首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 284 毫秒
1.

以辽宁省新民市某设施蔬菜生产基地土壤为研究对象,通过设置5个不同有机肥处理的实验小区,系统研究了不同的有机肥施入量(0~60 t·hm-2)在黄瓜和豆角生长期间对0~40 cm土层土壤NO3--N含量的影响,以及在黄瓜和豆角分别收获后土壤剖面NO3--N垂直分布特征。结果表明,土壤NO3--N含量的动态变化与植株的生长发育和有机肥施用水平关系密切。5月份,0~40 cm土壤各个土层的硝酸盐含量均高于其他时期;对于不同的施肥水平,当施肥量为60 t·hm-2时0~40 cm各个土层的土壤硝态氮含量均高于其他处理。土壤剖面NO3--N含量分布特征表明,低量有机肥的施入不会引起NO3--N在深层土壤的累积和淋溶,但会导致填闲作物生长过程中氮素供给的不足;当有机肥的施入量为60 t·hm-2时,0~120 cm土层出现了不同程度的淋溶现象。

  相似文献   

2.
不同有机肥处理对设施菜地土壤硝态氮分布影响   总被引:5,自引:2,他引:5  
以辽宁省新民市某设施蔬菜生产基地土壤为研究对象,通过设置5个不同有机肥处理的实验小区,系统研究了不同的有机肥施入量(0~60 t.hm-2)在黄瓜和豆角生长期间对0~40 cm土层土壤NO3--N含量的影响,以及在黄瓜和豆角分别收获后土壤剖面NO3--N垂直分布特征。结果表明,土壤NO3--N含量的动态变化与植株的生长发育和有机肥施用水平关系密切。5月份,0~40 cm土壤各个土层的硝酸盐含量均高于其他时期;对于不同的施肥水平,当施肥量为60 t.hm-2时0~40 cm各个土层的土壤硝态氮含量均高于其他处理。土壤剖面NO3--N含量分布特征表明,低量有机肥的施入不会引起NO3--N在深层土壤的累积和淋溶,但会导致填闲作物生长过程中氮素供给的不足;当有机肥的施入量为60 t.hm-2时,0~120 cm土层出现了不同程度的淋溶现象。  相似文献   

3.
长期施肥对旱地土壤剖面硝态氮分布和累积的影响   总被引:4,自引:2,他引:4  
1992—2013年对春播玉米进行长期定位试验,研究不同施肥措施对旱地土壤剖面硝态氮分布和累积的影响。结果表明,2013年5月中旬,不同施肥处理土壤硝态氮含量的最高值都出现在0~20 cm土层,硝态氮含量随施氮量的增加而增加,长期高施氮量处理的硝态氮在土壤深层的含量及累积明显增加,高量施肥N4P4M0处理硝态氮平均含量为88.07 mg/kg,是对照的55.3倍;而有机无机推荐施肥N2P1M1处理0~300 cm土层NO3--N累积量为2 433.04 kg/hm2,比处理N3P2M3和N4P2M2分别降低了49.13%,47.42%。可见,合理的施肥配比及合理的有机无机肥配施可以降低土壤特别是深层土壤硝态氮的累积,从而减轻硝态氮淋溶的风险。  相似文献   

4.
利用微区试验,研究了不同施肥和灌溉条件下冬小麦土壤硝态氮的含量与分布。结果表明:返青期0~40cm土层中土壤硝态氮含量差异显著,0~60cm各处理硝态氮含量随施氮量增加而增加,表层W0、W1和W23个处理呈直线相关(R2=0.9394、0.8106和0.9811);孕穗期0~80cm土壤硝态氮含量差异显著,0~120cm各处理硝态氮含量随施氮量增加而增加,表层呈直线相关(R2=0.8291、0.9834和0.9896)。比较返青期和孕穗期结果发现,高氮大水是造成硝态氮淋溶的主要原因。  相似文献   

