首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies.  相似文献   

2.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

3.
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors. Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance.  相似文献   

4.
An inter-subspecific mapping population was generated by crossing V. mungo var. mungo (cv. TU 94-2, bruchid susceptible) and V. mungo var. silvestris (bruchid resistant). About 37.8% of the bruchid completed their lifecycle on seeds of V. mungo var. silvestris compared with 100% on the susceptible variety TU 94-2. The total developmental period of C. maculatus on Vigna mungo var. silvestris was considerably extended (88 days as compared with 34 days on TU 94-2). A genetic linkage map constructed using recombinant inbred lines (RILs) in F9 generation with 428 markers [86 random amplified polymorphic DNA (RAPD), 47 simple sequence repeat (SSR), 41 inter-SSR (ISSR), 254 amplified fragment length polymorphism (AFLP)] was used for QTL detection. One hundred four individuals were used for detection of QTLs associated with bruchid resistance. The RILs exhibited a high level of variation in percentage adult emergence (0–100%) and developmental period (0–105 days). Two QTLs, Cmrae1.1 and Cmrae1.2, were identified for percentage adult emergence, on linkage group (LG) 3 and 4, respectively. For developmental period, six QTLs were identified, with two QTLs (Cmrdp1.1 and Cmrdp1.2) on LG 1, three QTLs (Cmrdp1.3, Cmrdp1.4, and Cmrdp1.5) on LG 2, and one QTL (Cmrdp1.6) on LG 10.  相似文献   

5.
A genetic analysis of blast resistance in upland rice variety is very crucial. In this study, we performed a linkage mapping of quantitative trait loci (QTLs) for blast resistance using an advanced backcross population from a cross between Way Rarem (susceptible indica variety) and Oryzica Llanos 5 (durable resistant indica variety). A transgressive segregation was observed in the advanced backcross population of Way Rarem//Oryzica Llanos 5. A total of 16 QTLs have been identified along chromosomes 1, 3, 5, 6, 7, 8, 9, and 11 against eight blast pathogen isolates. Each QTL accounted from 11.31 to 45.11% of the variation in blast resistance. Most QTLs showed race specificity, demonstrating the small effect of such QTLs. Unexpectedly, several superior blast resistance alleles were contributed by Way Rarem, the susceptible-recurrent parent. Among eight candidate defense response genes detected in several loci, a single gene (oxalate oxidase) present on chromosome 3 was found to be associated with blast resistance in upland indica rice. Ultimately, these advanced backcross lines with resistance to blast tagged by markers might be useful for pyramiding blast resistance alleles in upland rice.  相似文献   

6.
L. M. Reid  X. Zhu  A. Parker  W. Yan 《Euphytica》2009,165(3):567-578
Preliminary field observations in our maize breeding nurseries indicated that breeding for improved resistance to gibberella ear rot (Fusarium graminearum) in maize may indirectly select for resistance to another ear disease, common smut (Ustilago zeae). To investigate this, we compared the disease severity ratings obtained on 189 maize inbreds, eight of which included our inbreds developed with selection for gibberella ear rot resistance after field inoculation and breeding for 8–10 years. No correlation was found between disease severities for the 189 inbreds but the eight gibberella-resistant lines were consistently more resistant to smut. To further examine this relationship and to determine if these eight inbreds would be useful for developing inbreds with either common smut or fusarium ear rot (F. verticilliodes) resistance, we conducted a Griffing’s diallel analysis on six inbreds of maize, four with high levels of gibberella ear rot resistance representing all of the pedigree groups in our eight gibberella lines, and two with very low levels. Our most gibberella ear rot resistant inbreds, CO433 and CO441, had the lowest disease ratings for all three diseases, the consistently largest general combining ability effects and several significant specific combining ability effects. It was concluded that some inbreds bred specifically for gibberella ear rot would also be useful in breeding for resistance to common smut and fusarium ear rot.  相似文献   

7.
Crop growth and damage parameters (plant growth and yield, root damage and nematode population densities), believed to be associated with resistance of Musa genotypes to nematodes under field conditions, were evaluated in a field trial of 24 Musa genotypes inoculated at planting with a combination of Radopholus similis and Helicotylenchus multicinctus with the objective to identify parameters with strong association with nematode resistance and high heritability. Correlation and path analysis of the association between plant growth, yield, root damage and nematode population densities showed a strong negative association between percentage dead roots, percentage root necrosis, R. similis and H. multicinctus population densities and yield. The strongest negative association was observed between percentage dead roots and yield. Broad-sense genotype heritability estimates demonstrated that heritability estimates for percentage dead roots, number of large lesions and nematode population density were most affected by inoculation with nematodes. These results indicate therefore that effective selection for nematode resistance under field conditions could be obtained by using an index, that includes percentage dead roots, the number of large lesions, and nematode population density.  相似文献   

