首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A blocking enzyme-linked immunosorbent assay (ELISA) test has been developed to distinguish pseudorabies virus (PRV) (Aujeszky's disease virus) -infected pigs from those immunized with a glycoprotein g92 (gIII) deletion mutant, PRV (dlg92dltk) [OMNIMARK-PRV]. This blocking ELISA test utilizes an anti-PRV gIII monoclonal antibody (mAbgIII)-horseradish peroxidase (HRPO) conjugate, TMB for color development and a cloned PRVg92 (gIII) antigen to coat wells of microtiter test plates. Undiluted sera are used to block the binding of the mAbgIII-HRPO conjugate to the antigen. The gIII blocking ELISA is specific and has a sensitivity comparable to screening ELISA and latex agglutination tests. PRV-negative sera and sera from pigs vaccinated once, twice, or four times with the gIII-negative vaccine all showed negative S/N values of greater than 0.70 (S/N defined as the optical density at 630 nm of test sera/optical density at 630 nm of negative control sera). Sera from PRV-infected herds, sera from pigs experimentally infected with virulent PRV, and sera from pigs vaccinated with modified-live or inactivated gIII+ vaccines were positive for gIII antibodies (S/N less than 0.7). Sera from pigs experimentally infected with 200 PFU virulent PRV seroconverted to gIII+ antibodies 7-10 days postinfection. Sera from pigs vaccinated with gpX- and gI- vaccines seroconverted to gIII+ antibodies 7-8 days after vaccination. The gIII antibodies persisted after gIII+ vaccinated for at least 376 days postvaccination. Sera from pigs protected by vaccination with PRV (dlg92dltk) and then challenge exposed to virulent PRV at 21 days postvaccination showed gIII+ antibodies by 14 days postchallenge. The specificity and sensitivity of the gIII blocking ELISA assay was further demonstrated on the United States Department of Agriculture-National Veterinary Services Laboratory (USDA-NVSL) sera from the 1988 PRV check set and the 1989 gIII PRV check set by comparing the gIII blocking ELISA assay with virus neutralization, screening/verification ELISA and latex agglutination assays.  相似文献   

2.
Latency of pseudorabies virus (PRV) was established in 8 of 9 pigs born to 2 vaccinated sows. Pigs had high, low, or no maternal antibody titers at the time of the initial inoculation. At postinoculation months 3 to 4, latent PRV could be reactivated in vivo by the administration of large doses of corticosteroids. In most pigs, the stress-simulating treatment resulted in recrudescence of virus shedding after lag periods of 4 to 11 days. In 3 pigs, virus shedding was without clinical signs of disease, whereas clinical signs that developed in 4 pigs appeared to be due to the corticosteroid treatment, rather than to the reactivation of PRV. Pigs with a log10 neutralizing antibody titer of less than or equal to 2.55 at the onset of corticosteroid treatment had a booster response. Reactivated PRV spread to sentinel pigs housed with the inoculated pigs. Reactivation of PRV was also demonstrated in vitro. Explant cultures of trigeminal ganglia from pigs killed between postinoculation months 4 to 5 produced infectious virus. Restriction endonuclease analysis indicated that the reactivated PRV was indistinguishable from virus isolated shortly after the primary infection. Seemingly, pigs with maternal antibodies can become latently infected and therefore may be regarded as potential sources of dissemination of PRV.  相似文献   

