首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Irrigations scheduled on plant water status ignore the effect of ontogeny on plant water status. Leaf xylem water potential (XWP) of maize sown on three dates in a sandy loam soil was measured under the same environment for evaluating the effect of ontogeny on plant water status. Minimum XWP (measured between 13.00-14.30 h) of the youngest crop was the highest during two crop seasons and the differences in XWP of the youngest and the oldest maize plants ranged from 0.25 to 0.65 MPa during the season. Maximum XWP (measured before dawn) of the youngest crop was nearly 0.1 MPa higher than that of the oldest crop. Diurnal variation in XWP was lowest in the youngest crop. The results highlight the need of ontogeny dependent critical values of plant water status for scheduling irrigation.  相似文献   

2.
秸秆氨化还田对农田水分与夏玉米产量的影响   总被引:3,自引:0,他引:3  
寻求秸秆资源的有效还田方式对干旱半干旱区农业的可持续发展具有重要意义。本文于2014年和2015年在夏玉米全生育期设置2个秸秆氨化水平(A0:未氨化冬小麦秸秆,A1:氨化冬小麦秸秆)和2个秸秆长度水平(L0:粉碎为短秸秆,L1:大于50mm冬小麦长秸秆)翻压还田,分析不同预处理秸秆还田条件下夏玉米全生育期株高、叶面积指数、地上部生物量、冠层覆盖度等生长指标以及土壤贮水量、耗水量、产量和水分利用效率的变化。结果表明,2年夏玉米氨化短秸秆翻压还田处理(A1L0)平均土壤体积含水率较未氨化长秸秆处理(A0L1)分别提高了10.7%和6.4%;氨化处理土壤体积含水率明显高于未氨化处理,但不同处理间耗水量差异较小;夏玉米灌浆期氨化短秸秆翻压还田处理(A1L0)的平均冠层覆盖度(CC)比其他处理高3.7%~10.7%;成熟期氨化短秸秆翻压还田处理(A1L0)的平均地上部干物质量比其他处理高 2.1%~9.5%,平均产量比其他处理增加2.8%~9.1%,平均水分利用效率比其他处理增加1.7%~7.4%;氨化短秸秆翻压还田处理(A1L0)能显著提高夏玉米地上部生物量与籽粒产量。因此,氨化短秸秆翻压还田能有效促进夏玉米生长,保持较好的土壤水分条件,有助于提高夏玉米产量和水分利用效率。  相似文献   

3.
This study investigated the impact of using treated wastewater and deficit irrigation on yield, water productivity, dry matter and soil moisture availability. The experiment included six treatments of deficit irrigation with treated wastewater during the 2010 and 2011 seasons and two deficit irrigation treatments combined with 3 organic amendment levels during the 2012 season. The experimental and SALTMED modelling results indicated that regulated deficit irrigation when applied during vegetative growth stage could stimulate root development, increase water and nutrient uptake and subsequently increase the yield. The organic amendment has slightly improved yield under full irrigation but had relatively small effect under stress conditions. The SALTMED model results supported and matched the experimental results and showed similar differences among the different treatments. The model proved its ability to predict soil moisture availability, yield, water productivity and total dry matter for three growing seasons under several deficit irrigation strategies using treated wastewater. The high values of the coefficient of determination R 2 reflected a very good agreement between the model and observed values. The SALTMED model results generally confirm the model’s ability to predict sweet corn growth and productivity under deficit irrigation strategies in the semi-arid region.  相似文献   

4.
低温等离子体对农作物种子的影响已有研究,等离子体能够激活种子的内源物质,增强种子的活力,提高种子的生命力和抗逆性,增加产量,促进基因表达,且不会影响环境。玉米作为青贮饲料的重要来源,应用等离子体处理方面的研究却相对较少。设计并研制了射频等离子体种子处理机,应用样机对陈旧的玉米种子进行低温等离子体种子处理试验,以处理时间和处理功率两个因素为变量,分析低温等离子体对玉米种子发芽特性的影响。其中,处理组发芽率对比CK组的变化为-14.00%~10.67%,发芽势对比CK组的变化为-3.33%~10.00%,平均根长对比CK组的变化为-45.84%~20.66%,平均芽长对比CK组的变化为-13.46%~16.07%,平均鲜质量对比CK组的变化为-4.77%~16.59%,平均干质量对比CK组的变化为-5.17%~7.54%。   相似文献   