8.
Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is an important disease of wheat (Triticum aestivum L.) globally. Use of host resistance is an important strategy to manage the disease. The cultivar Flinor has temperature-sensitive resistance to stripe rust. To map quantitative trait loci (QTLs) for these temperature-sensitive resistances, Flinor was crossed with susceptible cultivar Ming Xian 169. The seedlings of the parents, and F1, F3 progeny were screened against Chinese yellow rust race CYR32 in controlled-temperature growth chambers under different temperature regimes. Genetic analysis confirmed two genes for temperature-sensitive stripe rust resistance. A linkage map of SSR markers was constructed using 130 F3 families derived from the cross. Two temperature-sensitive resistance QTLs were detected on chromosome 5B, designated QYr-tem-5B.1 and QYr-tem-5B.2, respectively, and are separated by a genetic distance of over 50 cM. The loci contributed 33.12 and 37.33% of the total phenotypic variation for infection type, respectively, and up to 70.45% collectively. Favorable alleles of these two QTLs came from Flinor. These two QTLs are temperature-sensitive resistance loci and different from previously reported QTLs for resistance to stripe rust.  相似文献   

9.
Powdery mildew disease in mungbean is caused by the fungus, Erysiphe polygoni D.C. We identified two quantitative trait loci (QTLs) controlling resistance to the disease in a RIL population of 190 F7 lines. The population was developed from the cross between a susceptible cultivar, “Kamphaeng Saen 1” and a resistant line, “VC6468-11-1A”. Reaction to the disease was evaluated for resistance in field and greenhouse conditions. Results from analysis of variance revealed that 15 SSR loci on three linkage groups (LG) associated with the resistance. Composite interval mapping consistently identified two QTLs on two LGs, qPMR-1 and qPMR-2, conferring the resistance. qPMR-1 and qPMR-2 accounted for 20.10 and 57.81% of the total variation for plant response to the disease, respectively. Comparison based on common markers used in our and previous studies suggested that qPMR-2 is possibly the same as the major QTL reported earlier using another resistant source. The SSR markers flanking and closely linked to qPMR-1 (CEDG282 and CEDG191) and qPMR-2 (MB-SSR238 and CEDG166) are useful for marker-assisted selection for mungbean resistance to powdery mildew.  相似文献   

10.
The genus Tospovirus was considered as monotypic with Tomato spotted wilt virus (TSWV) being the only assigned species. However, extensive studies with worldwide isolates revealed that this genus comprises a number of species with distinct virulence profiles. The Neotropical South America is one center of Tospovirus diversity with many endemic species. Groundnut ringspot virus (GRSV), TSWV, Tomato chlorotic spot virus (TCSV), and Chrysanthemum stem necrosis virus (CSNV) are the predominant tomato-infecting species in Brazil. Sources of resistance were found in Solanum (section Lycopersicon) mainly against TSWV isolates from distinct continents, but there is an overall lack of information about resistance to other viral species. One-hundred and five Solanum (section Lycopersicon: Solanaceae) accessions were initially evaluated for their reaction against a GRSV isolate by analysis of symptom expression and systemic virus accumulation using DAS-ELISA. A subgroup comprising the most resistant accessions was re-evaluated in a second assay with TSWV, TCSV, and GRSV isolates and in a third assay with a CSNV isolate. Seven S. peruvianum accessions displayed a broad-spectrum resistance to all viral species with all plants being free of symptoms and systemic infection. Sources of resistance were also found in tomato cultivars with the Sw-5 gene and also in accessions of S. pimpinellifolium, S. chilense, S. arcanum, S. habrochaites, S. corneliomuelleri, and S. lycopersicum. The introgression/incorporation of these genetic factors into cultivated tomato varieties might allow the development of genetic materials with broad-spectrum resistance, as well as with improved levels of phenotypic expression.  相似文献   