5.
施氮量对橡胶园土壤铵态氮和硝态氮垂直分布的影响   总被引:3,自引:0,他引:3  
以尿素为氮源,研究不同施肥量对土壤中铵态氮和硝态氮垂直分布的影响。结果表明:施肥可显著增加0~40cm土壤中铵态氮和硝态氮的含量;当施肥量超过0.6kg/株时,增加施肥量不会显著增加0~40cm土壤中铵态氮和硝态氮的含量;施肥量越大,淋溶到80~100cm土层土壤的铵态氮和硝态氮的量越大。  相似文献   

6.
小麦氮磷肥长期配施对土壤硝态氮淋溶的影响   总被引:8,自引:1,他引:7  
 【目的】利用长期肥料定位试验,监测旱地农田土壤硝态氮的淋溶动向,研究施肥量与硝态氮累积量之间的关系,为科学施肥提供参考。【方法】在试验小区0~300 cm土壤剖面中,每20 cm深度取一个土样,1 mol?L-1 KCl浸提后以AA3连续流动分析仪测定硝态氮含量。【结果】单施氮肥土壤硝态氮累积峰出现在80~100 cm土层和300 cm以下土层,当施氮量达到180 kg?hm-2?a-1时,0~300 cm土层硝态氮累积总量相当于8年的施氮量。单施磷肥对土壤硝态氮分布无影响;氮、磷肥配施时,施氮量增加硝态氮累积量显著增加,配施磷肥后可以减少硝态氮累积量,且施氮量越大减少的越多。过量施用氮肥,即使配施磷肥,硝态氮也能发生淋溶并在100~120 cm和240~260 cm土层附近累积;二次多项式回归能够较好地反映氮、磷施用量与土壤硝态氮累积量之间的关系。【结论】长期过量施用氮肥,导致硝态氮大量淋溶并形成两个累积峰,科学合理地配施磷肥可以减少硝态氮淋失;旱地麦田长期施用最大产量施肥量,可能导致硝态氮大量累积在土壤深层。  相似文献   

7.
【目的】冬小麦-夏休闲是旱地重要的轮作模式之一,随着氮肥用量的增加,一季小麦收获后土壤中残留的硝态氮含量不断增加,夏季休闲期间集中降水的特点是否会导致硝态氮淋溶损失,这一问题值得关注。【方法】连续3年(2013—2015年)采集黄土高原南部长武和杨凌两地夏季休闲前后0—200 cm土壤剖面样品,测定土壤硝态氮含量,研究不同降水年和不同施氮量下黄土高原旱地夏季休闲期间土壤剖面硝态氮累积及淋溶特性。【结果】小麦收获后,长武0—200 cm土壤剖面硝态氮累积量在97—328 kg·hm~(-2),平均193 kg·hm~(-2);杨凌施氮量为120kg N·hm~(-2)及240 kg N·hm~(-2)时,土壤剖面硝态氮累积量分别为156 kg·hm~(-2)及366 kg·hm~(-2),增加施氮量土壤剖面累积硝态氮量显著增加。不同降水年夏季休闲前后硝态氮在土壤剖面的淋溶与降水量密切相关,长武降水量高的丰水年2013年(296 mm)休闲前位于40—60 cm深度的硝态氮累积峰在休闲后到达80 cm以下,淋溶作用明显。而降水量少的欠水年2014年(157 mm)休闲后土壤剖面未发生硝态氮的淋溶。降水量一般的平水年2015年(200mm)休闲后在0—100 cm土壤剖面会发生硝态氮向下淋溶,但是迁移深度不大。在降水量高的2013年夏季休闲后100—200 cm土壤剖面增加的硝态氮累积量是0—100 cm的2.5倍,而2014年夏季休闲后土壤剖面增加的硝态氮累积量主要出现在0—100 cm土壤剖面。杨凌2013年试验期间降水量低(仅220 mm,属欠水年),休闲后两个施氮处理的土壤剖面硝态氮累积峰甚至出现轻微上移;同为欠水年,2015年降水量有所增加(288 mm),休闲后0—100 cm土壤剖面中发生硝态氮下移达到20—40 cm。而降水量更高的2014年(346 mm,平水年),休闲后土壤剖面中硝态氮累积峰较休闲前下移了60—80 cm。相比休闲前,降水量低的2013年夏季休闲后土壤剖面增加的硝态氮累积量主要出现在0—100 cm土壤剖面,淋溶作用弱。而降水量高的2014年施氮处理100—200 cm土层硝态氮的累积增加量显著高于0—100 cm土层,其中施氮240 kg N·hm~(-2)处理0—100 cm土壤剖面硝态氮累积量显著下降,有大量硝态氮被淋溶到100—200 cm土层。【结论】黄土高原旱地小麦收获后0—200 cm土壤剖面硝态氮累积量高。夏季休闲期间降水量是影响黄土高原旱地土壤剖面硝态氮淋溶的关键因素,降水量高的年份土壤剖面硝态氮淋溶作用明显。夏季休闲期间长武遇上丰水年土壤中硝态氮淋溶风险大,而杨凌遇上平水年就会出现硝态氮淋溶风险。  相似文献   

