首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Increased use of conservation tillage is being considered as a way to sequester atmospheric C in the soil. However, little information exists on the effect of rotation and its interaction with tillage on soil organic carbon (SOC). A research trial with combinations of rotations and tillage treatments was sampled 20 years after its establishment to assess the effects on SOC sequestration in a typic Hapludalf in southern Ontario, Canada. The cropping treatments included continuous corn (zea mays L.), six rotations comprised of 2 years of corn following 2 years of another crop or crop sequence, and continuous alfalfa (Medicago sativa L.). Each rotation was split into either fall moldboard plow (MP) or fall chisel plow (CP) treatments. Continuous alfalfa was plowed and replanted every 4 years. Soil samples were taken incrementally to a depth of 40 cm and SOC and bulk density determined. The average SOC concentration (0–40 cm) was greatest in continuous alfalfa (18.0 g C kg−1). The treatments of soybean (Glycine max L.Merr.)+winterwheat (Triticum aestivum L.) or barley+barley (Trifolium pratense L.) (interseeded with red clover) followed by 2 years of corn had higher SOC concentrations (17.2–17.3 g C kg−1) than continuous corn and the treatments of 2 years of corn following 2 years of alfalfa or soybean (16.4–16.5 g C kg−1). The rotation of 2 years of barley followed by 2 years of corn had the lowest SOC concentrations (15.2 g C kg−1). On an equivalent mass basis, the rotations of soybean+winterwheat or barley+barley (underseeded with red clover) followed by 2 years of corn, had 2–9 Mg ha−1 more C than the other corn-based rotations. Including red clover in the winter wheat seemed to accelerate the rate of C mineralization compared to winter wheat without red clover; whereas interseeding red clover with barley increased SOC contents compared to excluding red clover in the barley rotation. More SOC was found in the top 10 cm and less in the 10–20 cm depth of the CP than in the MP soils. However, the CP did not increase the SOC content (0–20 cm) above that of MP indicating that this form of reduced tillage did not increase C sequestration in any of the rotations on this soil.  相似文献   

2.
Dryland wheat (Triticum aestivum L.) and grain sorghum (Sorghum bicolor (L.) Moench) are often grown using a wheat–sorghum-fallow (WSF) crop rotation on the semiarid North American Great Plains. Precipitation stored during fallow as soil water is crucial to the success of the WSF rotation. Stubble mulch-tillage (SM) and no-tillage (NT) residue management practices reduce evaporation, but the sparse residue cover produced by dryland crops, particularly sorghum, is insufficient to reduce soil crusting and runoff. Subsoil tillage practices, e.g., paratill (PT) or sweep (ST), fracture infiltration limiting soil layers and, when used with residue management practices, may increase soil-water storage and crop growth. Our objectives were to compare the effects of PT to 0.35 m or ST to 0.10 m treatments on soil cone penetration resistance, soil-water storage, and dryland crop yield with NT and SM residue management. Six contour-farmed level-terraced watersheds with a Pullman clay loam (US soil taxonomy: fine, mixed, superactive, thermic Torrertic Paleustoll; FAO: Kastanozems) at the USDA—Agricultural Research Service, Conservation and Production Research Laboratory, Bushland, TX, USA (35°11′N, 102°5′W) were cropped as pairs using a WSF rotation so that each phase of the sequence appeared each year. In 1988, residue management plots received PT or ST every 3 years during fallow after sorghum resulting in five treatments: (i) NT–PT, (ii) NT–NOPT, (iii) NT–ST, (iv) SM–PT, and (v) SM–NOPT. Cone penetration resistance was the greatest in NT plots and reduced with PT after 12, 23, and 31 months. Mean 1990–1995 soil-water storage during fallow after wheat was greater with NT than with SM, but unaffected by PT or ST. Dryland wheat and sorghum grain yields, total water use, and water use efficiency (WUE) were not consistently increased with NT, however, and unaffected by PT or ST tillage. We conclude, for a dryland WSF rotation, that: (1) NT increased mean soil-water storage during fallow after wheat compared to SM, and (2) ST and PT “subsoil” tillage of a Pullman did not increase water storage or yield. Therefore, NT residue management was more beneficial for dryland crop production than subsoil tillage.  相似文献   

