首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

2.
OBJECTIVE: To determine the pharmacokinetics of praziquantel following single and multiple oral dosing in loggerhead sea turtles. ANIMALS: 12 healthy juvenile loggerhead sea turtles. PROCEDURE: Praziquantel was administered orally as a single dose (25 and 50 mg/kg) to 2 groups of turtles; a multiple-dose study was then performed in which 6 turtles received 3 doses of praziquantel (25 mg/kg, PO) at 3-hour intervals. Blood samples were collected from all turtles before and at intervals after drug administration for assessment of plasma praziquantel concentrations. Pharmacokinetic analyses included maximum observed plasma concentration (Cmax), time to maximum concentration (Tmax), area under the plasma praziquantel concentration-time curve, and mean residence time (MRTt). RESULTS: Large interanimal variability in plasma praziquantel concentrations was observed for all dosages. One turtle that received 50 mg of praziquantel/kg developed skin lesions within 48 hours of administration. After administration of 25 or 50 mg of praziquantel/kg, mean plasma concentrations were below the limit of quantification after 24 hours. In the multiple-dose group of turtles, mean plasma concentration was 90 ng/mL at the last sampling time-point (48 hours after the first of 3 doses). In the single-dose study, mean Cmax and Tmax with dose were not significantly different between doses. After administration of multiple doses of praziquantel, only MRTt was significantly increased, compared with values after administration of a single 25-mg dose. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of 25 mg of praziquantel/kg 3 times at 3-hour intervals may be appropriate for treatment of loggerhead sea turtles with spirorchidiasis.  相似文献   

3.
OBJECTIVE: To determine pharmacokinetics and metabolic patterns of fenbendazole after IV and oral administration to pigs. ANIMALS: 4 mixed-breed female pigs weighing 32 to 45 kg. PROCEDURE: Fenbendazole was administered IV at a dose of 1 mg/kg. One week later, it was administered orally at a dose of 5 mg/kg. Blood samples were collected for up to 72 hours after administration, and plasma concentrations of fenbendazole, oxfendazole, and fenbendazole sulfone were determined by use of high-pressure liquid chromatography. Plasma pharmacokinetics were determined by use of noncompartmental methods. RESULTS: Body clearance of fenbendazole after IV administration was 1.36 L/h/kg, volume of distribution at steady state was 3.35 L/kg, and mean residence time was 2.63 hours. After oral administration, peak plasma concentration of fenbendazole was 0.07 microg/ml, time to peak plasma concentration was 3.75 hours, and mean residence time was 15.15 hours. Bioavailability of fenbendazole was 27.1%. Oxfendazole was the major plasma metabolite, accounting for two-thirds of the total area under the plasma concentration versus time curve after IV and oral administration. Fenbendazole accounted for 8.4% of the total AUC after IV administration and 4.5% after oral administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that fenbendazole was rapidly eliminated from plasma of pigs. The drug was rapidly absorbed after oral administration, but systemic bioavailability was low.  相似文献   

4.
OBJECTIVE: To determine pharmacokinetics and excretion of phenytoin in horses. ANIMALS: 6 adult horses. PROCEDURE: Using a crossover design, phenytoin was administered (8.8 mg/kg of body weight, IV and PO) to 6 horses to determine bioavailability (F). Phenytoin also was administered orally twice daily for 5 days to those same 6 horses to determine steady-state concentrations and excretion patterns. Blood and urine samples were collected for analysis. RESULTS: Mean (+/- SD) elimination half-life following a single IV or PO administration was 12.6+/-2.8 and 13.9+/-6.3 hours, respectively, and was 11.2+/-4.0 hours following twice-daily administration for 5 days. Values for F ranged from 14.5 to 84.7%. Mean peak plasma concentration (Cmax) following single oral administration was 1.8+/-0.68 microg/ml. Steady-state plasma concentrations following twice-daily administration for 5 days was 4.0+/-1.8 microg/ml. Of the 12.0+/-5.4% of the drug excreted during the 36-hour collection period, 0.78+/-0.39% was the parent drug phenytoin, and 11.2+/-5.3% was 5-(phydroxyphenyl)-5-phenylhydantoin (p-HPPH). Following twice-daily administration for 5 days, phenytoin was quantified in plasma and urine for up to 72 and 96 hours, respectively, and p-HPPH was quantified in urine for up to 144 hours after administration. This excretion pattern was not consistent in all horses. CONCLUSIONS AND CLINICAL RELEVANCE: Variability in F, terminal elimination-phase half-life, and Cmax following single or multiple oral administration of phenytoin was considerable. This variability makes it difficult to predict plasma concentrations in horses after phenytoin administration.  相似文献   

