首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
水氮措施影响设施土壤氮素的转化及硝化微生物活性,但水氮耦合对设施土壤自养和异养硝化作用差异的影响尚不明确。以连续8年设施水氮耦合田间定位试验土壤为研究对象,控制不同土壤田间持水量(WHC)(40%WHC、60%WHC和80% WHC)进行室内微宇宙培养试验,通过添加乙炔抑制剂抑制自养硝化途径,研究水氮耦合对设施土壤自养和异养硝化速率及参与自养硝化的氨氧化微生物的影响,分析氨氧化微生物氨氧化古细菌(AOA)和氨氧化细菌(AOB)对自养硝化作用的贡献。结果表明,水氮耦合下,不同硝化途径NH4+-N、NO3--N含量以及参与自养硝化的AOA amoA和AOB amoA基因拷贝数均有显著差异。无乙炔培养7 d后,NO3--N含量显著增加,而NH4+-N含量显著降低,AOA amoA和AOB amoA的基因丰度显著增加。添加乙炔后,NO3--N、NH4+-N含量基本保持恒定,AOA amoA和AOB amoA基因丰度显著减少。水氮耦合显著影响自养和异养硝化速率,冗余分析(RDA)表明,NH4+-N含量、AOB amoA、NO3--N-C2H2、AOA amoA可分别解释自养和异养硝化速率变异的68.9%、34.9%、32.8%和24.4%。设施土壤存在自养硝化和异养硝化两种途径,60%~80%WHC各施氮处理均以自养硝化为主,占总硝化速率的65%~86%;仅40%WHC下,氮纯养分量300和525 kg·hm-2处理以异养硝化为主,占总硝化速率的61%~77%。AOB和AOA共同驱动自养硝化,且AOB贡献更大。  相似文献   

2.
环境中的反硝化微生物种群结构和功能研究进展   总被引:3,自引:0,他引:3  
反硝化作用是生态系统氮循环的重要组成部分,与地下水硝酸盐累积和温室气体排放密切相关。种类繁多的细菌、真菌和古菌参与反硝化过程,并在调控反硝化速率和反硝化气体产物比例等方面发挥重要作用。反硝化微生物的种群结构是一系列环境影响因素长期作用的结果,反硝化微生物种群对温度、水分、pH、O2含量、资源可利用性和植被类型等因素产生不同的响应。环境因素通过对反硝化微生物的影响来调控反硝化速率和反硝化酶的生成。分子技术的应用为自然环境中反硝化微生物的研究开辟了广阔前景,并为进一步认识反硝化微生物种群结构和功能的相互关系提供了新的发展方向。本文总结了关于环境中反硝化微生物种群的研究结果,并为进一步研究反硝化微生物种群结构和功能的联系提供了总体框架。  相似文献   

3.
异养硝化微生物的分子生物学研究进展   总被引:9,自引:2,他引:9  
王一明  彭光浩 《土壤》2003,35(5):378-386,407
硝化作用是自然界N素循环的一个重要环节,对于农业生产、环境保护等都具有重要意义。除了传统上认为的自养硝化细菌以外,近几十年来已发现很多异养微生物和甲烷营养细菌可以进行硝化作用。现就异养硝化微生物的分子生物学研究作一综述。  相似文献   

4.
氯化铵中氯的硝化抑制效应研究   总被引:24,自引:3,他引:24  
通过盆栽试验 ,在种与不种作物条件下 ,研究了不同氮肥品种在土壤中的硝化作用 ,氯化铵中氯离子的硝化抑制效应及其对玉米营养和生长的影响。结果表明 ,不同氮肥品种在土壤中硝化作用大小为 :尿素 硫酸铵 氯化铵 ;氯化铵与尿素或硫酸铵配合施用能明显降低其氮素的硝化作用。氮素的硝化率与土壤含氯量呈显著负相关 ,氯化铵中氯能抑制氮素硝化作用 ,其硝化抑制效应强弱与氮肥品种和作物生长有关 ,氯对尿素的硝化抑制作用大于对硫酸铵的作用。不种作物时 ,氯化铵中氯的硝化抑制效应稳定且与双氰胺相当 ;种玉米促进了氮素的硝化作用。随着玉米生长及其对氯的吸收 ,氯的硝化抑制效应逐渐降低。硝化作用过强或过弱都不利于玉米苗期生长 ,玉米吸收NH4+-N与NO3--N需要一定比例。本试验条件下 ,玉米吸收土壤NH4+-N与NO3--N的最适比例为 1∶0.7~ 1∶1。合理配施氯化铵能调节土壤中NH4+-N与NO3--N的供给比例 ,提高玉米苗期生物产量。  相似文献   