3.
Andisols are very important land resources supporting high human population density. Maize (Zea mays L.) production on Andisols located in the Purhepecha Region of central Mexico is representative of the highlands conditions of Mexico and Latin America. Farmers struggle with low crop yield and low soil nutrient availability. A 2-year field study was conducted to evaluate the effects of green manures either tilled into the soil (CT) or cut and left on the surface as a mulch (ZT), on maize yield and soil quality. Green manure treatments were: vetch (Vicia sativa L.), oat (Avena sativa L.) and none. No extra N was added to maize. Green manure and tillage had a significant effect on maize grain yield, N uptake and P uptake with CT vetch performing better than ZT oat. Soil organic C and total N were significantly higher under ZT than under CT management. Soils with vetch had higher P concentration. Soil under ZT oat had the highest infiltration rate and penetration resistance compared with other treatments. There appears to be a trade off between soil productivity and intrinsic soil physical properties among soil treatments.  相似文献   

4.
Seedbanks of five weed species were monitored in response to tillage and crop rotations in a semi-arid location in northern Jordan. Tillage practices of mouldboard- or chisel-plowing and cropping patterns of barley (Hordeum vulgare) planting or fallow were evaluated on permanently established subplots. Soil samples were collected from the upper 10 cm for three consecutive years, immediately after performing tillage and prior to planting. Soil seedbanks of the five dominant weed species (Anthemis palestina, Diplotaxis erucoides, Hordeum marinum, Rhagadiolus stellatus, and Trigonella caelesyriaca) were estimated by recovering viable seeds through greenhouse and laboratory procedures. At initiation, more viable seeds were present in soil subjected to mouldboard plowing than chisels plowing. In the following two sampling seasons, significant rotation by tillage interaction affected the seedbank of each species. Generally, mouldboard plowing increased weed seedbanks when combined with frequent fallowing. Conversely, chisel plowing combined with barley cropping generally reduced weed seedbank sizes. Results emphasized the importance of managing weeds during fallow to avoid the build up of H. marinum, a serious grass weed in semi-arid environments.  相似文献   

5.
Soil compaction caused by traffic of heavy vehicles and machinery has become a problem of world-wide concern. The aims of this study were to evaluate and compare the changes in bulk density, soil strength, porosity, saturated hydraulic conductivity and air permeability during sugar beet (Beta vulgaris L.) harvesting on a typical Bavarian soil (Regosol) as well as to assess the most appropriate variable factors that fit with the effective controlling of subsequent compaction. The field experiments, measurements and laboratory testing were carried out in Freising, Germany. Two tillage systems (conventional plough tillage and reduced chisel tillage) were used in the experiments. The soil water contents were adjusted to 0.17 g g−1 (w1), 0.27 g g−1 (w2) and 0.35 g g−1 (w3).Taking the increase in bulk density, the decrease in air permeability and reduction of wide coarse pore size porosity (−6 kPa) into account, it seems that CT (ploughing to a depth of 0.25 m followed by two passes of rotary harrow to a depth 0.05 m) of plots were compacted to a depth of at least 0.25 m and at most 0.40 m in high soil water (w3) conditions. The trends were similar for “CT w1” (low soil water content) plots. However, it seems that “CT w1” plots were less affected than “CT w3” plots with regard to bulk density increases under partial load. In contrast, diminishments of wide coarse pores (−6 kPa) and narrow (tight) coarse pores (−30 kPa) were significantly higher in “CT w1” plots down to 0.4 m. Among CT plots, the best physical properties were obtained at medium soil water (w2) content. No significant increase in bulk density and no significant decrease in coarse pore size porosity and total porosity below 0.2 m were observed at medium soil water content. The soil water content seemed to be the most decisive factor.It is likely that, CS (chiselling to a depth of 0.13 m followed by two passes of rotary harrow to a depth 0.05 m) plots were less affected by traffic treatments than CT plots. Considering the proportion of coarse pore size porosity (structural porosity) and total porosity, no compaction effects below 0.3 m were found. Medium soil water content (w2) provides better soil conditions after traffic with regard to wide coarse pore size porosity (−6 kPa), air permeability (at 6 and 30 kPa water suction), total porosity and bulk density. Proportion of wide coarse pores, air permeability and bulk density seems to be suitable parameters to detect soil compaction under the conditions tested.  相似文献   