5.
The objective of this study was to determine the pharmacokinetics of a long-acting formulation of ceftiofur crystalline-free acid (CCFA) following intramuscular injection in ball pythons (Python regius). Six adult ball pythons received an injection of CCFA (15 mg/kg) in the epaxial muscles. Blood samples were collected by cardiocentesis immediately prior to and at 0.5, 1, 2, 4, 8, 12, 18, 24, 48, 72, 96, 144, 192, 240, 288, 384, 480, 576, 720, and 864 hr after CCFA administration. Plasma ceftiofur concentrations were determined by high-performance liquid chromatography. A noncompartmental pharmacokinetic analysis was applied to the data. Maximum plasma concentration (Cmax) was 7.096 +/- 1.95 microg/ml and occurred at (Tmax) 2.17 +/- 0.98 hr. The area under the curve (0 to infinity) for ceftiofur was 74.59 +/- 13.05 microg x h/ml and the elimination half-life associated with the terminal slope of the concentration-time curve was 64.31 +/- 14.2 hr. Mean residence time (0 to infinity) was 46.85 +/- 13.53 hr. CCFA at 15 mg/kg was well tolerated in all the pythons. Minimum inhibitory concentration (MIC) data for bacterial isolates from snakes are not well established. For MIC values of < or =0.1 microg/ml, a single dose of CCFA (15 mg/kg) provides adequate plasma concentrations for at least 5 days in the ball python. For MICs > or =0.5 microg/ml, more frequent dosing or a higher dosage may be required.  相似文献   

6.
Azithromycin is the first of a class of antibiotics classified as azalides. Six ball pythons (Python regius) were given a single dose of azithromycin at 10 mg/kg p.o. and i.v. in a crossover design. Serial blood samples were collected for unchanged azithromycin and to determine, if possible, the structure and number of circulating azithromycin metabolites. After a 4-month wash-out period, the snakes were given azithromycin p.o. as a single dose of 10 mg/kg for the study of azithromycin metabolism and metabolite tissue distribution. Bile, liver, lung, kidney, and skin samples were analyzed for the metabolites identified from the first experiment. Unchanged azithromycin accounted for 80, 68, and 60% of the total material at 12, 24, and 48 h postadministration in plasma, independent of route of administration. At both 24 and 72 h postadministration, azithromycin accounted for 70% of total azithromycin- associated material in bile. In liver and kidney, unchanged azithromycin accounted for 40% of the total azithromycin-associated material; this doubled in lung and skin. Fifteen metabolites were positively or tentatively identified in plasma, bile, or tissues of all snakes. Four of these possible metabolites: 3'-desamine-3-ene-azithromycin, descladinose dehydroxy-2-ene-azithromycin, 3'-desamine-3-ene descladinose-azithromycin, and 3'-N-nitroso,9a-N-desmethyl-azithromycin are unique to this species. Descladinose-azithromycin, 3'-N-desmethyl,9a-N-desmethyl-azithromycin, and 3'-N-desmethyl, 3'-O-desmethyl-azithromycin were the only metabolites identified in skin. Kidney tissue contained a greater number of metabolites than liver tissue, with 3'-N-didesmethyl-azithromycin being identified only in the kidney. Compared with the dog and cat, a greater number of metabolites were identified in ball python plasma. The percentage of unchanged azithromycin in bile is not different between the three species.  相似文献   

