首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木薯叶片原生质体分离条件研究   总被引:1,自引:1,他引:0  
本试验以木薯叶片为材料,研究了质壁分离时间、酶液组合、酶解时间、酶液中甘露醇浓度等不同因素对原生质体分离的影响.结果表明:叶片在CPW9M溶液中质壁分离0.5h后,置于1%离析酶+0.5%纤维素酶+1%半纤维素酶+9%甘露醇的酶液中,黑暗条件下酶解14~16 h,其原生质体产量和活力最高.  相似文献   

2.
以Ionopsis utricularioides试管苗叶片为材料进行原生质体分离,研究了酶液组合、酶解时间、甘露醇浓度、预处理方法等因素对原生质体的产量及活力的影响.结果表明,Ionopsis utricularioides试管苗叶片在含有0.5%果胶酶+2.0%纤维素酶(绿色木霉)+(11%~12%)甘露醇CPW溶液的混合酶液中,在25℃黑暗环境下静置酶解3h,原生质体分离效果最佳.  相似文献   

3.
刺葡萄原生质体分离研究   总被引:9,自引:0,他引:9  
为建立良好的刺葡萄原生质体分离体系,利用原生质体融合技术对刺葡萄进行品种改良,以刺葡萄叶片、根尖和愈伤组织为材料,研究了经不同酶液组合和酶解时间处理,再经过0.45μm筛网过滤,1000r/min低速离心后分离产生原生质体的情况.试验结果表明,原生质体分离材料以愈伤组织最好,叶片次之,根尖最差;4次以内继代培养的愈伤组织,经2%纤维素酶+0.5%果胶酶+1%离析酶的酶液组合酶解8h后,原生质体的产量为5.12×106个,活力为88.57%.  相似文献   

4.
以菜豆幼嫩叶片为材料,研究了预处理、酶液组合、酶解时间、酶解方式、甘露醇浓度及纯化时的离心转速对菜豆叶片原生质体分离的影响。结果表明:菜豆叶片质壁分离1 h后,在2%纤维素酶+1%离析酶+10%甘露醇+0.1%BSA+5 mmol/L MES+10 mmol/L CaCl2·2H2O,pH为5.8的混合液中,(25±1)℃黑暗条件下振荡酶解12 h可获得大量有活力的绿色原生质体。纯化时400 r/min离心3 min效果较好。  相似文献   

5.
以苹果试管苗叶片为原生质体分离材料,对影响原生质体分离和培养的因素进行了研究.结果表明适合叶片酶解的酶液组成是Cellulase-Onzuka R-10 0.8%+Pectinase 0.5%+PVP 1%+甘露醇0.65 mol/L+MES0.1%;以改良MT+BA 1.0 mg/L+2,4-D 0.2 mg/L+甘露醇0.65 mol/L+Vc 5.0 mg/L+Glu 500 mg/L+CH 100 mg/L+ME 500 mg/L+Arg 50 mg/L为培养基对原生质体进行培养,固液双层培养效果较好,最适培养密度为1×105个/ml,培养1~2天原生质体变形,3~4天第一次分裂,2周分裂3~5次.平邑甜茶原生质体一个月后形成微细胞团,两个半月形成肉眼可见的微愈伤组织.鲁加5号和M7均只形成7~10个细胞的细胞团,嘎拉未见细胞分裂.  相似文献   

6.
为建立有效的原生质体分离体系,研究了黑果腺肋花楸(Aronia melanocarpa)原生质体酶解分离纯化条件。结果表明:黑果腺肋花楸愈伤组织在20g/L纤维素酶+0.5g/L果胶酶+13%甘露醇+5mmol/LMES酶解液中黑暗静置酶解10h,可获得高产量高活力的原生质体;采用500r/min离心8min分离纯化效果最好;愈伤组织比组培苗叶片分离获得的原生质体产量与活力更高。  相似文献   

