992 and 1993 using three different plant densities: 35, 70, 100 plants/m2. Increasing the plant population significantly increased the number of tubers produced, but no significant difference was found between the plant densities of 70 and 100 plants/m2. The seedling tubers produced in nursery beds were tested in the field for ware potato production using different sized tubers. The best performances were obtained using tubers 30–40 mm. Significant differences were evident among the 7 true potato seed (TPS) families used, but data grouped by type of cross did not indicate any significant difference between 4X×4X and 4X×2X crossing groups.  相似文献   

12.
Summary Seed tuber production fromin vitro potato plantlets and cuttings was conducted in large propagation beds in a greenhouse. Propagules of wholein vitro plantlets (WIP), plantlets with apical (ACR) and lateral (LCR) cuttings removed, the rooted apical cuttings (RAC) and rooted lateral cuttings (RLC) were planted at three densities of 25, 49 and 100 plants per m2. The plantlets from which cuttings were removed (ACR and LCR) produced more tubers than the rooted cuttings (RAC and RLC); however, the most tubers were produced by WIP. RAC produced highest tuber yields followed by WIP and RLC. Intact WIP and plantlets with cuttings removed (ACR and LCR) produced twice as many tubers <40 g as those from rooted cuttings (RAC and RLC). The yield (kg/m2) as well as the number of tubers per m2 increased with the increasing planting density within the densities tested.  相似文献   

13.
Summary Micro tubers of 3 weight categories with means of 0.63 g, 1.25 g or 2.50 g and in vitro plants were planted in nursery beds at densities of 24 and 48 plants per m2. The average tuber numbers and tuber weights were, respectively, 38% and 17% higher at 48 than at 24 plants per m2. In vitro plants produced significantly more but smaller tubers than did plants grown from micro tubers. Plants grown from the larger micro tubers produced a similar number of tubers but larger ones than did plants grown from small micro tubers. Tuber yields and multiplication rates are discussed.  相似文献   

14.
Phytoplasmal infections cause loss in yield, quality and germination of tubers. Hydrogen peroxide and antioxidants such as ascorbic acid and dehydroascorbate are implicated in signaling against stress. The effects of these chemicals on minituber yield, sprouting and starch content were evaluated in plants testing positive for phytoplasma. Without chemical treatment, positive plants showed significant reductions in leaf pigments, tuber weights and starch contents, compared to uninfected controls, and had more minitubers though fewer sprouted. Hydrogen peroxide and antioxidant treatments of positive plants significantly reduced the number of minitubers, while enhancing their weights and starch contents, and increased the percentage of sprouting minitubers, while leaf pigment content also increased. This research demonstrates potential benefits of hydrogen peroxide and antioxidants in enhancing the yield and quality of tubers not destined for seed in phytoplasma positive plants.  相似文献   

15.
基施有机肥对马铃薯原原种生产及二次结薯的影响   总被引:1,自引:0,他引:1  
以早熟马铃薯‘早大白’为供试品种,在防虫温室内进行了有机肥对脱毒马铃薯试管苗生长及二次结薯影响的试验,旨在探索提高微型薯产量及试管苗利用率的途径。试管苗移栽70 d后收获微型薯并尽量保护好根系,继续使其结薯,进行多次收获。结果表明:多次收获微型薯的产量远高于一次性收获的微型薯产量,因此二次结薯可大大提高试管苗的生产效率。全部追施处理二次结薯单株结薯2.3粒,而基施有机肥33 kg/667 m2条件下单株结薯3.8粒,因此基施有机肥有利于试管苗的生长。  相似文献   

16.
试验测定了不同生理年龄微型薯的干物质含量、含糖量、淀粉含量及其发芽势,研究了微型薯生理年龄对植株生物量、商品产量及总产量的影响。结果表明,微型薯经过贮藏,含水量逐渐下降,干物质含量上升,淀粉所占比重也有所提高,而含糖量在冷藏条件下上升,在常温条件下贮藏下降。在一定贮藏阶段内,随着时间的延长,微型薯的发芽势逐渐增强,达到一定时间后,发芽势又逐渐下降。生理年龄较老的微型薯播种后出苗快,植株分枝较多,易衰老;生理年龄较短的微型薯播种后出苗晚,主茎少,生长期长。在中原二季作地区由于适于马铃薯生长的气候条件较短,以生理年龄壮龄或较老的微型薯作为种子,结薯个数较多,薯重较大,产量高;而生理年龄较短的微型薯所结薯块个数少,重量较轻,产量低。  相似文献   