7.
OBJECTIVE: To determine the pharmacokinetics of marbofloxacin after single IV and orally administered doses in blue and gold macaws. ANIMALS: 10 healthy blue and gold macaws. PROCEDURES: In a crossover study, marbofloxacin (2.5 mg/kg) was administered orally (via crop gavage) to 5 birds and IV to 5 birds. Blood samples were obtained at 0, 0.5, 1, 3, 6, 12, 24, 48, 72, and 96 hours after marbofloxacin administration. After a 4-week washout period, the study was repeated, with the first 5 birds receiving the dose IV and the second 5 birds receiving the dose orally. Serum marbofloxacin concentrations were quantitated by use of a validated liquid chromatography-mass spectrometry assay. RESULTS: After oral administration, mean +/- SD area under the curve was 7.94 +/- 2.08 microg.h/mL, maximum plasma concentration was 1.08 +/- 0.316 microg/mL, and bioavailability was 90.0 +/- 31%. After IV administration of marbofloxacin, the apparent volume of distribution was 1.3 +/- 0.32 L/kg, plasma clearance was 0.29 +/- 0.078 L/h/kg, area under the curve was 9.41 +/- 2.84 microg.h/mL, and the harmonic mean terminal half-life was 4.3 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Single IV and orally administered doses of marbofloxacin were well tolerated by blue and gold macaws. The orally administered dose was well absorbed. Administration of marbofloxacin at a dosage of 2.5 mg/kg, PO, every 24 hours may be appropriate to control bacterial infections susceptible to marbofloxacin in this species.  相似文献   

8.
OBJECTIVE: To determine the pharmacokinetics of azithromycin and its concentration in body fluids and bronchoalveolar lavage cells in foals. ANIMALS: 6 healthy 6- to 10-week-old foals. PROCEDURE: Azithromycin (10 mg/kg of body weight) was administered to each foal via i.v. and intragastric (i.g.) routes in a crossover design. After the first i.g. dose, 4 additional i.g. doses were administered at 24-hour intervals. A microbiologic assay was used to measure azithromycin concentrations in serum, peritoneal fluid, synovial fluid, pulmonary epithelial lining fluid (PELF), and bronchoalveolar (BAL) cells. RESULTS: Azithromycin elimination half-life was 20.3 hours, body clearance was 10.4 ml/min x kg, and apparent volume of distribution at steady state was 18.6 L/kg. After i.g. administration, time to peak serum concentration was 1.8 hours and bioavailability was 56%. After repeated i.g. administration, peak serum concentration was 0.63 +/- 0.10 microg/ml. Peritoneal and synovial fluid concentrations were similar to serum concentrations. Bronchoalveolar cell and PELF concentrations were 15- to 170-fold and 1- to 16-fold higher than concurrent serum concentrations, respectively. No adverse reactions were detected after repeated i.g. administration. CONCLUSIONS AND CLINICAL RELEVANCE: On the basis of pharmacokinetic values, minimum inhibitory concentrations of Rhodococcus equi isolates, and drug concentrations in PELF and bronchoalveolar cells, a single daily oral dose of 10 mg/kg may be appropriate for treatment of R. equi infections in foals. Persistence of high azithromycin concentrations in PELF and bronchoalveolar cells 48 hours after discontinuation of administration suggests that after 5 daily doses, oral administration at 48-hour intervals may be adequate.  相似文献   

9.
Azithromycin is the first of a class of antimicrobial agents designated azalides. The aim of the present study was to investigate the disposition pharmacokinetics of azithromycin in goats and determine its bioavailability. A cross-over study was carried out in two phases separated by 30 days. Azithromycin was administered at a single dose of 20 mg/kg body weight by i.v. and i.m. routes. Plasma concentrations of azithromycin were determined by a modified agar diffusion bioassay. After a single i.v. dose plasma concentrations were best fitted to a three-compartment open model. A two-compartment open model with first-order absorption fitted best after i.m. administration. The values of the pharmacokinetic parameters after i.v. administration were: half-life 32.5 h, apparent volume of distribution at the steady-state 34.5 L/kg, clearance 0.85 L/kg. and mean residence time (MRT) 40.1 h. After i.m. administration half-life of 45.2 h, a MRT of 60.3 h, maximum plasma concentration 0.64 mg/L and a bioavalability 92.2% were obtained. The pharmacokinetic parameters of azithromycin after i.m. administration, principally its long half-life and high bioavailability, could provide an alternative to the oral route of administration in goats, although more studies are needed to establish a suitable pharmaceutical formulation, propose optimun dosage regimens, investigate clinical efficacy and study the tolerability of repeated doses.  相似文献   