5.
The amount of water runoff and soil loss from a bare soil of 45–50% slope gradient and from the soil cropped with maize at 2 plant populations were measured for 20 storms. The lower population (wide spacing) of 41,500 plants/ha is the population currently in use and the higher population (close spacing) was 62,500 plants/ha.Maize at each of the 2 plant spacing significantly reduced runoff and soil loss. The closer planting did not only significantly reduce soil loss but also produced significantly more ears than the wide spacing. The most severe storm caused a disproportionate amount of soil loss. The runoff/rainfall ratio for storms of different amounts varied between 0·01 and 0·73 for close spaced maize, 0·01 and 0·83 for wide spaced maize and 0·02 and 0·92 for the bare soil. The ratio was highest for the largest storms.  相似文献   

6.
Summary Experiments were conducted for wheat (Triticum aestivum L.) grown in the lysimeters with controlled irrigation at Berlin (FRG) and in field plots at Hisar (India) under different climatic conditions. Crop production functions, relating crop yield with evapotranspiration with and without the consideration of the time of water deficit during crop growth period, were derived. The derived functions and those previously obtained by different workers were tested against the experimental data. There was a significant correlation of seasonal evapotranspiration with yield that was slightly higher for dry matter than for grain. The correlation, which was quite high for linear functions, was slightly greater for nonlinear functions. The correlation was also slightly improved if evapotranspiration for different growth stages was considered rather than total seasonal evapotranspiration. Since there apears to be no single equation that fits all of the conditions studied and since different equations lead to different conclusions, it is suggested that the crop production functions considering evapotranspiration at different growth stages be used with caution. In general the degree of sensitivity of grain yield and dry matter yield to water stress for wheat cultivar WH 283 grown in field experiments under semi-arid climate decreased in the order of crop growth sub-periods I (Sowing to heading), III (Milk ripe to ripe), and II (Heading to milk ripe). However, the sensitivity of the grain yield and dry matter yield to water stress for wheat cultivar Kolibiri grown in lysimeter experiments under humid climate decreased in the order of the growth sub-periods i.e. I, II, and III.  相似文献   

7.
Experiments were conducted to investigate the effect of crop development on evapotranspiration and yield of beans (Phaseolus vulgaris L.) at the Instituto Agronômico (IAC), Campinas, State of São Paulo, Brazil, during the dry season of 1994. A completely randomized design was carried out with three population density treatments and four replications. The treatments were: (a) crop sown in evapotranspirometers at a density of 50 plants m−2, and thereafter thinned to 25 plants m−2, when the canopy achieved full ground cover; (b) crop sown with population densities of 14 and 28 plants m−2 in an irrigated field. Crop growth was evaluated considering dry matter (DM), vegetative ground cover (GC%) and leaf area index (LAI). These parameters were successfully related to basal crop coefficient (kcb) and crop coefficient (kc), demonstrating the strong dependence of both coefficients on canopy development. A simulation study was carried out and showed that kcb based on LAI would allow good estimates of water use for different plant density populations in the field.  相似文献   

8.
This work assesses the seasonal dynamics of the substrate oxygen content and the response to nutrient solution oxygen enrichment (oxyfertigation) of an autumn-spring tomato crop grown on rockwool slabs and irrigated with treated wastewater of very low dissolved oxygen (DO) content under Mediterranean greenhouse conditions. DO values in the nutrient solution were clearly higher for the oxygen-enriched (14.6 mg L−1) tomato crop than for the non-enriched one (4.5 mg L−1). However, DO values in the substrate solution were similar for both oxygen treatments (mean seasonal values of 5.1 and 4.8 mg L−1 for the enriched and the non-enriched one, respectively), except for a short crop period at the end of the cycle when they were significantly higher for the oxygen-enriched crop. For both treatments, substrate DO values were highest for the winter period and decreased progressively during the spring period, reaching minimum values of around or below 3 mg L−1 at the end of the spring. The oxygen enrichment of the nutrient solution did not affect any of the irrigation and fertigation parameters evaluated in the tomato crop: water uptake, volumetric water content of the substrate, electrical conductivity (EC) or nutrient concentration in the leached nutrient solution. Moreover, the oxygen enrichment of the nutrient solution did not affect the aboveground biomass and the biomass partitioning, the fresh weight of total and marketable tomato fruits or the tomato fruit quality parameters. Overall, it appears that oxygen deficiency conditions did not occur as the substrate DO values were higher than, or about, 3 mg L−1 throughout most of the tomato crop cycle for both treatments and the rockwool slabs maintained good aeration conditions throughout the whole cycle.  相似文献   