6.
Sandy clay soils locally known as gardud are less arable despite their better production potential than other infertile and exhausted sand soil in western Sudan due to surface physical constraints such as low infiltration and workability. Field experiments were, therefore, conducted on these soils to determine effect of two relatively new tillage systems to the area and two widely practised systems on soil bulk density, porosity, water storage and sorghum (Sorghum bicolor L.) plant growth and yield. Contour diking at specified spacings was superimposed on the four tillage treatments for impounding surface runoff. These systems were (1) chisel ploughing, (2) broadbed and furrow, (3) ridge-furrow, and (4) traditional no-till (control). Distances of the contour diking were at four levels: zero, 5, 10 and 20 m. Soil bulk density, porosity and water content were significantly affected by the different tillage systems and contour diking. Combined analysis of three successful seasons out of five seasons showed that plant establishment and growth were highly significant. Yield component data (percent of plants reaching physiological maturity, grain and straw) indicated significant differences among treatments tested for the three seasons of the experiment. The 3-year mean grain yield for chisel plowing pooled over the four contour diking distances produced 1448 kg/ha which was greater by 72%, 107% and 384% than broadbed and furrow, ridge-furrow and no-till, respectively. Similarly, the 10-m contour-diking-distance mean grain production (917 kg/ha) over the tillage systems was 16%, 5% and 30% for more than zero, 5-m and 20-m distances, respectively. These results indicate that chisel and 10-m contour diking are appropriate and suitable for gently sloping compacted sandy clay soils of western Sudan, and superior to widely practised ridge-furrow and no-till surface configuration.  相似文献   

7.
A long-term experiment was conducted with the objective of selecting the appropriate land management treatments and to identify the key indicators of soil quality for dryland semi-arid tropical Alfisols. The experiment was conducted using a strip split–split plot design on an Alfisol (Typic Haplustalf) in southern India under sorghum (Sorghum vulgare (L))-castor (Ricinus communis (L)) bean rotation. The strip constituted two tillage treatments: conventional tillage (CT) and minimum tillage (MT); main plots were three residues treatments: sorghum stover (SS), gliricidia loppings (GL), ‘no’ residue (NR) and sub plots were four nitrogen levels: 0 (N0), 30 (N30), 60 (N60), and 90 kg ha−1 (N90). Soil samples were collected after the sixth and seventh year of experimentation and were analyzed for physical, chemical and biological parameters. Sustainable yield index (SYI) based on long-term yield data and soil quality index (SQI) using principal component analysis (PCA) and linear scoring functions were calculated. Application of gliricidia loppings proved superior to sorghum stover and no residue treatments in maintaining higher SQI values. Further, increasing N levels also helped in maintaining higher SQI. Among the 24 treatments, the SQI ranged from 0.90 to 1.27. The highest SQI was obtained in CTGLN90 (1.27) followed by CTGLN60 (1.19) and MTSSN90 (1.18), while the lowest was under MTNRN30 (0.90) followed by MTNRN0 (0.94), indicating relatively less aggradative effects. The application of 90 kg N ha−1 under minimum tillage even without applying any residue (MTNRN90) proved quite effective in maintaining soil quality index as high as 1.10. The key indicators, which contributed considerably towards SQI, were available N, K, S, microbial biomass carbon (MBC) and hydraulic conductivity (HC). On average, the order of relative contribution of these indicators towards SQI was: available N (32%), MBC (31%), available K (17%), HC (16%), and S (4%). Among the various treatments, CTGLN90 not only had the highest SQI, but also the most promising from the viewpoint of sustainability, maintaining higher average yield levels under sorghum–castor rotation. From the view point of SYI, CT approach remained superior to MT. To maintain the yield as well as soil quality in Alfisols, primary tillage along with organic residue and nitrogen application are needed.  相似文献   