10.
OBJECTIVE: To study the pharmacokinetics of difloxacin (5 mg/kg) following IV, IM, and intragastric (IG) administration to healthy horses. ANIMALS: 6 healthy mature horses. PROCEDURES: A crossover study design with 3 phases was used (15-day washout periods between treatments). An injectable formulation of difloxacin (5%) was administered IV and IM in single doses (5 mg/kg); for IG administration, an oral solution was prepared and administered via nasogastric tube. Blood samples were collected before and at intervals after each administration. A high-performance liquid chromatography assay with fluorescence detection was used to determine plasma difloxacin concentrations. Pharmacokinetic parameters of difloxacin were analyzed. Plasma creatine kinase activity was monitored to assess tissue damage. RESULTS: Difloxacin plasma concentration versus time data after IV administration were best described by a 2-compartment open model. The disposition of difloxacin following IM or IG administration was best described by a 1-compartment model. Mean half-life for difloxacin administered IV, IM, and IG was 2.66, 5.72, and 10.75 hours, respectively. Clearance after IV administration was 0.28 L/kg.h. After IM administration, the absolute mean +/- SD bioavailability was 95.81 +/- 3.11% and maximum plasma concentration (Cmax) was 1.48 +/- 0.12 mg/L. After IG administration, the absolute bioavailability was 68.62 +/- 10.60% and Cmax was 0.732 +/- 0.05 mg/L. At 12 hours after IM administration, plasma creatine kinase activity had increased 7-fold, compared with the preinjection value. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that difloxacin is likely to be effective for treating susceptible bacterial infections in horses.  相似文献   

11.
The properties of azithromycin suggest that it may be an alternative to erythromycin for treatment of Rhodococcus equi pneumonia in foals. To investigate this possibility, the disposition of azithromycin in plasma, polymorphonuclear leukocytes (PMN), and alveolar cells was examined after a single administration in foals. Azithromycin suspension was administered orally (p.o.) at a dose of 10 mg/kg to five healthy 2-3-month-old foals. Two weeks later, azithromycin for injection was administered by intravenous (i.v.) infusion at a dose of 5 mg/kg to the same foals. Plasma samples were collected after p.o. and i.v. administration. Peripheral blood PMN and bronchoalveolar lavage fluid and alveolar cells were collected after p.o. administration. Azithromycin concentrations were determined by reverse-phase high-performance liquid chromatography (HPLC) with coulometric electrochemical detection. Azithromycin p.o. absorption was variable with a mean systemic availability of 39% (+/-20%). The plasma half-life was 16 and 18.3 h after i.v. and p.o. administration, respectively. Azithromycin had a very large volume of distribution (V(d)) of 11.6 L/kg [V(d(ss))] and 12.4 L/kg [V(d(area))]. The large V(d) can be attributed to high tissue and intracellular concentrations, exhibited by the high concentration of azithromycin in PMN and alveolar cells. The PMN half-life was 49.2 h. Dosage of 10 mg/kg of azithromycin p.o. once daily for foals with R. equi pneumonia is recommended for further study.  相似文献   

12.
The plasma concentrations and pharmacokinetics of rifampin disposition were determined after a single IV, IM, or oral dose of 10 mg/kg of body weight and an oral dose of 25 mg/kg. The overall elimination rate constants per minute were similar for the 10 mg/kg dose (0.0021 +/- 0.0004, IV; 0.0017 +/- 0.0002, IM; and 0.0023 +/- 0.0006, orally). The apparent bioavailability was moderate to low for IM and oral administrations (59.8% +/- 3.2% and 39.5% +/- 5.0%, respectively). The rate of absorption was most rapid for oral administration with an absorption half-life of 249.7 +/- 71.6 minutes as compared with 403.5 +/- 89.7 minutes for IM administration. However, the IM route produced longer detectable plasma concentrations (50 hours in 2 of the 4 horses). Based on bacterial sensitivity information derived for human and canine isolates, the daily oral administration of 10 mg of rifampin/kg administered in the feed represents a reasonable dose for susceptible gram-positive bacterial pathogens. Higher doses (greater than or equal to 25 mg/kg) or IV administration would be required for most gram-negative bacteria. Adverse effects of sufficient severity to limit use of the drug, especially by the oral route of administration, were not encountered under the single-dose experimental conditions used.  相似文献   