3.
The avirulent Bartha's K strain of pseudorabies virus (PRV) was used to vaccinate 8 pigs at 10 weeks of age by the intransal route (experiment 1). On postvaccination days (PVD) 63 and 91, pigs were treated with corticosteroids. Viral shedding could not be detected. Explant cultures of trigeminal ganglia and tonsils did not produce virus. Four pigs with maternal antibody were vaccinated intranasally with Bartha's (attenuated) K strain of PRV at 10 weeks of age and were challenge exposed with a virulent strain of PRV on PVD 63 (experiment 2). Corticosteroid treatment, starting on postchallenge exposure day 70 (PVD 133) resulted in viral shedding in 1 of 4 pigs. In another pig of these 4, a 2nd corticosteroid treatment was required to trigger reactivation. In both pigs, sufficient reactivated virus was excreted to infect susceptible sentinel pigs. Restriction endonuclease analysis indicated that viruses isolated from the 2 pigs after challenge exposure and corticosteroid treatment were indistinguishable from the virulent virus. Evidence was not obtained for simultaneous excretion of vaccinal and virulent virus. Of 4 pigs without maternal antibody vaccinated twice with 1 of 2 inactivated PRV vaccines, challenge exposed on PVD 84, and treated with corticosteroids on postchallenge exposure day 63 (PVD 147), 1 was latently infected, as evidenced by the shedding of PRV (experiment 3). However, its sentinel pig remained noninfected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
At present, two types of vaccines against classical swine fever (CSF) virus are commercially available: E2 sub-unit marker vaccines and the conventional attenuated live C-strain vaccines. To evaluate the reduction of the horizontal virus transmission, three comparable experiments were carried out in which groups of weaner pigs (vaccinated with a marker vaccine or a C-strain vaccine) were challenged with CSF virus at 0, 7, and 14 days post-vaccination (dpv). Virus transmission was prevented totally when the challenge occurred at 14 dpv with an E2-marker vaccine (0/12 contact pigs positive in virus isolation (VI); R = 0 (0; 1.5)). At 7 dpv, transmission was reduced slightly (5/12 contact pigs positive in VI; R = 1.0 (0.3; 3.0)), whereas at 0 dpv, vaccination had no effect on transmission (10/12 contact pigs positive in VI; R = 2.9 (1.5; 10.8)). In the C-strain-vaccinated pigs, no virus transmission was detected even when the challenge was performed at the same day as the vaccination (0/12 contact pigs positive in VI; R = 0 (0; 1.5)).  相似文献   

5.
We compared 3 modified-live pseudorabies virus (PRV) vaccine strains, administered by the intranasal (IN) or IM routes to 4- to 6-week-old pigs, to determine the effect of high- and low-challenge doses in these vaccinated pigs. At the time of vaccination, all pigs had passively acquired antibodies to PRV. Four experiments were conducted. Four weeks after vaccination, pigs were challenge-exposed IN with virulent virus strain Iowa S62. In experiments 1 and 2, a high challenge exposure dose (10(5.3) TCID50) was used, whereas in experiments 3 and 4, a lower challenge exposure dose (10(2.8) TCID50) was used. This low dose was believed to better simulate field conditions. After challenge exposure, pigs were evaluated for clinical signs of disease, weight gain, serologic response, and viral shedding. When vaccinated pigs were challenge-exposed with a high dose of PRV, the duration of viral shedding was significantly (P less than 0.05) lower, and body weight gain was greater in vaccinated pigs, compared with nonvaccinated challenge-exposed pigs. Pigs vaccinated IN shed PRV for fewer days than pigs vaccinated IM, but this difference was not significant. When vaccinated pigs were challenge-exposed with a low dose, significantly (P less than 0.05) fewer pigs vaccinated IN (51%) shed PRV, compared with pigs vaccinated IM (77%), or nonvaccinated pigs (94%). Additionally, the duration of viral shedding was significantly (P less than 0.05) shorter in pigs vaccinated IN, compared with pigs vaccinated IM or nonvaccinated pigs. The high challenge exposure dose of PRV may have overwhelmed the local immune response and diminished the advantages of the IN route of vaccination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A blocking enzyme-linked immunosorbent assay (ELISA) test has been developed to distinguish pseudorabies virus (PRV)-infected pigs from those immunized with a glycoprotein g92(gIII) deletion mutant, PRV(dlg92dltk). The blocking ELISA utilizes 96-well microtiter test plates coated with a cloned PRV g92(gIII) antigen, a mouse monoclonal antibody against gIII antigen (moMCAgIII): horseradish peroxidase (HRPO) conjugate, and undiluted test sera. Analyses can be completed in less than 3 hours with results printed out by an automated plate reader. Analyses on over 300 pig sera from PRV-free farms, on sera from other species, and on control sera containing antibodies to microorganisms other than PRV showed that the ratio of the optical density at 405 nm for the test sample to the optical density at 405 nm for the negative control (S/N value) was greater than 0.7 for all sera. No false positives were identified. Likewise, the S/N values were greater than 0.7 for over 400 sera obtained from pigs vaccinated twice with more than 1,000 times the standard PRV (dlg92dltk) dose or 1-4 times with the standard dose (2 x 10(5) TCID50/pig). Following challenge exposure to virulent PRV, the S/N values of the vaccinates were 0.1, showing that g92(gIII) antibodies in the sera of experimentally challenged pigs strongly blocked the binding of the moMCAgIII:HRPO conjugate to the antigen-coated wells. Sera of 233 pigs from PRV-infected herds with virus neutralization (VN) titers of 1:4 or greater were tested. All except 2 of these sera had S/N values less than 0.7 and more than 175 had S/N values less than 0.1. Sixteen sera from fetal pigs with VN titers of 1:4 or greater had S/N values of 0.24 or less, but 2 sera with VN titers of 1:4 when tested 5 years prior to the PRV g92(gIII) blocking ELISA test gave false negative S/N values. Twenty-four of 29 pig sera from PRV-infected herds with VN titers less than 1:4 were positive for g92(gIII) antibodies, illustrating the sensitivity of the PRV g92(gIII) blocking ELISA test. Analyses on 7 sera with VN titers of 1:4-1:64 showed that titers obtained with the PRV g92(gIII) blocking ELISA test were from 2- to 16-fold greater than the VN titers. The accuracy and sensitivity of the PRV g92(gIII) blocking ELISA test was further demonstrated by analyses of 40 unknown sera supplied in the National Veterinary Services Laboratories 1988 PRV check test kit.  相似文献   