9.
In Mexico, corn production, part of which is sweet corn, is mainly destined for human consumption. In the present work, the morphological quality of sweet corn ears was assessed in response to four levels of soil moisture tension indicating irrigation start (−5, −30, −55, and −80 kPa) and three levels of phosphate fertilization (60, 80 and 100 kg ha−1) in carstic soils in the south-east of Mexico. A factorial experimental design with three replicates was used. The following variables were determined: fresh weight (SCFWh), dry weight (SCDWh), diameter (SCDh), and length (SCLh) of sweet corn ears, all without husk, as well as number of kernels (NKxE), number of unfilled kernels (NUK), number of rows (NRxE), and dry kernel weight per ear (DKW). Yield of fresh (YFSCh) and dry (YDSCh) sweet corn ears, both without husk, and the harvest index (HI) were also determined. HI did not show significant statistical differences among irrigation or fertilization treatments. Regarding the other variables, the effect of the more humid treatments (−5 and −30 kPa) and the effect of the higher phosphorus doses (80 and 100 kg ha−1) were statistically equal (P ≤ 0.01) with the lowest NUK and the highest values of all other variables; therefore, irrigation start at soil moisture tension of −30 kPa and phosphate fertilization application of 80 kg ha−1 are recommended. At this level of soil moisture, the mean values over the three fertilization levels and all the replicates, obtained for SCFWh, SCDh, SCLh and NKxE were 198.5 g, 4.39 cm, 26.72 cm and 467 grains, respectively. According to the regression models, moisture tensions from −11.8 to −24.0 kPa, and phosphate fertilization doses from 87.7 to 102.2 kg ha−1 minimize NUK and maximize the values of the rest of the variables. The highest irrigation water use efficiency was found in the moisture tension treatment of −30 kPa with an increase of 27 kg ha−1 ears for each millimeter of applied irrigation water.  相似文献   

10.
The effect of moisture tension and doses of phosphate fertilization on yield components of sweet corn A-7573 (Zea mays L.) hybrid, in a Calcium Vertisol were evaluated. Four levels of soil moisture tension, ranging from −5 to −80 kPa, and three levels of phosphate fertilization: 60, 80, and 100 kg ha−1 were studied. In order to evaluate the effect of the experimental treatments, plant growth, development, and yield were monitored. Treatments were distributed using the randomized complete block design (RCB) for divided plots of experimental units. ANOVA analysis indicated that the effects on more humid treatments (−5 and −30 kPa) were statistically equivalent, however were different from the effect of −55 kPa treatment, which in turn was statistically different from the effect of the driest treatment (p ≤ 0.01). On the other hand, 80 and 100 kg ha−1 phosphate doses were statistically equal among them, but different from the lowest dose in almost all cases (p ≤ 0.01), which suggests that 80 kg ha−1 P2O5 application is sufficient to satisfy the nutritional requirements of the A-7573 hybrid. Both stress caused by the lack of water and the one due to deficiency of phosphorus affect all variables under study, however none of them showed interaction between irrigation and fertilization treatments. Irrigation of sweet corn crop is advisable when soil moisture tension grows to −30 kPa at 0-30 cm depth and to apply a phosphate fertilization dose of 80 kg ha−1 is also recommended; using this management, sweet corn expected average length and fresh weight are 30.8 cm and 298 g, respectively, and their average yield is around 16.5 t ha−1. In accordance with regression equations obtained, the maximum values in the evaluated response variables are obtained for a rank from −14.4 to −22.2 kPa in soil moisture tension. The greater efficiency in the use of irrigation water for sweet corn was of 36 kg ha−1 for every millimetre laminate of watering applied, found in the −30 kPa treatment of soil moisture tension.  相似文献   