13.
Objective-To determine pharmacokinetics after IV and oral administration of a single dose of tramadol hydrochloride to Hispaniolan Amazon parrots (Amazona ventralis). Animals-9 healthy adult Hispaniolan Amazon parrots (3 males, 5 females, and 1 of unknown sex). Procedures-Tramadol (5 mg/kg, IV) was administered to the parrots. Blood samples were collected from -5 to 720 minutes after administration. After a 3-week washout period, tramadol (10 and 30 mg/kg) was orally administered to parrots. Blood samples were collected from -5 to 1,440 minutes after administration. Three formulations of oral suspension (crushed tablets in a commercially available suspension agent, crushed tablets in sterile water, and chemical-grade powder in sterile water) were evaluated. Plasma concentrations of tramadol and its major metabolites were measured via high-performance liquid chromatography. Results-Mean plasma tramadol concentrations were > 100 ng/mL for approximately 2 to 4 hours after IV administration of tramadol. Plasma concentrations after oral administration of tramadol at a dose of 10 mg/kg were < 40 ng/mL for the entire time period, but oral administration at a dose of 30 mg/kg resulted in mean plasma concentrations > 100 ng/mL for approximately 6 hours after administration. Oral administration of the suspension consisting of the chemical-grade powder resulted in higher plasma tramadol concentrations than concentrations obtained after oral administration of the other 2 formulations; however, concentrations differed significantly only at 120 and 240 minutes after administration. Conclusions and Clinical Relevance-Oral administration of tramadol at a dose of 30 mg/kg resulted in plasma concentrations (> 100 ng/mL) that have been associated with analgesia in Hispaniolan Amazon parrots.  相似文献   

14.
OBJECTIVE: To determine pharmacokinetics of clomipramine and its principle metabolite (desmethylclomipramine) in the plasma of dogs after IV or oral administration of a single dose. ANIMALS: 6 male and 6 female Beagles. PROCEDURES: Clomipramine was administered IV (2 mg/kg), PO (4 mg/kg) after food was withheld for 15 hours, and PO (4 mg/kg) within 25 minutes after dogs were fed. Plasma clomipramine and desmethylclomipramine concentrations were measured by use of a gas chromatography with mass-selection method. RESULTS: Time to peak plasma concentrations of clomipramine and desmethylclomipramine following oral administration was 1.2 hours. For clomipramine, after IV administration, elimination half-life was 5 hours, mean residence time was 3 hours, and plasma clearance was 1.4 L/h/kg. Values for mean residence time and terminal half-life following oral administration were similar to values obtained following IV administration, and systemic bioavailability was approximately 20% for clomipramine and 140% for desmethylclomipramine, indicating fast absorption of clomipramine from the gastrointestinal tract and extensive first-pass metabolism. Administration of clomipramine with food did not alter the area under the concentration versus time curve for desmethylclomipramine but resulted in a 25% increase for clomipramine. Clomipramine and desmethylclomipramine were extensively bound (> 96%) to serum proteins. There were no significant differences in area under the concentration versus time curve between male and female dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that there should not be any clinically important differences in efficacy regardless of whether clomipramine is administered with or without food.  相似文献   

15.
Objective: To determine plasma pharmacokinetics of levetiracetam after a single intravenous dose (60 mg/kg) in normal dogs using a high‐performance liquid chromatography assay validated for canine plasma. Design: Pharmacokinetic study. Setting: A university‐based canine research facility. Animals: Six healthy adult dogs. Interventions: Intravenous drug administration, multiple blood sample procurement. Measurements and main results: There were no obvious adverse effects associated with the intravenous (IV) bolus administration of levetiracetam in any of the dogs. Plasma levetiracetam concentrations remained above or within the reported therapeutic range for humans (5–45 μg/mL) for all dogs, for all time periods evaluated. Mean and median (in parentheses) values for pharmacokinetic parameters included the following: maximum plasma concentration, 254 μg/mL (254 μg/mL); half‐life, 4.0 hours (4.0 hours); volume of distribution at steady state, 0.48 L/kg (0.48 L/kg); clearance, 1.4 mL/kg/min (1.5 mL/kg/min); and median residence time, 6.0 hours (6.0 hours). Conclusions: In normal dogs, a 60 mg/kg IV bolus dose of levetiracetam is well tolerated and achieves plasma drug concentrations within or above the therapeutic range reported for humans for at least 8 hours after administration. Based on the favorable pharmacokinetics and tolerability demonstrated for IV levetiracetam in this study, in addition to previously demonstrated efficacy of oral levetiracetam, IV levetiracetam may be a useful treatment option for emergency management of canine seizure activity.  相似文献   