7.
将 2 0头 9月龄左右猪瘟、伪狂犬、猪繁殖与呼吸障碍综合征抗原、抗体阴性猪分成 6组 ,分别利用猪细小病毒(PPV)、猪伪狂犬病毒 (PRV)和猪繁殖与呼吸障碍综合征病毒 (PRRSV)单独或混合感染。 7d后连同对照猪 4头 ,免疫接种猪瘟兔化弱毒疫苗 (HCL V) ,13d后连同 4头阴性对照猪一起攻击猪瘟石门强毒。整个试验期间分别每天测温 ,观察临床症状 ,每周采集扁桃体和血样做各种病毒抗原及抗体检测。结果表明 ,非猪瘟病毒感染 7d后 ,所有各组猪均从体内检测到了相应感染的病原 ,表明 3种非猪瘟病毒感染成功。在攻击猪瘟石门强毒后 2周 ,感染了非猪瘟病毒后接种 HCL V疫苗的 4个免疫组 12头猪除 1头外 ,11头全为猪瘟病毒 (HCV)抗原检测阳性 ,且多呈强阳性 ;而单一 HCL V疫苗免疫组在猪瘟强毒攻击后检测不到 HCV;所有 HCL V疫苗免疫猪均存活 ,而非免疫对照组 4头猪全部在攻毒 16 d内死亡。  相似文献   

8.
The capacity of a TK-negative (TK-) and gI/gE-negative (gI/gE-) pseudorabies virus (PRV) mutant to protect pigs against Aujeszky's disease carried out by experimental infection with a virulent PRV strain, was tested. There were three groups, each of four susceptible pigs which were inoculated twice by two different schedules. Group 1 received the modified virus by the intradermal (first inoculation)-intramuscular (second inoculation) routes; group 2 was treated by the intranasal (first inoculation)-intramuscular (second inoculation) routes. The third group was left untreated as the control. All of the pigs were challenged intranasally with a virulent PRV strain and they were subsequently injected with dexamethasone. Two pigs in each group were necropsied on days 5 and 15 after dexamethasone inoculation. The challenge exposure resulted in mild clinical signs, increase in growth and a shorter period of virus shedding in vaccinated pigs, whereas the control group showed severe signs of Aujeszky's disease. No difference in the titre of the virulent virus which was excreted by pigs of all three groups, was observed and all animals seroconverted. Both the mutant strain and the wild-type virus established a latent infection although only the latter was reactivated and shed. Slight lesions were observed in target tissues of the vaccinated animals and no significant differences were detected between the two inoculation schedules.  相似文献   