11.
为探明不同灌水量对玉米生长动态与子粒灌浆特征的影响,研究分析了不同灌水量下绿洲春玉米不同生育期株高、干物质积累和干物质生产率变化动态及子粒灌浆特征。结果表明,不同灌水处理玉米株高均随生长而增加,但其生长速度有所不同,进入灌浆期玉米株高增加明显减慢,且随灌水量的增加而增加。合理有效的限量灌水不仅有利于玉米干物质积累并保持较高的干物质生产率,而且玉米籽粒平均灌浆时间相对缩短,平均灌浆速率相应增加。  相似文献   

12.
基于深度学习与图像处理的玉米茎秆识别方法与试验   总被引:2,自引:0,他引:2  
以识别玉米秧苗茎秆为目标,采用云台搭载电荷耦合器件(CCD)相机获得玉米秧苗图像,采用LabelImage插件制作了玉米秧苗的标记与标签。基于深度学习框架TensorFlow搭建了多尺度分层特征的卷积神经网络模型,应用4倍膨胀的单位卷积核,获得了玉米秧苗图像的识别模型,其识别准确率为99.65%。将已知玉米秧苗图像划分为最佳子块,求取了各个子块的最佳二值化阈值。选取6种杂草密度在每天5个时间段进行为期3d的试验,共采集了10800幅图像。试验结果显示,对玉米秧苗茎秆的平均识别准确率为98.93%,且光照条件与田间杂草密度对识别结果没有显著影响(P>0.05)。  相似文献   

13.
A field experiment was conducted with a bunched variety of peanut (Arachis hypogaea L.) cv. JL-24 during the summer seasons (March–June) of 1992 and 1993 in the humid tropical canal command area at the University Experimental Farm, Memari (23°1 N, 88°5 E and 21.34 m a.s.l) in West Bengal of eastern India. The soil at the site is of sandy loam (Typic Fluvaquent) texture and the area has a shallow water table. Weekly and seasonal field water balance components of actual evapotranspiration (ETa) including the capillary contribution into root zone were determined. Peanut yield and water productivity were determined for three ratios of irrigation water and cumulative pan evaporation (CPE) of 0.9, 0.7 and 0.5. Mean crop coefficients were determined for each 7-day period of growth and were related to leaf area index and growing degree-days. Average seasonal values of ETa of peanut were 434, 391 and 356 mm for the three treatments, respectively, for 115 days of growth. The total pod yield and WP were significantly higher in 0.9 IW:CPE treatment in the 1992 season. On an average, 0.9 IW:CPE treatment had 7 and 11% higher yields in 1992 and 1993, respectively, over treatments 0.7 and 0.5 IW:CPE. The maximum average Kc of 1.19 occurred about 9 weeks after sowing relative to grass reference ET (ETo).  相似文献   

14.
Pomegranate (Punica granatum L.) is a drought-hardy crop, suited to arid and semi-arid regions, where the use of marginal water for agriculture is on the rise. The use of saline water in irrigation affects various biochemical processes. For a number of crops, yields have been shown to decrease linearly with evapotranspiration (ET) when grown in salt-stressed environments. In the case of pomegranate, little research has been conducted regarding the effect of salt stress. Our study focused on the responses of ET, crop coefficient (Kc) and growth in pomegranate irrigated with saline water. Experiments were conducted using lysimeters with two varieties of pomegranate, P. granatum L. vars. Wonderful and SP-2. The plants were grown with irrigation water having an electrical conductivity (ECiw) of 0.8, 1.4, 3.3, 4.8 and 8 dS m−1. Plants were irrigated with 120% of average lysimeter-measured ET. Seasonal variation in ET, crop coefficient (Kc) and growth were recorded. Variation in daily ET was observed 1 month after initiation of the treatments. While significant seasonal ET variation was observed for the EC-0.8 treatment, it remained more stable for the EC-8 treatment. Salinity treatment had a significant effect on both daily ET (F = 131, p < 0.01) and total ET (F = 112.68, p = 0.001). Furthermore, the electrical conductivity of the drainage water (ECdw) in the EC-8 treatment was five times higher than that of the EC-0.8 treatment in the peak season. Fitting the relative ET (ETr) to the Maas and Hoffman salinity yield response function showed a 10% decrease in ET per unit increase in electrical conductivity of the saturated paste extract (ECe) with a threshold of 1 dS m−1. If these parameters hold true in the case of mature pomegranate trees, the pomegranate should be listed as a moderately sensitive crop rather than a moderately tolerant one. Fitting 30-day interval ETr data to the Maas and Hoffman salinity yield response function showed a reduction in the slope as the season progressed. Thus using a constant slope in various models is questionable when studying crop-salinity interactions. In addition, both of the varieties showed similar responses under salt stress. Moreover, the calculated value of Kc is applicable for irrigation scheduling in young pomegranate orchards using irrigation water with various salinities.  相似文献   