16.
OBJECTIVE: To compare pharmacokinetics of enrofloxacin administered IV and in various oral preparations to ewes. ANIMALS: 5 mature Katahdin ewes weighing 42 to 50 kg. PROCEDURE: Ewes received 4 single-dose treatments of enrofloxacin in a nonrandomized crossover design followed by a multiple-dose oral regimen. Single-dose treatments consisted of an IV bolus of enrofloxacin (5 mg/kg), an oral drench (10 mg/kg) made from crushed enrofloxacin tablets, oral administration in feed (10 mg/kg; mixture of crushed enrofloxacin tablets and grain), and another type of oral administration in feed (10 mg/kg; mixture of enrofloxacin solution and grain). The multiple-dose regimen consisted of feeding a mixture of enrofloxacin solution and grain (10 mg/kg, q 24 h, for 7 days). Plasma concentrations of enrofloxacin and ciprofloxacin were measured by use of high-performance liquid chromatography. RESULTS: Harmonic mean half-life for oral administration was 14.80, 10.80, and 13.07 hours, respectively, for the oral drench, crushed tablets in grain, and enrofloxacin solution in grain. Oral bioavailability for the oral drench, crushed tablets in grain, and enrofloxacin in grain was 4789, 98.07, and 94.60%, respectively, and median maximum concentration (Cmax) was 1.61, 2.69, and 2.26 microg/ml, respectively. Median Cmax of the multiple-dose regimen was 2.99 microg/ml. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered orally to sheep has a prolonged half-life and high oral bioavailability. Oral administration at 10 mg/kg, q 24 h, was sufficient to achieve a plasma concentration of 8 to 10 times the minimum inhibitory concentration (MIC) of any microorganism with an MIC < or = 0.29 microg/ml.  相似文献   

17.
The pharmacokinetics of pipemidic acid after 2 single doses were studied in broiler chickens. Chickens were given single IV and oral doses of 10 and 30 mg of pipemidic acid/kg of body weight. Blood samples were collected over 8 hours after each dose administration. High-pressure liquid chromatography with UV detection was used to determine concentrations in plasma of pipemidic acid. The plasma concentration-time curves after IV administration followed 2-compartment characteristics, rapid initial distribution phase, and a terminal elimination phase. The pharmacokinetic variables differed significantly between single doses of 10 and 30 mg of pipemidic acid/kg. Mean disposition variables were a half-life at alpha phase of 0.06 hours or 0.33 hours, a half-life at beta phase of 1.18 hours or 1.72 hours, a volume of distribution in the central compartment of 0.12 L/kg or 0.31 L/kg, a volume of distribution during the elimination beta phase of 1.64 L/kg or 1.05 L/kg, and a total plasma clearance of 0.97 L/h.kg or 0.41 L/h.kg, for the 10 or 30 mg/kg dose, respectively. After oral administration, the pipemidic acid plasma profile could be adequately described by a 1-compartment model. After the single oral doses of 10 and 30 mg of pipemidic acid/kg, pipemidic acid was absorbed rapidly (time to maximal concentration of 0.31 hours or 0.71 hours) and eliminated with a mean half-life of 0.86 hours or 0.61 hours, respectively. The bioavailability was 39% at 10 mg of pipemidic acid/kg and 61% at 30 mg of pipemidic acid/kg.  相似文献   