9.
The humoral antibody response against the nonstructural protein NS1 and the structural protein VP2 of porcine parvovirus (PPV) was evaluated by immuno-peroxidase test (IPT) and enzyme linked immuno sorbent assay (ELISA) using recombinant PPV antigens. The coding sequence for NS1 and VP2 was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) genome resulting in two recombinant baculoviruses AcNPV-NS1 and AcNPV-VP2, respectively. Sf9 cells (Spodoptora frugidiperda) inoculated with AcNPV-NS1 producing recombinant nonstructural protein (rNS1) and AcNPV-VP2 producing recombinant virion protein (rVP2) were used in IPT and ELISA to analyse serum antibodies. Pigs vaccinated with an inactivated whole virus vaccine and experimentally infected pigs were studied. Significant titers against rVP2 were obtained in both vaccinated and infected pigs. Specific antibodies against rNS1 could only be detected in infected pigs and NS1 may in this way allow the specific detection of infected animals. Analysis of serum samples collected up to 18 days post infection (p.i.) from four pigs experimentally infected with PPV showed that antibodies against rNS1 and rVP2 could in all cases be detected on day 9 p.i. Two individual pigs were inoculated twice with PPV and the antibody response was followed 89 days after second inoculation. Serum antibodies against borth rVP2 and rNS1 could be detected for this period of time.  相似文献   

10.
Pseudorabies virus (PRV) antibodies, detectable by indirect radioimmunoassay (IRIA), serum-virus neutralization test (NT), or microimmunodiffusion test (MIDT) were developed within 8 days after pigs were inoculated with virulent PRV or attenuated PRV vaccine. Indirect radioimmunoassay and NT titers in pigs inoculated with virulent PRV were developed at the same rate, with IRIA titers being higher than NT titers. Pigs inoculated with attenuated or inactivated PRV vaccine developed peak mean prechallenge NT antibody titers of 4 and 1 (reciprocals of serum dilutions), respectively. Pigs inoculated with attenuated PRV vaccine had peak mean prechallenge IRIA antibody titers of 6, whereas pigs inoculated with inactivated PRV vaccine had mean IRIA antibody titers of 64. Challenge exposure of swine inoculated with attenuated or inactivated PRV vaccine elicited quantitatively equivalent responses, as measured by IRIA or NT, which were higher than prechallenge titers. There were no false-positive IRIA, NT, or MIDT results obtained when sera from nonvaccinated, nonchallenge-exposed pigs were tested. It appears that the PRV infection status of a seropositive swine herd could be ascertained by serologically monitoring several representative animals from a herd, using the NT. If 2 or more tests of representative animals at 14-day intervals were done and the mean NT titer was 4 or less, it could be concluded that the herd was vaccinated against, but not infected with, virulent virus.  相似文献   

11.
A modified-live pseudorabies virus (PRV) vaccine, designated PRV(dlg92/d1tk), with deletions in the thymidine kinase (tk) and glycoprotein-gIII (g92) genes, was derived from the PRV (Bucharest [BUK]-d13) vaccine strain. The vaccine virus also contained a deletion in glycoprotein gI. Despite 3 deletions, PRV(dlg92/d1tk) replicated to high titers in cell culture from 30 C to 39.1 C. Enzyme assays and autoradiography revealed that PRV(dlg92/d1tk) did not induce a functional tk activity in infected tk- RAB(BU) cells (rabbit skin). Rabbit skin cells were infected with PRV(dlg92/d1tk), with vaccine strains derived from BUK or Bartha K strains of PRV or with the virulent Illinois (ILL), Indiana-Funkhauser (IND-F), and Aujeszky (Auj) strains of PRV and were labeled with [3H]mannose from 4 or 5 to 24 hours after infection to investigate whether these viruses induced the synthesis of glycoprotein gIII. Nonionic detergent extracts were prepared and immunoprecipitated with antisera from pigs vaccinated with tk(-)-PRV(BUK-d13) or tk+-Bartha K, pigs vaccinated with tk+-PRV(BUK) strains and then challenge exposed to tk+-PRV(IND-F), naturally infected domestic or feral pigs, and pigs vaccinated with tk-)-PRV(dlg92/d1tk). Mouse monoclonal antibodies against PRV glycoproteins gIII, gp50, and gII were also studied. After immunoprecipitation, labeled PRV-specific proteins were analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and autoradiography. The PRV glycoprotein-gII complex, but not glycoprotein gIII, was synthesized in PRV(dlg92/d1tk)-infected cells. Glycoprotein gII and gIII were made in cells infected with PRV vaccine strains BUK, Bartha K, and BUK-d13 and with virulent PRV strains ILL, IND-F, and Auj. Cells infected with PRV(dlg92/d1tk) and with PRV strains ILL, IND-F, Auj, Bartha K, BUK, and BUK-d13, excreted into the cell culture medium a highly sulfated glycoprotein gX of about 90 kilodaltons. Antibodies to glycoprotein gIII were not detected in the sera of pigs inoculated with PRV(dlg92/d1tk), but were found in all other swine sera.  相似文献   