17.
Potato (Solanum tuberosum L.) plantlets were conditioned in tissue culture to produce more minitubers when planted in a greenhouse. Tissue-cultured potato plantlets, varieties Coliban and Russet Burbank, were grown for 4, 10, or 12 weeks under three temperature regimes (22/18 °C, 16/10 °C, and 10/2 °C day/night) and a photoperiod of 16, 12, or 8 h in different stages of growth. Duration, temperature, and photoperiod of the in vitro period affected plantlet morphology and the total number of minitubers produced per plant in a greenhouse. Extending the growing period and introducing a hardening period with low temperatures (16/10 °C) during the in vitro production stage resulted in 97% more minitubers (4.94 vs 2.50 minitubers per plant for the control) in variety Coliban and up to 71% (6.50 vs 3.80 minitubers per plant for the control) in variety Russet Burbank. The total number of minitubers produced per plant did not change significantly for both varieties when a shorter photoperiod was used instead of the standard 16-h day during the growing period in vitro. Results presented in this experiment demonstrate that the number of minitubers can be substantially increased through the introduction of an induction period as an interstage between the in vitro stages of potato plantlet production and minituber production.  相似文献   

18.
Summary Small seed tubers of 1–5 g, 5–10 g and 10–20 g were planted at the same sprout densities as standard size seed tubers of 40–60 g in order to give similar stem densities. Early ground cover by foliage, total yield, and yield of tubers >45 mm were consistently greater in plots planted with larger seed tubers. The effect of seed tuber size on yield and tuber number per stem varied between years but 1–5 g seed tubers always gave lower yields per stem than larger seed tubers. Reducing the spacing between rows from 90 cm to 60 cm and maintaining the same sprout density was more effective in increasing yields from small seed tubers than increasing sprout density from 20 to 40 sprouts per m2 by reducing plant spacing within the row.  相似文献   

19.
采用马铃薯脱毒小薯不同粒级、不同密度、不同品种熟性三因子三水平正交试验,研究了原原种对一级原种的产量、单株平均结薯数及<25g小薯所占比率的影响。结果表明:当早熟、结薯少、薯块均匀的品种原原种播种密度在1.2万株/亩以上,晚熟和中晚熟、结薯较多薯块不均匀的品种在1.0~1.2万株/亩之间,且播种粒级大于0.5g/粒时,一级原种繁殖方可收到既高产又具较高的繁殖系数和较低用种量的效果。  相似文献   

20.
Summary The production of large volumes of vitroplantlets and greenhouse tubers for increasing the rate of multiplication at the start of seed programmes provides the opportunity of reducing the total number of field generations grown before the seed moves into commerce. This implementation is especially useful for countries where high quality potato seed tubers cannot be produced because there are no vector-free production areas. This review covers the following steps: a) laboratory production of microplantlets and microtubers; b) minituber production in the glasshouse; c) storage and dormancy of micro- and minitubers; d) field performance of micro- and minitubers compared with conventional seed tubers; e) incorporation of the mentioned propagules in seed production systems. Many optimized protocols are already available for propagating plantlets, inducing microtubers and obtaining minitubers in the glasshouse at all periods of the year. Advanced molecular approaches techniques (RFLP and RAPD) to detect genetic variation in the progeny of these propagules have been described. Investigations carried out in this field have shown genetic stability, with the propagules usually reproducing plants true-to-type and tubers without deviants. By contrast, variations were demonstrated in DNA extracted from old suspension cell culture. Field trials assessed a lower yield potential crops from in vitro propagules compared with conventional seed tubers., mainly due to slow early crop development and the failure of plants caused by early stress after emergence. This may cause problems when the growing season is short because of the necessity for planting late to avoid night frosts and the mandatory haulm killing dates, common in many seed producing areas. Strategies for improving the field performance of micro- and minitubers are discussed. The most promising crop husbandry techniques appear to be: a) using tubers of a suitable physiological age, properly presprouted and encapsulated; b) optimizing the time application of fertilizer and irrigation, and c) using floating films. Outside the classical seed tuber areas of Northern Europe where the length of the growing period for pre-basic seed is usually not more than 80 days, the growing season is long enough to obtain reasonable yields even from micro- and minitubers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号