8.
Broiler chicken (Gallus gallus) manure, a rich source of plant nutrients, is generated in large quantities in southeastern USA where many row crops, such as corn (Zea mays L.), are also extensively grown. However, the use of broiler manure as an economical alternative source of nutrients for corn production has not been extensively explored in this region. This study was conducted to examine the use of broiler litter as a source of nutrients for corn production, as influenced by tillage and litter rate, and any residual effects following application. In addition, the consequence of litter application to soil test nutrient levels, particularly P, Zn and Cu, was explored. The treatments consisted of two rates of broiler litter application, 11 and 22 Mg ha−1 on a wet weight basis, and one rate of chemical fertilizer applied under no-till and conventional tillage systems. Treatments were replicated three times in a randomized complete block design. Corn was grown with broiler litter and inorganic fertilizer applied to the same plots each year from 1998 to 2001. In 2002 and 2003, corn was planted no-till, but only N fertilizer was applied in order to make use of other residual litter nutrients. Soil samples were taken yearly in the spring prior to litter application and 4 years after the cessation of litter application to evaluate the status of the residual nutrients in soil. Two years out of the 4-year experiment, broiler litter application produced significantly greater corn grain yield than equivalent chemical fertilizer application and produced similar grain yield in the other 2 years. Corn grain yield was significantly greater under no-till in 1999, but significantly greater under conventional-till in 2000, and no difference between the two tillage systems were observed in 1998 and 2001. With 4 years of litter application, Mehlich-3 P increased from an initial 18 mg kg−1 to 156 mg kg−1 with 11 Mg ha−1 litter and to 257 mg kg−1 with 22 Mg ha−1 litter. For every 6 kg ha−1 of P applied in poultry litter Mehlich-3 P was increased by 1 mg kg−1. Modest increases in Mehlich-3 Cu and Zn did not result in phytotoxic levels. This study indicated that an optimum rate of broiler litter as a primary fertilizer at 11 Mg ha−1 applied in 4 consecutive years on a silt loam soil produced corn grain yields similar to chemical fertilizer under both no-till and conventional tillage systems and kept soil test P, Cu and Zn levels below values considered to be harmful to surface water quality or the crop.  相似文献   

9.
The effect of different soil management practices on crust strength and thickness, soil water conservation and crop performance was investigated on a ferric lixisol in a semi-arid environment of eastern Kenya.

The study proved that manure and mulching with minimum tillage have a greater effect on the water balance of crusted soils and maize emergence. There was increase in steady infiltration rates, amount of soil water stored in the soil and better drainage. The physical effect of mulch was less important in the rehabilitation of crusted soils in the study site when it was incorporated into the soil. Manure and surface mulch with minimum tillage should therefore be taken into account in land management and water conservation in the semi-arid areas of Kenya. The response of crops to the improved water availability due to manure with minimum and with conventional tillage and surface mulch was very clear. These management practices should be recommended when considering the effectiveness of soil and water management techniques in the study area.  相似文献   


10.
Soil compaction is a big challenge in managing poorly drained clay soils. An on-farm field study was conducted over 2 years in a poorly drained, heavy clay soil, Red River Valley, Manitoba, Canada, where soil compaction, crop growth and root development were perceived as serious concerns. To address these concerns, no-tillage and sub-soiling tillage were proposed and compared with the traditional tillage system in which light-duty field cultivators were used at tillage depths ranging from 50 to 75 mm. Measurements of soil cone index indicated that a hardpan existed at approximately 175 mm soil depth in each fall as a result of wheel traffic during the growing season. It may not be necessary to break the hardpan with fall tillage operations in the studied region, as the hardpan was naturally removed over winter. Effects of tillage practices were evaluated using seeding performance and plant development. No-tillage resulted in the similar speed of emergence, plant population and crop yield, but more uniform seeding depth and more roots in the topsoil layer (0–75 mm), when compared with the conventional tillage. Sub-soiling promoted much faster crop emergence, higher plant populations and crop yield as well as deeper root penetration than the conventional tillage. However, the draft force required for sub-soiling was four times that of the conventional tillage.  相似文献   

11.
Abstract. Trafficked and non-trafficked (12 m gantry) crop production systems, which had been maintained on an Evesham series 60% clay soil since 1986, were used again in 1993 during the cultivation and sowing of winter wheat. After a one year set-aside break, mouldboard ploughing, tine cultivation and rotary digging were compared. Measurements were made of tillage energy, soil tilth, cone penetration resistance, biological activity and crop performance, and on specific plots, soil density, seedbed tilth and water release characteristics. Despite the one year's set-aside break, the effect of the previously applied traffic treatments remained and resulted in a smaller specific plough resistance and tillage energy on the non-trafficked soil. Tine cultivator draught however was greater on the non-trafficked compared with the trafficked plots. The specific energy required for rotary digging on non-trafficked soil was similar to that required during the ploughing of similar plots. A measure of indefinite biotic activity indicated that this was apparently greater on the non-traffficked soil, while soil density was decreased by up to 18% in these conditions compared with the trafficked land. Average cone resistance over the depth range 0 to 0.5 m was 1.51 MPa on the trafficked, compared with 1.24 MPa on the non-trafficked soil. Cone resistance also tended to be greater after tine cultivation compared with that after ploughing. Water release curves were interpreted as showing more macropores within the topsoil of the non-trafficked compared with the trafficked plots. Tine cultivation on trafficked soil had more smaller pores than mouldboard plough cultivation. Winter wheat yield was increased by 25% (from 8 to 10 t/ha) on non-trafficked compared with trafficked soil.  相似文献   