8.
通过田间试验的方法研究了不同磷肥用量对茄子产量、硝酸盐含量及土壤硝态氮含量的影响。结果表明,当磷肥用量为常规用量的80%时,对产量没有造成不良影响;当磷肥用量为常规用量的60%时,产量明显降低。同一时期,随着磷肥用量的减少果实中硝酸盐含量有降低的趋势;同一处理随着时间的延长、肥料用量的增加,果实中硝酸盐含量增加;土壤硝态氮含量在定植前主要积累在0~40 cm土层,具有表聚性;40~100cm土层中硝态氮含量较少。定植后到收获时,各处理0~100 cm土层随着生长期的延长,施磷量高的处理其硝态氮含量有下降的趋势。  相似文献   

9.
为了解不同种植制度对土壤硝态氮累积及烟叶氮化物的影响,选择种植玉米和烤烟长达20年的土壤为载体,在不同施氮量条件下,研究土壤剖面硝态氮的淋溶分布,以及后作烤烟总氮、烟碱和蛋白质含量.结果表明,随土层增加,土壤剖面硝态氮逐渐下降;长期连作烤烟,0~100 cm土层硝态氮含量明显高于玉米,在烤烟生长过程中,随着气温的升高,土壤硝态氮含量明显增加.单季高施氮,烟地硝态氮主要在20~40 cm的犁底层土壤中富集.烤烟连作降低了烟叶单位面积产量,同时也降低了烟叶中总氮、烟碱及蛋白质含量.烤烟连作,形成土壤中硝态氮大量富集,养分失衡,氮素利用效率下降,使烤烟生长受阻.优化种植制度、科学施肥是改良烤烟营养状况,降低硝态氮环境的重要手段.  相似文献   

10.
以阿拉尔垦区棉田为试验地点,采用8100、6600、5100、3600m3·hm-24个灌水水平,对5次灌水后100cm土层NO3--N、NH4+-N含量进行了分析.结果表明:在4~9月整个种植周期内,0~60cm土层的养分浓度均呈下降趋势,60~100cm土层养分的浓度则缓慢上升,灌水量越大,深层养分的浓度越高;当土壤NO3--N累积量较大时,不同灌水处理间土壤NO3--N含量的变化非常显著;灌水对土壤铵态氮运移影响远小于对硝态氮的影响.  相似文献   

11.
通过温室试验,研究不同氮磷钾配比水平下,草莓一个生育期内土壤中pH值、电导率值、硝态氮、有效磷和速效钾含量的动态变化情况。结果表明,土壤中EC值、硝态氮、速效钾、有效磷含量在草莓生育前期大幅下降且生长结束期后各项指标均不同程度的低于幼苗期水平,其中不同配比施肥对生育期前后土壤酸碱性无显著影响(P0.05);0~20、20~60 cm土层EC值、硝态氮、有效磷和速效钾含量均随施肥水平的增加显著升高(P0.05);但在施肥量水平达到S-F (N 270 kg/hm~2、P_2O_5 180 kg/hm~2、K_2O 240 kg/hm~2)时,0~20 cm土层土壤EC值达到1.255 mS/cm,硝态氮含量达到532.5 mg/kg,此水平下造成硝态氮在生长结束期的累积,加大土壤盐渍化的产生风险;综合考虑,施肥水平为S-E (N 180 kg/hm~2、P_2O_5 120 kg/hm~2、K_2O 160 kg/hm~2)时,既能满足草莓生长所需的养分,同时可以避免硝态氮的累积,抑制土壤次生盐渍化的产生。  相似文献   