7.
以椪柑愈伤组织和试管苗叶片为试验材料,采用纤维素酶R-10+离析酶R-10的酶液组合Ⅰ和纤维素酶Worthington+离析酶R-10的酶液组合Ⅱ进行原生质体的分离,比较这2种酶液组合对原生质体的酶解时间、产量及活性氧含量的影响。结果表明,酶液组合Ⅱ所需的酶解时间均短于酶液组合Ⅰ;酶液组合Ⅱ所获得的原生质体产量均高于酶液组合Ⅰ,在愈伤组织中前者产量是后者的9. 09倍,在叶片中前者产量是后者的5. 29倍,差异显著;酶液组合Ⅰ的愈伤组织原生质体的活性氧水平是酶液组合Ⅱ的1. 96倍,且差异显著,而对于叶肉原生质体,2种酶液组合之间的差异不显著。因此可见,酶液组合Ⅱ更适合用于椪柑原生质体的分离。  相似文献   

8.
为获得较高的原生质体分离和分裂频率,试验以马铃薯二倍体原始栽培种‘47-33’‘5-19’试管苗叶片为材料,进行了原生质体游离和培养的研究.结果表明:培养21d的两品系试管苗叶片均在含有2.0%纤维素酶+0.5%果胶酶+0.25%离析酶,渗透压为0.35mol/L的酶解液中解离效果最好,原生质体产量分别为2.31×106个/gFW和2.52×106个/gFW;在28℃酶解温度条件下缓慢摇动14h或1h静置+13h缓慢摇动的,可促进叶片原生质体的大量释放.此外,1.0mg/L NAA+0.5mg/L 2,4-D+0.4mg/L BAP外源激素组合有利于叶片原生质体的分裂,‘47-33’‘5-19’原生质体一次分裂频率分别达到8.85%和12.56%.在0.35mol/L渗透压的液体培养基中,‘47-33’叶片原生质体分裂更早,分裂频率达13.85%.研究获得了稳定的原生质体分离体系以及较好的原生质体培养条件,为马铃薯二倍体原始栽培种的体细胞融合奠定了基础.  相似文献   

9.
花椒原生质体分离与培养研究   总被引:2,自引:0,他引:2  
以花椒试管苗叶片、愈伤组织和悬浮细胞为试验材料,通过单因素试验研究酶液浓度、渗透压调节剂浓度对花椒原生质体分离的影响,并以花椒试管苗叶片分离出的原生质体为试验材料,研究培养基种类、培养密度、不同激素配比对花椒原生质体培养的影响。结果表明,酶液浓度、渗透压调节剂浓度对花椒原生质体分离有显著影响。在适宜条件下,用甘露醇作花椒原生质体分离的渗透压调节剂,浓度在0.6~0.7 mol·L-1时分离效果最佳。以花椒叶片为原生质体分离材料的最佳酶液组成为CPW-0.7 mol·L-1甘露醇+1.0%(w/v)纤维素酶R-10+1.5%(w/v)果胶酶,酶解时间为10 h,纯化后的原生质体产量和活力分别可达82.36×105 个·g-1和72.74%。以愈伤组织和悬浮细胞为分离材料的最佳酶液组成均为CPW-0.6 mol·L-1甘露醇+2.0%(w/v)纤维素酶R-10+0.5%(w/v)果胶酶,酶解12~14 h,纯化后的原生质体产量及活力分别为31.26×105 个·g-1、59.15%和53.87×105 个·g-1、63.92%。以花椒试管苗叶片为原生质体分离材料,分离纯化后的花椒原生质体在无激素的WPM培养基中,培养密度为1×105个·mL-1,培养第3天原生质体第1次分裂,2周分裂3~5次,原生质体28 d后形成微细胞团,培养60 d后可形成2 mm左右的愈伤组织。  相似文献   

10.
不同酶解条件对普通红豆草下胚轴原生质体分离的影响   总被引:2,自引:0,他引:2  
对普通红豆草原生质体分离条件进行研究.以无菌发育5~7 d种子的下胚轴为材料,研究了不同的酶组合、酶解时间、渗透压和pH等因子对其原生质体游离的影响.结果表明:当酶液组合为2;纤维素酶+0.5;果胶酶+0.3;离析酶,25℃黑暗条件下酶解6 h可获得大量有较高活力的原生质体,其产量达到3.53×106个/g,存活率为90.6;;以甘露醇作为酶解渗透调节物质较为理想,酶解液中添加浓度为0.55 mol/L的甘露醇最为适合原生质体分离;酶解液pH调至6.0时原生质体产量、活力均高于其他各组.  相似文献   