12.
Yield decline (YD) of sugarcane is a widespread problem throughout the Australian sugar industry. It is defined as “the loss of productive capacity of sugarcane-growing soil under long-term monoculture”. Factors contributing to YD are the monoculture itself, excessive tillage of the soil at planting and severe soil compaction resulting from the use of heavy machinery during the harvesting operation. Collectively, these crop management practices have led to the development of sugarcane-growing soils that are low in organic C and cation exchange capacity, have a high bulk density and have a low microbial biomass. This in turn is associated with a build up of populations of detrimental soil organisms, which affect the growth and health of the sugarcane root system. Significant yield increases have been demonstrated following pasteurization or fumigation of the soil or treatment of the soil with fungicides or nematicides. Several detrimental soil organisms associated with YD have been identified, including a fungal root pathogen (Pachymetra chaunorhiza) and the lesion nematode (Pratylenchus zeae). Experimental evidence, however, suggests there are many other unidentified detrimental soil organisms associated with YD.

In order to circumvent YD, major changes to the cane cropping system need to be considered. Different rotation breaks (sown pasture, alternate crops, bare fallow) were evaluated for their impact on soil health and the composition of the community of organisms in soil previously under cane monoculture. Despite the breaks having different effects on populations of beneficial soil biota, all breaks reduced populations of known detrimental soil biota and significantly increased the yield of the following cane crop. A single legume-based break crop appeared to be sufficient to capture the majority of these benefits. Other possible management options including the use of organic amendments and minimum tillage techniques are discussed.  相似文献   


13.
A field study was carried out to analyze the short-term (2 years) effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. The experimental design was a split-plot arrangement of treatments, consisting of two tillage treatments—ridge tillage (RT) and no-tillage (NT)—in combination with two crop rotation treatments—corn (Zea mays L.) monoculture and a 2-year corn-soybean (Glycine max L.) rotation. Phospholipid fatty acid (PLFA) profiles were used to assess soil microbial community structure. No-tillage resulted in significantly higher total PLFAs compared to the RT treatment, which was accompanied by higher activities of protease, β-glucosaminidase, and β-glucosidase. This suggests a close link between soil microbial communities and enzyme activities in response to tillage. The increase of total microbial lipid biomass in the NT soils was due to the increase in both fungal and bacterial PLFAs. Crop rotation had little effect on soil bacterial communities and enzyme activities, but it significantly influenced soil fungal communities, particularly arbuscular mycorrhizal fungi. Soils under monoculture corn had higher fungal biomass than soils under corn-soybean rotation regardless of tillage treatment.  相似文献   

14.
Although agricultural land management is known to affect near-surface soil physical quality (SPQ), the characteristics of these affects are poorly understood, and diagnostic SPQ indicators are not well-developed. The objective of this study was to measure a suite of potential SPQ indicators using intact soil cores and grab samples collected from the 0–10 cm depth of a clay loam soil with the treatments: (i) virgin soil (VS); (ii) long-term continuous bluegrass sod (BG); (iii) long-term maize (Zea mays L.)—soybean (Glycine max (L.) Merr.) rotation under no-tillage (NT); (iv) long-term maize–soybean rotation under mouldboard plough tillage (MP); (v) short-term (1–4 years) NT after long-term MP; (vi) short-term MP after long-term BG; (vii) short-term MP after long-term NT. Organic carbon content, dry bulk density, air capacity, relative water capacity and saturated hydraulic conductivity appeared to be useful SPQ indicators because they were sensitive to land management, and proposed optimum or critical values are available in the literature. Soil macroporosity was also sensitive to land management, but optimum or critical values for this parameter are not yet established. Soil matrix porosity and plant-available water capacity did not respond substantially or consistently to changes in land management, and were thus not useful as SPQ indicators in this study. Converting long-term BG to MP caused overall SPQ to decline to levels similar to long-term MP within 3–4 years. Converting long-term NT to MP or vice versa caused only minor changes in overall SPQ. With respect to the measured SPQ indicators and their optimum or critical values, both VS and BG produced “good” overall SPQ in the near-surface soil, while long-term maize–soybean rotation under NT and MP produced equally “poor” SPQ.  相似文献   