12.
研究山东省设施农业生产体系养分的投入情况,常年施肥的设施菜田土壤肥力变化以及土壤氮、磷累积和迁移在时间和空间上的变化规律,为未来设施菜田清洁生产,降低氮磷流失风险提供理论参考。通过对山东省不同区域设施黄瓜和番茄化肥和有机肥施用情况的调研,以及对种植5、10、15年和20年的设施菜田土壤进行0~100 cm分层取样,以周围粮田土壤作为参照,分别测定土壤理化性质等指标。结果表明:设施蔬菜化肥养分投入量显著降低,有机肥的养分投入量和化肥投入相当,总养分投入量仍然过高,黄瓜氮、磷、钾的总投入量分别为1033、765 kg·hm~(-2)和1068 kg·hm~(-2),番茄为710、503 kg·hm~(-2)和755 kg·hm~(-2);设施蔬菜果实养分输出占总养分投入比例提高,分别为25%(N)、10%(P_2O_5)和29%(K_2O);长年施肥的设施菜田土壤中,硝态氮发生严重淋洗,速效磷含量随着种植年限的延长而增加,表层0~20 cm土壤中,速效磷含量达到了345 mg·kg~(-1),常年轮作模式种植,加剧了土壤酸化以及速效养分的累积和迁移;40~60 cm是硝态氮向深层土壤迁移和累积的关键土层,主要发生在种植10~15年间;速效磷的累积在前期5~10年,主要发生在浅层土壤0~40 cm,并随着种植年限的延长逐渐向深层发生迁移,在10~15年间主要表现在深层土壤40~100 cm。设施菜田养分投入量降低,但投入总量仍然过高;长期化肥-有机肥配合施用会促进土壤速效养分的累积和迁移,对环境造成潜在威胁;硝态氮和速效磷在设施菜田中由浅层向深层土壤迁移和累积存在时空差异,10年左右的种植年限是设施菜田0~100 cm土层中养分累积和迁移速率转变的关键时期。  相似文献   

13.
为了解不同添加量下有机肥配施生物炭对设施蔬菜品质、产量及氮、磷、重金属在土壤中迁移累积的影响。以设施番茄为试验对象,设5个处理:CK(1 500 kg·hm-2生物炭)、T1(1 500 kg·hm-2生物炭+ 7 500 kg·hm-2鸡粪肥)、T2(1 500 kg·hm-2生物炭+15 000 kg·hm-2鸡粪肥)、T3(1 500 kg·hm-2生物炭+22 500 kg·hm-2鸡粪肥)、T4(1 500 kg·hm-2生物炭+30 000 kg·hm-2鸡粪肥),测定番茄产量,可溶性糖、维生素C、硝酸盐、可滴定酸含量及土壤样品中的硝态氮、速效磷、全Cu和Pb含量。结果发现:相对于CK,T2的番茄产量增加49.31%,可溶性糖和维生素C含量达2.275 mg·kg-1和0.219 mg·kg-1,表明T2处理能够提高番茄产量和品质;同时,T2处理降低土壤中0~100 cm土层硝态氮、速效磷以及0~30 cm土层重金属Cu和Pb的累积及迁移;T1、T3和T4加重土壤中氮磷及重金属的累积与迁移。表明设施蔬菜种植过程中有机肥与生物炭的合理配施可以减少有机肥的氮磷和重金属的污染,提高设施菜地土壤质量,保证蔬菜食品安全性。  相似文献   