5.
土壤硝化作用是肥料氮素进入到土壤中后参与氮素循环的关键过程,为了明确不同种类地膜对辽西褐土硝化活性的影响,本试验采用室内培养分析的方法,研究3种不同类型地膜(普通PE膜,PBAT全生物降解地膜和氧化-生物降解地膜)及不同地膜添加量(0、300、900 kg/hm~2)对辽西褐土硝化潜势的影响,探讨可降解地膜的混入是否会对土壤微生物硝化作用产生抑制和毒害作用。结果表明,与对照土壤相比,添加普通PE膜(T1)、PBAT生物降解膜(T2)和氧化-生物降解膜(T3)并没有显著影响土壤的硝化潜势,3种地膜添加后土壤硝化潜势表现为T1[NO_2-N 5.61 ng/(g·h)]T2[(NO_2-N 4.30 ng/(g·h)]T3[NO_2-N 3.42 ng/(g·h)],且对于普通PE膜和PBAT生物降解膜处理土壤,存在随着地膜添加量增加硝化潜势降低的趋势。通过进一步计算和评估,基于3种供试地膜的污染土壤未对土壤微生物硝化作用产生抑制和毒害作用。研究结果丰富了可降解地膜对土壤环境影响的相关理论,为实现可降解地膜在辽西地区推广应用提供数据参考。  相似文献   

6.
氧化亚氮(N2O)是重要的温室气体之一,还会破坏大气臭氧层,影响全球气候变化。农田土壤是N2O最主要的排放源,由微生物主导的硝化和反硝化作用是其最主要的排放途径,因此,土壤的硝化和反硝化作用备受关注。在综合国内外相关研究的基础上,就区分硝化和反硝化作用对N2O排放贡献的研究方法、土壤N2O产生途径及其影响因素以及施用生物炭对N2O排放的影响机理进行归纳总结。结果表明:硝化和反硝化作用对生物炭的响应不同,在N2O减排效应上也存在很大的不确定性,其内在机理尚不明确。在此基础上,提出区分硝化和反硝化作用对N2O排放贡献的最佳研究方法,并就农田土壤硝化反硝化作用的影响因素以及对生物炭的响应机制进行研究展望。  相似文献   

7.
反硝化微生物分子生态学技术及相关研究进展   总被引:3,自引:0,他引:3  
反硝化是微生物以氮氧化物作为电子受体产生能量的过程。由微生物推动的反硝化使地球生物圈中被固定的氮素重新回到大气中去,从而实现整个自然界的氮素循环。反硝化作用与人类的生产、生活密切相关,它能使江河湖海脱除氮素富营养化而得以净化,也能使农田氮肥反硝化流失造成重大经济损失。多年来,基于培养技术的传统微生物研究方法很难了解环境中的反硝化微生物,因为人们目前能够培养的微生物不足环境微生物总量的3%。近年来,分子生物学和现代生物技术的迅猛发展极大地推动了环境微生物学的发展,人们可以直接提取环境DNA、通过分子标记和多种技术研究环境微生物。本文综述了环境反硝化微生物的分子生态学研究技术及国内外相关领域的研究进展。  相似文献   

8.
将氨氧化成亚硝态氮的氨氧化过程是土壤硝化作用的关键步骤,主要由氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)驱动。其中,AOA具有丰度高、硝化能力强及特殊生态环境偏好等特征,在土壤生态系统的氮素转化过程中发挥重要作用。AOA基因组序列中氨单加氧酶基因(amo A)的发现、纯培养物的分离及其不同生境的赋存状况,为土壤古菌的氨氧化研究提供了新思路。近年研究表明,氨氧化微生物的代谢类型多为化能自养型,而复杂土壤环境中的AOA,其代谢类型呈多样化,除营化能自养生长外,还可能营化能异养和混合营养代谢。其不同代谢方式在氨氧化过程中的响应机制仍需进一步研究。本文概述了土壤中AOA的发现与分布,重点介绍了其可能的代谢途径,并探究其在环境中发挥重要作用的机理。  相似文献   