15.
Earthworm response to rotation and tillage in a Missouri claypan soil   总被引:4,自引:0,他引:4  
 Agricultural management practices affect earthworm populations. A field experiment was conducted to determine the effect of two rotations and two tillage systems on earthworm population density and biomass in a claypan soil. The rotations were soybean/corn and wheat/corn, and the tillage systems were conventional tillage (chisel plowed and disked) and no-tillage. Earthworm and soil samples were collected in fall 1995, spring 1996, and fall 1996. Aporrectodea trapezoides and Diplocardia singularis were the species identified at the site. A. trapezoides accounted for 92–96% of the total earthworm population density and D. singularis accounted for only 4–8%. In a no-till system, soybean/corn rotation resulted in significantly greater population density of A. trapezoides compared with the wheat/corn rotation. Crop residue quality (low C:N ratio) and quantity were important factors in increasing A. trapezoides population density and biomass. Conventional tillage markedly decreased population density and biomass of both earthworm species. Our results suggest that rotation and tillage significantly affect earthworm population density and biomass. Received: 6 June 1998  相似文献   

16.
Soil aggregation is influenced by the tillage system used, which in turn affects the amount of C and N in the different aggregate fractions. This study assessed the impact of different tillage systems on soil aggregates by measuring the aggregate stability, the organic carbon (Corg) and the total nitrogen (Ntot) contents within different aggregate fractions, and their release of dissolved organic carbon (DOC). Soil samples were collected from the top 0 to 10 cm of a long-term tillage experiment at Fuchsenbigl (Marchfeld, Austria) where conventional tillage (CT), reduced tillage (RT), and minimum tillage (MT) treatments were applied to a Chernozem fine sandy loam. The stable aggregates (1000–2000 μm) were subject to dispersion by the soil aggregate stability (SAS or wet sieving) method after Kemper and Rosenau (1986), and the ultrasonic method of Mayer et al. (2002). Chemical analysis of the soil was obtained for the aggregate fractions 630–1000, 250–630 and 63–250 μm gathered from the ultrasonic method. Using the SAS method, CT and RT had the least amounts of stable aggregates (18.2% and 18.9%, respectively), whereas MT had twice as much stable aggregates (37.6%). Using the ultrasonic method, MT also had the highest amount of water stable aggregates in all three fractions (1.5%, 3.7%, and 35%, respectively), followed by RT (1%, 2.3%, 32.3%), and CT (0.8%, 1.7%, 29.1%). For comparison, a reference soil, EUROSOIL 7 (ES-7) was also analysed (40%, 6.7%, and 12.1%). The highest amounts of Corg and Ntot were measured under MT in all three fractions, with 8.9%, 3.8%, and 1.3% for Corg, and 0.4%, 0.3%, and 0.1% for Ntot. Apart from the fraction 630–1000 μm, the aggregates of RT and CT contained <50% of the Corg and Ntot values of MT. The C/N ratio was least favourable for CT (42.6) in the aggregate fraction 630–1000 μm. The DOC release from stable aggregates after 10 min of ultrasonic dispersion was highest from MT soil (86.7 mg l−1). The values for RT and CT were 21% and 25% below this value. The results demonstrate that tillage type influences both aggregate stability and aggregate chemical composition. This research confirms that CT interferes more with the natural soil properties than RT and MT. Furthermore, MT has the highest potential to sequester C and N in this agriculturally used soil.  相似文献   