12.
Mycoplasma hyopneumoniae (M. hyopneumoniae) is present in almost all swine herds worldwide, but transmission of the pathogen through herds is not yet fully clarified. The aim of this study, performed in 2003, was to investigate and to quantify the transmission of M. hyopneumoniae under experimental conditions by means of an adjusted reproduction ratio (Rn). This Rn-value, calculated according to the final size method, expresses the mean number of secondary infections due to one typical infectious piglet during the nursery period. The period lasted from 4 to 10 weeks of age, corresponding with the nursery period used in most European production systems. Additionally, a comparison was made between transmissions of highly virulent and low virulent isolates.

Forty-eight weaned piglets, free of M. hyopneumoniae, were housed in six separate pens. During 6 weeks, two animals experimentally infected with M. hyopneumoniae were housed together with six susceptible piglets. At the end of the study, the number of contact-infected animals was determined by the use of nPCR on bronchoalveolar lavage fluid. The Rn-values of the highly virulent and the low virulent isolates were estimated to be 1.47 (0.68–5.38) and 0.85 (0.33–3.39), respectively. No significant difference between the groups was found (P = 0.53). The overall Rn was estimated to be 1.16 (0.94–4.08). Under the present experimental conditions, the transmission of M. hyopneumoniae, assessed for the first time by a reproduction ratio, shows that one piglet infected before weaning will infect on average one penmate during the nursery phase.  相似文献   


13.
The purpose of this study was to evaluate the transmission of pathogenic respiratory bacteria to thirteen 5-month-old specific pathogen free (SPF) pigs, during the slaughtering process in a commercial slaughterhouse. Before transportation, the SPF pigs and the lorry were checked to confirm the absence of pathogenic respiratory bacteria.

Nine SPF pigs (group 1) were in contact in a conventional slaughterhouse with finishing pigs, during 4 h before slaughtering. Four SPF pigs (group 2) were slaughtered immediately at arrival in the slaughterhouse.

Five bacterial pathogens (Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Pasteurella multocida, Haemophilus parasuis and Streptococcus suis) were detected by PCR, after slaughtering, from nasal cavities, tonsils and trachea in the two groups of pigs. Lung samples were PCR negative. Three and four bacterial species were isolated from the pigs of group 2 and group 1, respectively. Cultures were negative from the lungs.

All the bacterial species present in the SPF pigs were detected by PCR. P. multocida was isolated, from three samples of scalding water before the onset of slaughtering.

Our results suggest that the SPF pigs became contaminated mainly by the slaughterhouse environment and the scalding water. Histological examinations revealed that during scalding, contaminated water could reach the trachea and the lungs of pigs. Checks conducted at slaughter for respiratory disorders have to be carried on, but nasal cavities and tonsils are not appropriate for bacteriological investigations. Moreover, bacteriological results obtained from the lungs of slaughtered pigs have to be used with carefulness.  相似文献   