9.
砂姜黑土是我国典型的中低产田土壤类型,研究其在土壤微生物驱动下的氮素转化过程及其机制,可为定向调控土壤氮素转化过程,提高氮素利用效率并减少其负面效应提供科学依据。试验设置0 kg·hm~(-2)、120 kg·hm~(-2)、225 kg·hm~(-2)和330 kg·hm~(-2) 4个供氮量,分别于冬小麦越冬期、拔节期、抽穗期、开花期、灌浆期和成熟期测定小麦根际土壤氮转化相关微生物作用(氨化作用、硝化作用和反硝化作用)强度和土壤氮素转化相关酶(脲酶、蛋白酶)活性,土壤净氮素矿化速率、土壤硝态氮和铵态氮含量的变化,研究影响砂姜黑土麦田土壤氮素转化的生物学因素及其对不同供氮量的响应。结果表明,土壤氮素转化微生物及酶活跃时期为拔节到灌浆期,灌浆期之后土壤氨化作用强度、硝化作用强度、脲酶及蛋白酶活性降低;土壤净氮素矿化速率与土壤氮素转化微生物作用强度及酶活性的活跃期较为一致,在开花前后达到最高。除脲酶活性随供氮量增加持续上升外,土壤氮素转化微生物作用强度及蛋白酶活性均随供氮量的增加,在225 kg·hm~(-2)处理下达到最高,进一步增加供氮量至330 kg·hm~(-2),微生物作用强度及酶活性均表现出不同程度的下降。可见,砂姜黑土土壤氮素转化的活跃期与小麦需氮高峰期基本一致,有利于冬小麦的生长。但由于砂姜黑土中土壤硝化作用强度较低,土壤硝化能力有限,从而降低了氮素可利用性,且增加了土壤氨挥发损失的潜在风险。在一定范围内增加供氮量,有利于土壤氮素的转化,但供氮过多(330 kg·hm~(-2))则不利于砂姜黑土供氮能力的提高。  相似文献   

10.
土壤硝化-反硝化作用研究进展   总被引:19,自引:4,他引:19       下载免费PDF全文
李振高  俞慎 《土壤》1997,29(6):281-286
硝化-反硝化作用是氮素循环的重要环节,涉及到气态氮的损失和污染生态环境的影响,是当今氮素研究的热点之一。本文综述了近年来土壤硝化-反硝化作用损失量,机理研究方法及控制对策等方面的研究进展和展望。  相似文献   

11.
Land-use and management practices can affect soil nitrification. However, nitrifying microorganisms responsible for specific nitrification process under different land-use soils remains unknown. Thus, we investigated the relative contribution of bacteria and fungi to specific soil nitrification in different land-use soils (coniferous forest, upland fields planted with corn and rice paddy) in humid subtropical region in China. 15N dilution technique in combination with selective biomass inhibitors and C2H2 inhibition method were used to estimate the relative contribution of bacteria and fungi to heterotrophic nitrification and autotrophic nitrification in the different land-use soils in humid subtropical region. The results showed that autotrophic nitrification was the predominant nitrification process in the two agricultural soils (upland and paddy), while the nitrate production was mainly from heterotrophic nitrification in the acid forest soil. In the upland soils, streptomycin reduced autotrophic nitrification by 94%, whereas cycloheximide had no effect on autotrophic nitrification, indicating that autotrophic nitrification was mainly driven by bacteria. However, the opposite was true in another agricultural soil (paddy), indicating that fungi contributed to the oxidation of NH4+ to NO3?. In the acid forest soil, cycloheximide, but not streptomycin, inhibited heterotrophic nitrification, demonstrating that fungi controlled the heterotrophic nitrification. The conversion of forest to agricultural soils resulted in a shift from fungi-dominated heterotrophic nitrification to bacteria- or fungi-dominated autotrophic nitrification. Our results suggest that land-use and management practices, such as the application of N fertilizer and lime, the long-term waterflooding during rice growth, straw return after harvest, and cultivation could markedly influence the relative contribution of bacteria and fungi to specific soil nitrification processes.  相似文献   