17.
The long-term effects of cropping systems and management practices on soil properties provide essential information for assessing sustainability and environmental impact. Field experiments were undertaken in southern Spain to evaluate the long-term effects of tillage, crop rotation and nitrogen (N) fertilization on the organic matter (OM) and mineral nitrogen (Nmin) contents of soil in a rain-fed Mediterranean agricultural system over a 6-year period. Tillage treatments included no tillage (NT) and conventional tillage (CT), crop rotations were of 2 yr with wheat (Triticum aestivum L.)-sunflower (Helianthus annuus L.) (WS), wheat-chickpea (Cicer arietinum L.) (WP), wheat-faba bean (Vicia faba L.) (WB), wheat-fallow (WF), and in addition, continuous wheat (CW). Nitrogen fertilizer rates were 50, 100, and 150 kg N ha−1. A split-split plot design with four replications was used. Soil samples were collected from a depth of 90 cm at the beginning of the experiment and 6 yr later. Soil samples were also collected from a depth of 30 cm after 4 yr. These samples, like those obtained at the beginning of the experiment, were subjected to comprehensive physico-chemical analyses. The soil samples that were collected 6 yr later were analyzed for OM, NH4+---N and NO3---N at the 0–30, 30–60 and 60–90 cm soil depths. The tillage method did not influence the OM or Nmin contents of the soil, nor did legume rotations increase the OM content of soil relative to CW. A longer period may have been required for differences between treatments to be observed owing to the small amount of crop residue that is returned to soil under rain-fed conditions of semi-arid climates. The WF rotation did not raise the Nmin content of the soil relative to the other rotations. The consistent significant interaction between tillage and crop rotation testifies to the differential effect of the management system on the OM content and N status of the soil. The ammonium levels clearly exceeded those of NO3---N throughout the soil profile. The high Nmin content of the soils reveals the presence of abundant N resources that should be borne in mind in establishing N fertilization schemes for crops under highly variable climatic conditions including scant rainfall such as those of the Mediterranean region.  相似文献   

18.
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa.  相似文献   

19.
This study investigated the effects of different tillage practices on the nematode community structure. The different tillage systems were: untilled control, conventional deep plough, two-layer plough and cultivator. Sampling was carried out in a field experiment at Wörrstadt-Rommersheim (Rhineland-Palatinate, Germany) in order to study the effects of these tillage systems in a sustainable farming system. Soil samples were taken every 3?months from June 1994 to March 1995 and divided into two depths of 0–10 and 10–20?cm in order to study the vertical distribution of nematode density and community structure. Nematode density was significantly reduced after the first tillage. The second tillage had no effect on the nematode density, whereas the nematode community structure was strongly influenced on both structural (taxonomic) and functional (trophic group, life strategy) level. After tillage, the density of plant parasitic nematodes decreased and the density and dominance of bacterivorous nematodes increased. In the tilled plots, and especially in the cultivator and the two-layer plough plot, the nematode community was dominated by bacterial feeders, whereas, in the untilled control, plant feeders were more dominant. Our results showed that the nematode Maturity Index and Plant Parasite Index are suitable for indicating immediate tillage effects on the nematode community.  相似文献   

20.
Information on which management practices can enhance soil organic matter (SOM) content and quality can be useful for developing sustainable crop production systems. We tested the influence of 12 years of no-till (NT) versus conventional tillage (CT), and four crop sequences on the organic C pools of a Grey Luvisolic sandy loam soil in northwestern Alberta, Canada. The crop sequences were: continuous wheat (Triticum aestivum L.), field pea (Pisum sativum L.)–wheat–canola (Brassica rapa L.)–wheat, red clover (Trifolium pratense L.) green manure–wheat–canola–wheat/red clover and fallow–wheat–canola–wheat. Soil samples from 1992, when the study was initiated, and 1996, 2000 and 2004 were analyzed for total organic C (TOC), the light fraction (LF) and its C content, and water-soluble and mineralizable C. Total organic C in the top 15 cm of soil was higher in the red clover rotation than either the pea or fallow rotation by 1996. The tillage effect became significant only in 2004 with NT having a higher TOC than CT. The LF dry matter (DM) increased from 6.9 g kg−1 soil in 1992 to a range of 10–13 g kg−1 in 2000 and 2004. It was higher under NT than CT in 2 of 3 years and in the red clover rotation than the pea or fallow rotation in 1 of 3 years. The LF C content exhibited a similar trend as LF DM. The water-soluble and mineralizable C pools were not affected by tillage but decreased with time. Among crop rotations, the red clover rotation tended to result in higher levels of hot water-soluble and mineralizable C. It is concluded that tillage had a greater influence than crop rotation on the LF DM and LF C (as indicators of C storage), whereas the converse effect applied to mineralizable C and, to a lesser degree, hot water-soluble C (as indicators of SOM quality).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号