15.
Crop coefficients of some plants have been provided by the Food and Agricultural Organization albeit crop coefficients for different medicinal plants such as black cumin (Nigella sativa L.) have not been determined so far. Experiments were carried out during 2 years (2010 and 2011) to determine the water requirements, single and dual crop coefficients of black cumin using drainable lysimeter in a semi-arid region. In this study, black cumin water requirement was determined to be 724 mm by water balance method. The reference evapotranspiration was estimated by Penman–Monteith method. Finally, single and base crop coefficients for initial, development, middle and final stages of black cumin growth were determined to be as 0.59, 0.91, 1.29, 0.78 and 0.24, 0.71, 1.09 0.78, respectively. In order to estimate black cumin evapotranspiration by meteorological parameters, multiple regression models were presented. The results of the study showed that the determination of black cumin water requirements with dual crop coefficients had a less difference as compared to the results obtained from regression model. The total dry matter produced was 9.48 kg/ha per mm of irrigation water applied, seed yield was 3.10 kg/ha per mm of irrigation water applied, and oil content was 31 %.  相似文献   

16.
A 3-year study was carried out to assess the root biomass production, crop growth rate, yield attributes, canopy temperature and water-yield relationships in Indian mustard grown under combinations of irrigation and nutrient application for revealing the dynamic relationship of crop yield (Y) and seasonal evapotranspiration (ET). Three post-sowing irrigation treatments viz. no irrigation (I 1), one irrigation at flowering (I 2) and two irrigations one each at rosette and flowering stage (I 3), three nutrient treatments viz. no fertilizer or manure (F 1), 100% recommended NPK i.e., 60 kg N, 13.1 kg P and 16.6 kg K ha−1 (F 2) and 100% recommended NPK plus farmyard manure @ 10 Mg ha−1 (F 3) were tested in a split-plot design. Root biomass was significantly greater in I 3 than I 2 and I 1, and in F 3 than F 2 and F 1. The I 3 × F 3, I 2 × F 3 and I 3 × F 2 combinations maintained significantly greater crop growth rate, plant height, yield components, ET and crop yield and better plant water status in terms of canopy temperature, canopy-air temperature difference (CATD) and relative leaf water content (RLWC). Number of siliqua plant−1 and seeds siliqua−1 were the major contributors to the seed yield. Marginal analysis of water production function was used to establish Y–ET relationship. The elasticity of water production (E wp) provides a means to assess relative changes in Y and ET, and gives an indication of improvement of Y due to nutrient application. The ET–Y relationships were linear with marginal water use efficiency (WUEm) of 3.09, 4.23 and 3.95 kg ha−1 mm−1 in F 1, F 2 and F 3, respectively, and the corresponding E wp were 0.63, 0.71 and 0.61. This implies that the scope for improving yield and WUE with 100% NPK was little compared with 100% NPK + farmyard manure. The crop yield was highest in I 3 × F 3 combination, and the similar yield was obtained in I 2 × F 3 and I 3 × F 2 combinations. Application of organic manure along with 100% NPK fertilizers maintained greater crop growth rate, better water relation in plants, yield attributes and saved one post-sowing irrigation.  相似文献   