18.
OBJECTIVE: To determine the pharmacokinetics of fluconazole in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Fluconazole (10 mg/kg of body weight) was administered intravenously or orally with 2 weeks between treatments. Plasma fluconazole concentrations were determined prior to and 10, 20, 30, 40, and 60 minutes and 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, and 72 hours after administration. A long-term oral dosing regimen was designed in which all horses received a loading dose of fluconazole (14 mg/kg) followed by 5 mg/kg every 24 hours for 10 days. Fluconazole concentrations were determined in aqueous humor, plasma, CSF, synovial fluid, and urine after administration of the final dose. RESULTS: Mean (+/- SD) apparent volume of distribution of fluconazole at steady state was 1.21+/-0.01 L/kg. Systemic availability and time to maximum plasma concentration following oral administration were 101.24+/-27.50% and 1.97+/-1.68 hours, respectively. Maximum plasma concentrations and terminal half-lives after IV and oral administration were similar. Plasma, CSF, synovial fluid, aqueous humor, and urine concentrations of fluconazole after long-term oral administration of fluconazole were 30.50+/-23.88, 14.99+/-1.86, 14.19+/-5.07, 11.39+/-2.83, and 56.99+/-32.87 microg/ml, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Bioavailability of fluconazole was high after oral administration to horses. Long-term oral administration maintained plasma and body fluid concentrations of fluconazole above the mean inhibitory concentration (8.0 mg/ml) reported for fungal pathogens in horses. Fluconazole may be an appropriate agent for treatment of fungal infections in horses.  相似文献   

19.
OBJECTIVE: To evaluate the pharmacokinetics of pentoxifylline (PTX) and its 5-hydroxyhexyl-metabolite, metabolite 1 (M1), in dogs after IV administration of a single dose and oral administration of multiple doses. ANIMALS: 7 sexually intact, female, mixed-breed dogs. PROCEDURE: A crossover study design was used so that each of the dogs received all treatments in random order. A drug-free period of 5 days was allowed between treatments. Treatments included IV administration of a single dose of PTX (15 mg/kg of body weight), oral administration of PTX with food at a dosage of 15 mg/kg (q 8 h) for 5 days, and oral administration of PTX without food at a dosage of 15 mg/kg (q 8 h) for 5 days. Blood samples were taken at 0.25, 0.5, 1, 1.5, 2, 2.5, and 3 hours after the first and last dose of PTX was administered PO, and at 5, 10, 20, 40, 80, and 160 minutes after PTX was administered IV. RESULTS: PTX was rapidly absorbed and eliminated after oral administration. Mean bioavailability after oral administration ranged from 15 to 32% among treatment groups and was not affected by the presence of food. Higher plasma PTX concentrations and apparent bioavailability were observed after oral administration of the first dose, compared with the last dose during the 5-day treatment regimens. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, oral administration of 15 mg of PTX/kg results in plasma concentrations similar to those produced by therapeutic doses in humans, and a three-times-a-day dosing regimen is the most appropriate.  相似文献   

20.
OBJECTIVE: To assess oral bioavailability (F) and pharmacokinetic characteristics of the R- and S-enantiomers of ketoprofen administered IV and orally to captive Asian elephants (Elephas maximus). ANIMALS: 5 adult Asian elephants. PROCEDURE: Elephants received single treatments of racemic ketoprofen at a dose of 2.2 mg/kg, administered IV and orally, in a complete crossover design. Blood samples were collected at intervals during the 24 hours following treatment. At least 4 weeks elapsed between drug administrations. Samples were analyzed for R- and S-ketoprofen with a validated liquid chromatography-mass spectroscopic assay. Pharmacokinetic parameters were determined by use of noncompartmental analysis. RESULTS: The enantiomers of ketoprofen were absorbed well after oral administration, with median F of 101% for R-ketoprofen and 85% for S-ketoprofen. Harmonic mean half-life ranged from 3.8 to 5.5 hours, depending on route of administration and enantiomer. The area under the concentration-time curve, mean residence time, apparent volume of distribution, plasma clearance, and maximum plasma concentration values were all significantly different between the 2 enantiomers for both routes of administration. CONCLUSIONS AND CLINICAL RELEVANCE: Ketoprofen has a long terminal half-life and complete absorption in this species. Based on the pharmacokinetic data, a dosage of ketoprofen of 1 mg/kg every 48 hours to 2 mg/kg every 24 hours, PO or IV, is recommended for use in Asian elephants, although the safety and efficacy of ketoprofen during long-term administration in elephants have not been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号