12.
The tropical pasture grass Brachiaria humidiola (Rendle) Schweick releases nitrification inhibitory compounds from its roots, a phenomenon termed 'biological nitrification inhibition' (BNI). We investigated the influence of root exudates of B. humidicola on nitrification, major soil microorganisms and plant growth promoting microorganisms using two contrasting soil types, Andosol and Cambisol. The addition of root exudates (containing BNI activity that is expressed in Allylthiourea unit (ATU) was standardized in a bioassay against a synthetic inhibitor of nitrification, allylthiourea, and their function in soil was compared to inhibition caused by the synthetic nitrification inhibitor dicyandiamide. At 30 and 40 ATU g−1soil, root exudates inhibited nitrification by 95% in fresh Cambisol after 60 days. Nitrification was also similarly inhibited in rhizosphere soils of Cambisol where B. humidicola was grown for 6 months. Root exudates did not inhibit other soil microorganisms, including gram-negative bacteria, total cultivable bacteria and fluorescent pseudomonads. Root exudates, when added to pure cultures of Nitrosomonas europaea , inhibited their growth, but did not inhibit the growth of several plant growth promoting microorganisms, Azospirillum lipoferum , Rhizobium leguminosarum and Azotobacter chroococcum. Our results indicate that the nitrification inhibitors released by B. humidicola roots inhibited nitrifying bacteria, but did not negatively affect other major soil microorganisms and the effectiveness of the inhibitory effect varied with soil type.  相似文献   

13.
液体培养研究不同土壤中硝化活性   总被引:2,自引:0,他引:2  
YUAN Fei  RAN Wei  SHEN Qi-Rong 《土壤圈》2005,15(3):379-385
A red soil, a fluvo-aquic soil and a permeable paddy soil were used in a long-term investigation to study changes in nitrification with treatments: 1) soil incubation, 2) liquid incubation inoculated with soil samples, and 3) liquid incubation inoculated with ammonia-oxidizing bacteria (AOB) from the soils. There were significant differences (P < 0.001) in nitrification rates among the three soils when measured for 28 days by adding (NH4)2SO4 at the rate of 154 mg N kg-1 dry soil to fresh soil. However, the amounts of nitrifying bacteria in the three soils were not related to soil nitrification capacity. When the soil samples or the isolates of AOB enriched from the corresponding soil were incubated in liquid with pH 5.8, 7.0 and 8.0 buffers and 10 mmol L-1 ammonium nitrogen, there were no significant nitrification differences in the same soil type at each pH. The ability to oxidize ammonia through AOB from different types of soils in a homogeneous culture medium was similar, and the soil nitrification capacity could reflect the inherent properties of a soil. Altering the culture medium pH of individual soil type also showed that acidification of an alkaline fluvo-aquic soil decreased nitrification capacity, whereas alkalinization of the acidic red soil and permeable paddy soil increased their nitrification. For a better insight into factors influencing soil nitrification processes, soil properties including texture and clay composition should be considered.  相似文献   

14.
Abstract

Nitrification in soil converts relatively immobile ammonium‐nitrogen (N) to highly mobile nitrate‐N (via nitrite), and this has implications for N‐use efficiency by agricultural systems as well as for environmental quality, especially in situations where the potential for loss of soil or added N is high following nitrate formation. The literature on various physical, environmental, and chemical factors and their interactions on nitrification in soil is reviewed and discussed with examples from natural and agro‐ecosystems. Among the various factors, soil matrix, water status, aeration, temperature, and pH have strong influence on nitrification. The information on factors that influence nitrification is useful when developing strategies for regulating nitrification in soils by employing chemical or biological nitrification inhibitors.  相似文献   

15.
Nitrification occurs slowly in many acid Scots pine forest soils. We examined if bacterial community structure and interactions between members of the bacterial community in these forest soils prohibit growth of ammonia-oxidising microorganisms and their nitrifying activity. Native and gamma-irradiated Scots pine forest soils known to have low net nitrification rates were augmented with fresh soils or soil slurries from nitrifying Scots pine forest soil, and vice versa. Augmentation of native non-nitrifying soils with nitrifying soils induced net nitrification, although no significant changes in bacterial community structure, as measured by 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE), were observed. In sterilised soils, the inoculum, i.e. native nitrifying soil or non-nitrifying soil, determined the occurrence of net nitrification and bacterial community structure, and not the origin of the sterilised soils. Our results demonstrate that low net nitrification rates in acid Scots pine forest soils cannot be (solely) explained by unfavourable abiotic soil conditions, but that still uncaptured biotic factors contribute to suppression of nitrification.  相似文献   