14.
To study the antibody response to glycoprotein I (gI) of pseudorabies virus (PRV) in maternally immune pigs, 3 groups of 6 pigs were given low doses of the mildly virulent Sterksel strain of PRV at 3 and 11 weeks of age. Group A consisted of seronegative pigs; groups B and C consisted of pigs with maternal antibodies deficient of antibodies to gI. At 3 weeks of age, 3 pigs of each group were inoculated intranasally with 10(2.5) plaque-forming units (groups A and B), or with 10(3.5) plaque-forming units (group C) of PRV. The 3 other pigs in each group were contact-exposed to the inoculated pigs. In group A, 4 of 6 pigs shed virus and all developed antibodies to gI of PRV and produced PRV-specific IgM and virus-neutralizing antibodies. In groups B and C, 10 pigs shed virus and all developed low and inconsistent titers of gI antibodies, whereas only 3 pigs produced PRV-IgM antibodies with low titers. Thus, after PRV infection of pigs with high concentrations of maternal antibodies deficient of gI antibodies, the antibody responses to PRV were severely inhibited. The pigs were reinoculated with 10(3) plaque-forming units of the same virus 8 weeks after the first inoculation. The pigs in group A did not respond at all, as they were immune. The pigs in groups B and C shed considerable amounts of virus. Three pigs had a clear secondary antibody response to gI, whereas the others developed an early to normal antibody response to gI. None of the pigs mounted a secondary neutralizing antibody response to PRV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Twenty 6-week-old specific pathogen-free pigs were divided into four groups. On day 0 of the experiment, PRRSV-PRV (n = 6) and PRRSV (n = 4) groups were intranasally inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) (10(5.6) TCID50). On day 7, the PRRSV-PRV and PRV (n = 6) groups were intranasally inoculated with pseudorabies virus (PRV) (10(3.6) TCID50). Control pigs (n = 4) were kept as uninoculated negative controls. Half of the pigs in each group were euthanized and necropsied on day 14 or 21. Clinical signs such as depression and anorexia were observed in the PRRSV-PRV and PRV groups after inoculation with PRV. Although febrile response was observed after virus inoculations, the duration of that response was prolonged in the PRRSV-PRV group compared with the other groups. The lungs in the PRRSV-PRV group failed to collapse and were mottled or diffusely tan and red, whereas the lungs of the pigs in the other groups were grossly normal. Histopathologically, interstitial pneumonia was present in all PRRSV-inoculated pigs, but the pneumonic lesions were more severe in the PRRSV-PRV group. Mean PRRSV titres of tonsil and lung in the PRRSV-PRV group were significantly (P < 0.05) higher than that in the PRRSV group on day 21. These results indicate that dual infection with PRRSV and PRV increased clinical signs and pneumonic lesions in pigs infected with both viruses, as compared to pigs infected with PRRSV or PRV only, at least in the present experimental conditions.  相似文献   

16.
Ten pigs, aged 85 days, were vaccinated with a subunit vaccine containing 32 g of classical swine fever virus glycoprotein E2 (gp E2) (group 1), and a further 10 pigs were vaccinated with a C strain vaccine (104±0.15 TCID50/ml), produced by amplification in minipig kidney (MPK) cell culture (group 2). Nine non-vaccinated pigs served as a control group (group 3). Serum samples were collected before (day 0) and at 4, 10, 21 and 28 days after vaccination and were analysed by two commercially available enzyme immunoassays and by a neutralizing peroxidase-linked assay (NPLA). At the same times, peripheral blood was taken for determining the total leukocyte count and the body temperature was taken daily. Antibodies were not detected in serum samples collected before vaccination (day 0), and no side-effects that could be connected with vaccination were observed during the trial. Ten days after vaccination 6/10 pigs vaccinated with the subunit vaccine were seropositive. On days 21 and 28, the ratios of serologically positive to vaccinated pigs were 9/10 and 10/10, respectively. Four of the ten pigs that were vaccinated with the C strain vaccine were positive on day 21 and 9/10 on day 28. However, the results of the NPLA showed that only 4/10 pigs had an antibody titre >1:32 at the end of the trial in both the vaccinated groups, even though the subunit vaccine initiated an earlier and higher level of neutralizing antibodies than the vaccine produced from the C strain. Challenge was performed 28 days after vaccination on four randomly selected pigs from both vaccinated groups. The pigs survived the challenge without showing any clinical signs of classical swine fever (CSF), while two nonvaccinated control pigs died on the 10th and 12th days after infection.  相似文献   

17.
It has been demonstrated that pigs that have been double vaccinated with an E2 sub-unit marker vaccine and that are infected with classical swine fever virus (CSFV) through a natural contact infection may react positive in a CSFV detecting RT-nPCR test, whereas no virus could be isolated by using the conventional virus isolation (VI) technique. To evaluate whether these vaccinated and infected pigs may spread the virus, three experiments were set up. In the first, susceptible pigs were inoculated with serum originating from vaccinated RT-nPCR positive pigs. In the second, vaccinated RT-nPCR positive pigs were brought into contact with sentinel animals. In the third, vertical transmission was evaluated in RT-nPCR positive vaccinated pregnant gilts. In the first two experiments, no proof of virus transmission was found, whereas in the third vertical transmission was observed. The conclusion is that in vaccinated pigs that are positive in RT-nPCR but negative in VI, the level of circulating virus is probably not high enough for horizontal transmission, whereas vertical transmission of the virus is possible.  相似文献   