14.
【目的】根系是玉米吸收氮素营养的主要器官。在大田条件下,对夏玉米根系生长分布、根系与土壤硝态氮空间吻合度对不同水氮处理的响应,以及根系与土壤硝态氮空间吻合度指标的有效性进行研究,用以了解其时空分布及与土壤氮分布的吻合情况对玉米氮素吸收利用的影响。【方法】2011—2015年,设置不灌水+不施氮(W0N0)、不灌水+300 kg N·hm~(-2)(W0N1)、不灌水+360 kg N·hm~(-2)(W0N2)、大喇叭口期灌水+不施氮(W1N0)、大喇叭口期灌水+300 kg N·hm~(-2)(W1N1)、大喇叭口期灌水+360 kg N·hm~(-2)(W1N2)共6个水氮处理。各施氮处理下拔节期施氮30%、大喇叭口期施氮70%。大喇叭口期灌水量为750 m~3·hm~(-2)。在2015年玉米生长季,分别于玉米拔节期、大喇叭口期、吐丝期、吐丝后20 d和成熟期在玉米种植行和行间采集0—50 cm土体样品(每10 cm一层),测定夏玉米根长密度、根干重密度、土壤硝态氮含量,并计算根系与土壤硝态氮空间吻合度。在成熟期采集植株样品,分析玉米氮素吸收量。【结果】随着玉米生育进程,种植行和行间0—50 cm土壤剖面夏玉米根长密度、根干重密度和硝态氮含量均表现出先升高后降低的趋势,根长密度和根干重密度峰值出现在吐丝后20 d,而土壤硝态氮含量峰值出现在大喇叭口期。在0—360 kg·hm~(-2)的范围内,夏玉米根长密度和吐丝期之前土壤硝态氮含量随施氮量的增加而增加,但玉米根干重密度和吐丝期之后土壤硝态氮含量先升高后降低,峰值出现在施氮300 kg·hm~(-2)处理。大喇叭口期灌水可以提高夏玉米生育后期根长密度和根干重密度,但降低了土壤硝态氮含量。随着土层加深,种植行夏玉米根长密度与土壤硝态氮空间吻合度(RLD1-N)以及根干重密度与土壤硝态氮空间吻合度(RWD1-N)总体呈降低趋势,行间夏玉米根长密度与土壤硝态氮空间吻合度(RLD2-N)以及根干重密度与土壤硝态氮空间吻合度(RWD2-N)总体呈先增加后降低趋势,峰值出现在10—30 cm土层。随着玉米生育进程,各土层RLD1-N、RWD1-N和RWD2-N以及0—40 cm土层RLD2-N呈先升高后降低变化趋势。与不施氮处理相比,施用氮肥提高了RLD1-N、RLD2-N、RWD1-N和RWD2-N。施氮量从300 kg·hm~(-2)增加至360 kg·hm~(-2)时,降低了0—30 cm土层RLD2-N、0—20 cm土层RWD1-N以及拔节至吐丝期间RLD1-N和0—20 cm土层RWD2-N,提高了40—50 cm土层RLD2-N、20—50 cm土层RWD1-N以及吐丝期之后的RLD1-N和RWD2-N。夏玉米种植行和行间根长密度和根干重密度与其硝态氮含量的吻合度与产量极显著正相关,但与氮素利用效率极显著负相关,且其相关性优于根长密度和根干重密度与产量及氮素利用效率的相关性。【结论】在大田条件下,施用氮肥可以提高夏玉米根长密度、根干重密度、土壤硝态氮含量以及夏玉米根系与土壤硝态氮空间吻合度。但施氮量超过300 kg·hm~(-2)时会降低夏玉米生育前期上部土层的夏玉米根系与土壤硝态氮空间吻合度。根系与土壤硝态氮空间吻合度可以作为研究夏玉米氮素利用效率的有效指标。  相似文献   