16.
中国典型生态系统土壤硝化强度的整合分析   总被引:2,自引:1,他引:2  
郭志英  贾仲君 《土壤学报》2014,51(6):1317-1324
针对国内外1959年至2013年间发表的2 900篇中国土壤硝化相关论文,获得288组中国土壤硝化强度数据,涉及26个省份,初步构建了开放式的中国土壤硝化信息系统。进一步利用整合分析,评估了土壤理化性质与土壤硝化强度的可能联系。结果表明:不同生态系统之间硝化速率由大到小依次为:农田(NO-3-N 1.39±0.27 mg kg-1d-1)、草地(0.74±0.17)、森林(0.66±0.16)、沙漠(0.17±0.08)、湿地(0.06±0.04)。在统计显著性的前提下,硝化强度与环境因子之间表现出一定的相关性趋势:即硝化强度与p H、有效磷、硝态氮正相关,与有机碳、速效氮和碳氮比负相关。在较大时空尺度下,生态系统类型是土壤硝化过程地理分异规律的最优解释因子,可能在硝化微生物形成与演替过程中发挥了重要作用。  相似文献   

17.
Volcanic acidification has created unique ecosystems that have had to adapt to the acidic environments in volcanic regions. To characterize the primary microbial properties of strongly acidified soils in such environments, we investigated microbial biomass, nitrogen transformations and other relevant chemical properties in the surface soils of solfatara and forests from Osorezan, a typical volcanic region in Japan, and compared the results to common Japanese forest soils. Soil microbial biomass C (MBC) and N (MBN) were determined using the chloroform fumigation–extraction method. Potential net N mineralization and net nitrification were measured in aerobic laboratory incubations. Long-term acidification in the Osorezan soils by volcanic hydrogen sulfide deposition caused low soil pH (3.0–3.8), base cation deficiency and increased concentrations of toxic ions such as Al3+. The proportions of MBC to total carbon (MBC/TC ratio) and MBN to total nitrogen (MBN/TN ratio) were lower than those in common Japanese forest soils. The extreme acidic conditions may have inhibited microbial survival in the Osorezan acid soils. Net N mineralization occurred at rates comparable to those in common Cryptomeria japonica forest soils, probably because of the presence of acid-tolerant soil microorganisms. Net nitrification was completely inhibited and autotrophic ammonia oxidizers were not detected by the MPN method. The inhibition of nitrification prevents nitrogen leaching from the soils, thus maintaining a nitrogen cycle in the volcanic acid region in which     (and NH3) is recycled among microorganisms and plants.  相似文献   

18.
Recent studies of ammonia-oxidizing archaea (AOA) suggested their significant contributions to global nitrogen cycling, and phylogenetic analysis categorized AOA into a novel archaeal phylum, the Thaumarchaeota. AOA are ubiquitous in terrestrial ecosystems, have unique mechanisms for nitrification, better adaptation to low-pH pressures, and strikingly lower ammonia requirements compared with ammonia-oxidizing bacteria (AOB). Previous perceptions that microbial ammonia oxidation in acidic soils was minimal, and entirely meditated by autotrophic bacteria and occasionally by heterotrophic nitrifiers have been dramatically challenged, and the dominant nitrifying groups urgently called for re-assessment. Controversially, the relative contributions of AOA and AOB to autotrophic ammonia oxidation have been reported to vary in different soils, but ammonia substrate availability, which was largely restricted under acidic conditions, seemed to be the key driver. Theoretically predicted ammonia concentrations in acidic soils below the substrate threshold of AOB and remarkably high ammonia affinity of AOA raised the supposition that thaumarchaea could represent the dominant ammonia-oxidizing group in ammonia-limited acidic environments. Recently, the functional dominance of thaumarchaea over its bacterial counterpart and autotrophic thaumarchaeal ammonia oxidation in acidic soils has been compellingly confirmed by DNA-stable isotope probing (SIP) experiments and the cultivation of an obligate acidophilic thaumarchaeon, Nitrosotalea devanaterra. Here, we review the currently available knowledge concerning the history and progress in our understanding of the ammonia-oxidizing microorganisms (AOB and AOA) and the mechanisms of nitrification in nutrient-depleted acidic soils, present the possible mechanisms shaping the distinct niches of AOA and AOB, and thus strengthen the assumption that AOA dominate over AOB in ammonia oxidation of acidic soils.  相似文献   

19.
Influence of watercontent and salts on the nitrification in samples of a Dystric Cambisol Samples of a Dystric Cambisol from a beech site produced nitrate but autotrophic nitrifying microorganisms could not be detected. Net nitrification of the humic layer and the upper 5 cm of the mineral soil during incubation at 22°C was investigated. Nitrification rate increased with increasing water content of the soil. Additions of ammonium or peptone did not increase the nitrification in the humic layer. Supply of (ammonium-)sulphates and chlorides with concentrations higher than 2 mMol per kg soil inhibited nitrification totally. This could not be ascribed to pH-changes. Additions of phosphates, lime or alkali to the soil samples increased nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号