18.
Pregnant sows, immune against pseudorabies after vaccination, were inoculated at 70 days of gestation either with autologous blood mononuclear cells that had been infected in vitro with pseudorabies virus (PRV) or with cell-free PRV. The infected cells or cell-free PRV were inoculated surgically into the arteria uterina. Eight sows (A to H) had been vaccinated with an inactivated vaccine. The titer of seroneutralizing antibodies in their serum varied between 12 and 48. Five sows (A to E) were inoculated with autologous mononuclear cells, infected either with a Belgian PRV field strain or with the Northern Ireland PRV strain NIA3. These 5 sows aborted their fetuses: 2 of them (B and C) 3 days after inoculation, and the other 3 (A, D, and E) 10, 11, and 12 days after inoculation, respectively. Sows F, G, and H were inoculated with a cell-free PRV field strain. They farrowed healthy litters after normal gestation. Neutralizing antibodies were absent against PRV in the sera of the newborn pigs, which were obtained prior to the uptake of colostrum. The 23 fetuses that were aborted in sows B and C 3 days after the inoculation were homogeneous in appearance and size. Foci of necrosis were not detected in the liver. Viral antigens were located by immunofluorescence in individual cells in lungs, liver, and spleen of 15 fetuses. Virus was isolated from the liver, lungs, or body fluids of 12 fetuses. The 39 fetuses that were aborted in sows A, D, and E between 10 and 12 days after inoculation were of 2 types: 17 were mummified and 22 were normal-appearing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To investigate and optimise detection of carriers, we vaccinated 15 calves with an inactivated vaccine based on foot-and-mouth disease virus (FMDV) A Turkey strain and challenged them and two further non-vaccinated calves with the homologous virus four weeks later. To determine transmission to a sensitive animal, we put a sentinel calf among the infected cattle from 60 days post-infection until the end of the experiment at 609 days post-infection. Samples were tested for the presence of FMDV, viral genome, specific IgA antibodies, antibodies against FMDV non-structural (NS) proteins or neutralising antibodies. Virus and viral genome was intermittently isolated from probang samples and the number of isolations decreased over time. During the first 100 days significantly more samples were positive by RT-PCR than by virus isolation (VI), whereas, late after infection more samples were positive by virus isolation. All the inoculated cattle developed high titres of neutralising antibodies that remained high during the entire experiment. An IgA antibody response was intermittently detected in the oropharyngeal fluid of 14 of the 17 calves, while all of them developed detectable levels of antibodies to NS proteins of FMDV in serum, which declined slowly beyond 34 days post-infection. Nevertheless, at 609 days after inoculation, 10 cattle (60%) were still positive by NS ELISA. Of the 17 cattle in our experiment, 16 became carriers. Despite frequent reallocation between a different pair of infected cattle no transmission to the sentinel calf occurred. It remained negative in all assays during the entire experiment. The results of this experiment show that the NS ELISA is currently the most sensitive method to detect carriers in a vaccinated cattle population.  相似文献   

20.
Simple mathematical models based on experimental and observational data were applied to evaluate the feasibility of eradicating pseudorabies virus (PRV) regionally by vaccination and to determine which factors can jeopardise eradication. As much as possible, the models were uncomplicated and our conclusions were based on mathematical analysis. For complicated situations, Monte-Carlo simulation was used to support the conclusions. For eradication, it is sufficient that the reproduction ratio R (the number of units infected by one infectious unit) is < 1. However, R can be determined at different scales: at one end the region with the herds as units and at the other end compartments with the pigs as units. Results from modelling within herds showed that contacts between groups within a herd is important whenever R between individuals (Rind) is 1 in one or more groups. This is the case within finishing herds. In addition, if the Rind is more than 1 within a herd, the size of the herd determines whether PRV can persist in the herd and determines the duration of persistence. Moreover, when reactivation of PRV in well-vaccinated sows is taken into account, Rind in sow herds is still less than 1. In sow herds with group-housing systems, it is possible that in those groups Rind is 1. Results from modelling between herds showed that whether or not Rherd is < 1 in a particular region is determined by two factors: (1) the transmission of infection between nucleus herds and rearing herds through transfer of animals and (2) contacts among finishing herds and among rearing herds. The transmission between herds can be reduced by reduction of the contact rate between herds, reduction of the herd size, and reduction of the transmission within herds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号