17.
The experiment discussed below was carried out on an onion crop cultivated under controlled deficit irrigation (CDI) conditions in a semi-arid climate. Eight treatments were used in which different water doses were applied according to the water requirements at each stage of the crop cycle. The effect of water deficit was studied at three vegetative stages (development, bulbification and ripening).Although, the dry matter yield was not affected by the total volume of water intake (with volumes ranging from 603.1 to 772.0 mm), the statistical analyses made have shown that there is some interaction between the volumes of water received by the crop at the bulbification and ripening stages, which means that inducing a shortage in both stages at the same time does lead to significant differences in the yield obtained.As to bulb sizes, the treatments which received the greatest volumes of water during the development and ripening stages yielded harvests with higher percentages of large-size bulbs, whereas the water shortages induced during the growth and bulbification stages led to higher percentages of small-size bulbs.  相似文献   

18.
Leaf osmotic potentials (lψ0) of field-grown rapeseed Brassica napus L. were measured in 1975 and 1976 under rainfed conditions and at two levels of irrigation. Irrigations were scheduled on the basis of tensiometer measurements in 1975, and on the basis of lψ0 in 1976. The lψ0 of rainfed plants was lower (more negative) than that of irrigated plants. Leaf osmotic potential responded to changes in soil moisture caused by precipitation or irrigation. Tensiometers placed at 0.2 m depth in the high irrigation treatment were as responsive to soil moisture changes as lψ0. Tensiometers placed at 0.4 m depth in the low irrigation treatment were less responsive than lψ0. Scheduling of irrigations on the basis of lψ0 in 1976 produced yield differences between water regimes similar to those obtained in 1975. Leaf osmotic potential provides a satisfactory means for determining need for irrigation in B. napus.  相似文献   

19.
Population growth, urban expansion and economic development are increasing competition for water use between agriculture and other users. In addition, the high rate of soil degradation and declining soil moisture in the Sub-Saharan African Region have called for several crop production management and irrigation options to improve soil fertility, reduce water use by crops and produce ‘more crops per drop of water’. Notwithstanding this, considerable variations exist in the literature on water-use efficiency, WUEcwu (economic yield per water used) for maize (Zea mays L.) across climates and soil management practices. Different views have been expressed on the effect of different rates of nitrogen (N) application on transpiration efficiency, TE (biomass produced per unit of water transpired). The objectives of the study were to assess the effect of different rates of N-enriched municipal waste co-compost and its derivatives on TE, WUEcwu and yield of maize (Z. mays L.) in comparison to inorganic fertiliser. The greenhouse pot experiment was conducted in Accra, Ghana on a sandy loam soil (Ferric Lixisol) using a split plot design. The main plot treatments were soil (S), dewatered faecal sludge (DFS), municipal solid waste compost (C), co-compost from municipal solid waste and dewatered faecal sludge (Co), compost enriched with (NH4)2SO4 (EC), co-compost enriched with (NH4)2SO4 (ECO), (NH4)2SO4 and NPK15-15-15 + (NH4)2SO4. The sub-plot treatments were different rates of application of nitrogen fertiliser applied at the rate of 91, 150 and 210 kg N ha−1 respectively. Maize cv. Abelehii was grown in a poly bag filled with 15 kg soil. Eight plants per treatment were selected randomly and used for the collection of data on growth parameters forth-nightly. At physiological maturity two plants per treatment were also selected randomly from each treatment plot for yield data. The results showed that TE of maize (Z. mays) varied for the different treatments and these are 6.9 Pa in soil (S) alone to 8.6 Pa in ECO. Increase in N application rate increased TE at the vegetative phase for fast nutrient releasing fertilisers (DFS, ECO, EC, NPK + (NH4)2SO4, (NH4)2SO4) and at the reproductive phase for slow nutrient releasing fertilisers (C and CO). Water-use efficiency increased significantly as rate of N application increased. Treatment ECO improved crop WUEcwu and was 11% and 4 times higher than that for NPK + (NH4)2SO4 or soil alone; and 18-36% higher than those for DFS and CO. Treatment ECO used less amount of water to produce dry matter yield (DMY) and grain yield (GY) that was 5.2% and 12.6%, respectively, higher than NPK + (NH4)2SO4. Similarly, the DMY and GY for ECO was 8.9-18.5% and 23.4-34.7%, respectively, higher than DFS and CO. High nutrient (N and K) uptake, TE, and low leaf senescence accounts for 83% of the variations in DMY whereas WUEcwu accounts for 99% of the variations in GY. Thus, the study concluded that different sources of fertiliser increased TE and WUEcwu of maize differently as N application rate increases.  相似文献   

20.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号