11.
桑树原生质体分离条件的优化   总被引:1,自引:0,他引:1  
为了获得桑树原生质体分离的最优条件,为今后桑树原生质体融合、新种质的获取等植物遗传改良提供理论基础,采用酶解法和血球板计数法,对桑树原生质体分离的影响因素进行研究。结果表明,酶、酶液组合、酶解时间和渗透压稳定剂等都对原生质体的制备有显著的影响,较适宜桑树叶片游离的组合条件是1.0%纤维素酶+0.5%果胶酶+0.2%离析酶+0.6mol/L甘露醇+CPW盐溶液,酶解温度为28℃±2℃,酶解时间为6h。在此条件下可获得高产量的原生质体。  相似文献   

12.
以地方品种洛阳红牡丹叶片为材料,通过单因素和正交试验,研究了预处理时间、酶解时间、不同酶组合及酶液中甘露醇含量等因素对牡丹叶片原生质体分离的影响。结果表明:在蔗糖浓度为0.3mol/L的溶液中,预处理0.5h效果最好,(25±1)℃条件下,在0.5%纤维素酶+0.4%果胶酶+0.3%半纤维素酶+10%甘露醇、pH值5.8的混合酶液中,酶解6h所得的原生质体产量最高,有活力的细胞可达2.325×106个/g。  相似文献   

13.
试验以卡特兰叶片组织为材料,研究了预处理时间、酶液组合、酶解时间、酶液中甘露醇含量等不同因素对其原生质体分离的影响.结果表明,以1%的纤维素酶+0.3%的果胶酶为混合酶液,11%的甘露醇为渗透压稳定剂,在25±1 ℃的条件下,pH为5.8的酶液组合中酶解8 h,获得的原生质体产量最高,可达8.9×106/g鲜重,存活率高达91.2%.  相似文献   

14.
[目的]研究黄瓜原生质体分离的最佳酶解条件.[方法]以黄瓜子叶和悬浮细胞为材料,研究不同酶解条件对其原生质体的分离效果的影响.[结果]黄瓜子叶获得高质量的原生质体的最佳条件为:酶液组合2%纤维素酶+1.0%果胶酶,酶解时间8h,酶液浓度0.7 mol/L,酶液pH 5.5.[结论]该试验研究了不同酶解条件对黄瓜原生质体的分离效果的影响,为黄瓜的进一步开发利用提供依据.  相似文献   

15.
矮牵牛叶肉原生质体分离条件的优化   总被引:1,自引:1,他引:0  
以幼嫩叶片为试材,探讨了渗透压(甘露醇浓度)、水解酶浓度、酶解时间等关键因素对矮牵牛叶肉原生质体分离效果的影响。研究结果表明,以2%纤维素酶R-10+0.2%果胶酶Y-23+0.4%离析酶R-10+20 mmol/L 2-(N-吗啡啉)乙磺酸(MES)+0.1%牛血清白蛋白(BSA)+0.11%无水氯化钙(CaCl_2)为酶解液,在0.5mol/L甘露醇浓度下静置酶解5h,1 100r/min离心2min沉淀原生质体,原生质体产量及活性分别为2.90×106个/g和88.1%,可为后续原生质体培养及融合提供材料。  相似文献   