15.
为研究不同施氮量及间作对燕麦、向日葵生产力以及燕麦收获后土壤硝态氮累积量的影响,在吉林西部半干旱地区开展大田试验,设置不同施氮量处理(0、50和100kg/hm2),测定燕麦、向日葵产量、吸氮量及土壤硝态氮含量。结果表明:燕麦‖向日葵带状间作具有产量优势及较高的氮吸收效率,土地当量比及氮素吸收当量比范围分别为1.20~1.37和1.20~1.30。施氮量为100kg/hm2时,间作燕麦、向日葵籽粒产量、地上部生物量以及地上部吸氮量均为最高,分别为4.40和6.65t/hm2,12.81和12.40t/hm2以及182.78和192.12kg/hm2,其中间作燕麦地上部生物量、吸氮量较单作燕麦显著提高17.20%~35.39%;间作向日葵籽粒产量及地上部吸氮量较单作向日葵显著提高22.78%~46.15%。间作显著降低燕麦收获后间作燕麦边行0~60cm土壤硝态氮累积量,显著增加间作向日葵边行土壤硝态氮累积量。因此,100kg/hm2是该地区燕麦‖向日葵带状间作的较优施氮量。  相似文献   

16.
生物炭对土壤水肥利用效率与番茄生长影响研究   总被引:12,自引:2,他引:10  
通过设置不同生物炭施用量的野外大田小区试验,研究不同处理砂壤土物理性质及水肥的变化规律。试验共设5个处理,3个重复:不施生物炭(CK),生物炭施用量分别为10 t·hm-2(T1)、20 t·hm-2(T2)、40t·hm-2(T3)、60t·hm-2(T4)。结果表明:施用生物炭能明显减小土壤容重,增大土壤孔隙度,增加土壤含水率,与对照(CK)相比,耕作层(0~20 cm)土壤容重T4减小最大,0~10 cm减小23%,0~20cm减小30%;孔隙度T4增加最大,0~10 cm增加14%,0~20cm增加19%。施用生物炭明显提高了土壤的水分与肥料利用效率,与对照(CK)相比,处理组的水分和肥料利用效率分别最少提高27.7%和87.4%,其中T3增幅最大。生物炭能促进作物生长发育,提高作物产量,本试验番茄产量T3增幅最大,增幅为56.1%。综上所述,生物炭能改变土壤的物理性质,提高水肥利用率,减少肥料淋失,其中T3在这些指标中增幅最为明显,因此40 t·hm-2生物炭用量是改良砂壤土最为合适的用量。  相似文献   

17.
减量施磷对温室菜地土壤磷素积累、迁移与利用的影响   总被引:9,自引:1,他引:9  
【目的】针对过量施磷问题,定位研究日光温室蔬菜生产磷肥减施潜力,明确适宜施磷范围。【方法】以北方温室蔬菜主栽种类黄瓜和番茄为研究对象,采用冬春茬黄瓜-秋冬茬番茄种植模式,在基础土壤有效磷(Olsen-P)40.2 mg·kg~(-1)下,设计不施磷肥(P0)、减量施磷(P1)和农民常规施磷量(P2)3个磷肥用量水平。P0、P1、P2处理对应黄瓜单季施磷肥(P_2O_5)0、300、675 kg·hm~(-2),番茄单季施磷肥(P_2O_5)0、225、675 kg·hm~(-2)。3年6季定位研究蔬菜生产磷素盈亏、土壤有效磷供应与迁移,分析产量变化,推荐合理施磷范围。【结果】(1)农民常规施磷量年盈余磷480.0 kg P·hm~(-2)·a~(-1),每盈余磷100 kg P·hm~(-2)主根区0—20 cm土层Olsen-P增加2.7mg·kg~(-1),3年0—20 cm土层Olsen-P平均含量70.2 mg·kg~(-1),2010年番茄季0—20 cm土层磷素饱和度(DPSM3)为80%,磷素土壤深层迁移明显。(2)减量施磷较农民常规磷量下降61.1%,3年磷素盈余量下降71.0%—77.3%,0—20 cm土层Olsen-P含量下降18.6%—43.5%,3年均值为49.3 mg·kg~(-1),接近瓜果类蔬菜Olsen-P农学阈值,关键生育期磷素吸收量无显著变化,产量保持在中高水平不降低;经过3年种植,0—20 cm土层DPSM3下降21个百分点,20—60 cm土层Olsen-P平均含量下降9.3%—30.1%,减施磷肥有效缓解了土壤磷素深层迁移。(3)不施磷肥导致土壤磷素亏缺,蔬菜从土壤中每攫取磷100 kg P·hm~(-2),P0处理0—20 cm土层Olsen-P含量下降3.4 mg·kg~(-1),3年0—20 cm土层Olsen-P平均含量30.5 mg·kg~(-1),虽产量没有显著降低,但是2008年番茄高产下(140 t·hm~(-2))磷素吸收量较P1、P2处理下降19.8%—30.0%,产量呈降低趋势。(4)依据上述推荐:土壤有效磷含量≥40 mg·kg~(-1)的温室,冬春茬黄瓜产量水平170 t·hm~(-2)下施用P_2O_5不宜超过300 kg·hm~(-2),秋冬茬番茄产量水平100 t·hm~(-2)下施用P_2O_5不宜超过225 kg·hm~(-2)。【结论】华北平原温室蔬菜生产减施磷肥潜力较大。对于种植一段时间(≥3年)的温室,较农民常规减施磷60%,可以显著改善磷素盈余状况,缓解土壤有效磷积累,降低土壤磷素深层迁移量,保证黄瓜番茄持续中高产水平生产。  相似文献   

18.
生物质炭对旱作春玉米农田N2O排放的效应   总被引:5,自引:3,他引:2  
通过田间试验,采用密闭式静态暗箱-气相色谱法研究不同生物质炭添加量(0、10、20、30t·hm-2)对黄土旱塬旱作春玉米农田N2O排放的影响。结果表明:生物质炭添加降低了施氮农田春玉米生长季N2O排放通量峰值和排放总量,添加30、20、10 t·hm-2生物质炭的三个处理N2O排放总量比不添加生物质炭的处理分别降低19.24%、9.89%、3.40%,其中添加30 t·hm-2生物质炭处理降低显著(P0.05),但添加20 t·hm-2的生物质炭未对不施氮农田N2O排放通量和总量产生显著影响。无论添加生物质炭与否,生长季不施氮处理的N2O排放通量和总量均显著低于施氮处理。添加生物质炭不同程度提升了农田0 cm和10 cm土壤温度,减少了施氮处理0~20cm土壤NH+4-N和NO-3-N含量,但对农田0~20 cm土层土壤含水量影响不显著。相关分析表明,试验农田N2O的排放通量与0~20 cm土层土壤NO-3-N和NH+4-N含量、含水量均呈极显著正相关关系(P0.001),与0 cm与10 cm土壤温度呈负相关关系。添加生物质炭后矿质氮含量的减少可能是旱作春玉米农田N2O排放减少的主要原因。  相似文献   

19.
柠檬酸对温室土壤磷有效性的影响   总被引:1,自引:0,他引:1  
温室菜地土壤面临磷肥大量投入, 磷肥有效性低下等问题, 为提高土壤中磷素的有效性, 减少磷肥施用, 亟待开展相关研究。以番茄为供试对象, 研究温室番茄地施用柠檬酸对土壤有效磷时空变化及番茄产量的影响, 试验设置磷肥和柠檬酸2个因素4个水平, 采用完全随机设计, 分别为:0(CA0)、0.42(CA1)、0.84(CA2)、1.26(CA3)kg·hm-2和0(P0)、96(P1)、168(P2)、240(P3)kg·hm-2.结果表明:与对照相比, 施加柠檬酸后土壤pH极显着降低(P<0.01),CA3P0处理使土壤pH降低了0.62;不施加磷肥时, 柠檬酸促进土壤磷素的释放, 提高了土壤有效磷的含量;施加磷肥后, 柠檬酸和磷肥交互作用可以显着提高表层0~20 cm土壤有效磷含量, 但是过多施用柠檬酸和磷肥CA3P3处理使表层0~20 cm土壤有效磷含量降低, 使20~40 cm土壤有效磷含量增加, 并提高有效磷向下运移的可能性。合适的柠檬酸和磷肥配比CA2P2既可以获得较高番茄产量6.02 t·hm-2,又可以减少30%的磷肥施用量, 同时降低磷素向深层运移的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号