16.
【目的】探究百合原生质体分离纯化和培养条件,为百合原生质体融合、再生体系建立、转基因育种等研究奠定基础。【方法】以‘白天堂’百合无菌苗叶片为材料,采用纤维素酶、果胶酶和离析酶组合分离原生质体,采取单因素试验法,对影响原生质体的制备及再生条件的主要因素即渗透压、酶解组合、细胞筛和酶解时间进行筛选与优化。【结果】以百合无菌苗叶片在1.0%纤维素酶+0.5%离析酶+0.1%果胶酶+0.6 mol/L甘露醇+10.0 mmol/L CaCl2·2H2O+20.0 mmol/L MES+20.0 mmol/L KCl混合酶解液为最优条件,25℃,25 r/min, pH为5.6黑暗酶解6 h;孔径75μm细胞筛过滤,600 r/min离心5 min收集细胞,原生质体产量可达6.4×105个/mL,原生质体活力为78.0%;将纯化后密度为1×105个/mL的原生质体溶液接种在葡萄糖作为唯一碳源的培养基中可以存活,并生长产生细胞壁,但没有启动细胞分裂和诱导形成愈伤组织。【结论】初步建立‘白天堂’百合的高效原生质体...  相似文献   

17.
毛葡萄原生质体分离与纯化研究   总被引:4,自引:0,他引:4  
以毛萄萄愈伤组织、悬浮培养细胞,无菌苗幼叶为材料,研究了毛葡萄原生质体的分离纯化方法及影响因素.结果表明,毛葡萄原生质体分离材料以悬浮细胞和愈伤组织最好.毛葡萄愈伤组织在0.5 mol/L甘露醇中预处理90 min,CPW+13%甘露醇+2%纤维素酶+0.25%果胶酶+0.5%离析酶的酶液中酶解10 h,其原生质体产量最高可达6.24×106个/g,活力为86.83%.  相似文献   

18.
青天葵叶片原生质体分离条件的优化   总被引:1,自引:0,他引:1  
以青天葵Nervilia fordii(Hance)Schltr.的新鲜叶片为试材,对青天葵原生质体的制备分离技术进行研究。用不同浓度的甘露醇溶液处理青天葵叶片下表皮细胞,进行细胞质壁分离试验,确定青天葵叶片细胞的等渗浓度;采用正交设计研究酶解法制备青天葵叶片原生质体的最适合纤维素酶浓度、离析酶浓度及酶解时间。结果表明,青天葵叶片细胞的等渗浓度为11%甘露醇;采用1.0%纤维素酶R-10+0.6%离析酶R-10的混合酶液酶解青天葵叶片12 h能达到很好的分离效果,获得高质量的原生质体。  相似文献   

19.
盾叶薯蓣原生质体分离   总被引:1,自引:0,他引:1  
以盾叶薯蓣叶片、种子愈伤为材料,探讨了不同的酶浓度、酶解时间及渗透压对原生质体分离的影响.结果表明:生长5~10d的叶片置于0.6%纤维素酶、0.5%果胶酶、0.9mol/L甘露醇的酶液中、黑暗处理21h,其原生质体产量和活力最高;悬浮培养5~10d的愈伤组织在2.0%纤维素酶、1.0%果胶酶、0.7mol/L甘露醇的混合酶液中黑暗处理6~8h原生质体产量和活力最高.  相似文献   

20.
分别以橡胶树GT1种子实生苗古铜期、变色期、淡绿期和稳定期4个不同发育阶段的叶片为材料进行原生质体的酶解分离研究,同时分析比较不同酶组合、酶解时间和甘露醇浓度等主要因素对橡胶树叶片原生质体产量和活力的影响,建立高效稳定的橡胶树叶片原生质体分离体系,为进行橡胶树外源基因瞬时表达及CRISPR基因编辑等研究快速提供高产优质的原生质体。结果表明:在同等条件下,变色期叶片的原生质体产量和活力最高,分别为14.8×10~7个/g FW和97.3%;其次为古铜期叶片,可达到8.6×10~7个/g FW和95.2%;淡绿期和稳定期叶片原生质体的产量非常低,活力也相对较低,分别仅有3.4×10~5个/g FW和89.5%、7.2×104个/g FW和80.6%。单因素实验结果表明,最适合变色期叶片原生质体分离的条件为:酶组合为2%纤维素酶+0.6%离析酶、酶解时间为6 h、甘露醇浓度为0.6 mol/L,此时橡胶树叶肉原生质体的产量可高达19.7×10~7个/g FW,活力约为97.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号