11.
Phytophthora root rot (PRR) is among the most important soybean (Glycine max (L.) Merr.) diseases worldwide, and the host displays complex genetic resistance. A genome-wide association study was performed on 337 accessions from the Yangtze-Huai soybean breeding germplasm to identify resistance regions associated with PRR resistance using 60,862 high-quality single nucleotide polymorphisms markers. Twenty-six significant SNP-trait associations were detected on chromosomes 01 using a mixed linear model with the Q matrix and K matrix as covariates. In addition, twenty-six SNPs belonged to three adjacent haplotype blocks according to a linkage disequilibrium blocks analysis, and no previous studies have reported resistance loci in this 441 kb region. The real-time RT-PCR analysis of the possible candidate genes showed that two genes (Glyma01g32800 and Glyma01g32855) are likely involved in PRR resistance. Markers associated with resistance can contribute to marker-assisted selection in breeding programs. Analyses of candidate genes can lay a foundation for exploring the mechanism of P. sojae resistance.  相似文献   

12.
In maize hybrid seed production, some hybrid seed in the field must be harvested before reaching physiological maturity because of the potential damage from early fall frosts. However, early harvesting can result in poor quality and low vigor of seeds. To elucidate the genetic basis of seed vigor at different stages of maturity, the seeds of a set of recombinant inbred line (RIL) populations at three different stages of maturity (32, 40, and 45 days after pollination; DAP), were used to evaluate the performance of four traits for seed vigor in the field. A genetic linkage map was constructed using 217 SSR makers covering 2438.2 cM with an average interval of 11.2 cM. The results showed that there were significant positive relationships among the four traits of seed vigor at all three sampling times, and all showed quantitative changes according to the degree of maturity of the seeds. However, the four traits of seed vigor were not significantly related to the 100-kernel weight. In total, we detected 16 different QTL for the four measured traits of seed vigor at three sampling times; five QTL were for germination energy, three for germination percentage, four for germination index, and four for vigor index. Interestingly, four QTL for seed vigor, which were detected at all three sampling times, were located in the same region on chromosome 7. This result implies that this region of chromosome 7 is important for seed vigor of seeds harvested before they reach physiological maturity.  相似文献   

13.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

14.
The Brassicas are affected by several diseases, of which black rot, Xanthomonas campestris pv. campestris (Pam.) Dowson (Xcc), is one of the most widespread and devastating worldwide. The black rot bacteria causes systemic infection in the susceptible plants and penetrate the plants through the hydathodes or wounds. Typical disease symptoms are ‘V’ shaped necrotic lesions appearing from the leaf margins with blackened veins. Periodic outbreaks of the black rot pathogen have occurred worldwide, especially in the continental regions, where high temperatures and humidity favor the incidence of disease occurrence causing huge yield loss. The challenge to control the losses in vegetable brassicas production is made more difficult by the adverse climatic changes and evolution of new pathogenic races. The development of black rot resistant hybrids/varieties is the most reliable long term practical solution for effective disease control. Identification of new resistant genetic resources, tightly linked markers with resistance loci and QTL mapping would facilitate the breeding programme for black rot resistance. Information regarding genetics of resistance and mapping of resistance genes/QTLs will accelerate the marker assisted resistance breeding in brassica crops against Xcc. In future we need to identify the race specific candidate genes for and their validation through transgenics and gene expression. Moreover, it is imperative to identify functional markers for resistance genes through identification of R gene families and their relationship with resistance expression. This comprehensive review will help the researchers working in this area to understand the dynamics of black resistance breeding and to formulate future breeding strategies.  相似文献   

15.
Phytophthora root and stem rot caused by Phytophthora sojae, is one of the most damaging diseases of soybean, for which management is principally done by planting resistant cultivars with race specific resistance which are conferred by Rps (Resistance to Phytophthora sojae) genes. The Rps8 locus, identified in the South Korean landrace PI 399073, is located in a 2.23 Mbp region on soybean chromosome 13. In eight cv. Williams (rps8/rps8) × PI 399073 (Rps8/Rps8) populations, this region exhibited strong segregation distortion. In a cross between the South Korean lines PI 399073 (Rps8/Rps8) and PI 408211B (multiple Rps genes) this region segregated in a Mendelian fashion. In this study, microsporogenesis was evaluated to identify meiotic abnormalities that may be associated with the segregation distortion of the Rps8 region. Pollen was collected from greenhouse-grown plants of the parental genotypes: Williams, PI 399073, and PI 408211B; as well as selected Rps8/rps8 RILs from Williams × PI 399073 BC4F2:3 and PI 399073 × PI 408211B F4:5 populations. There were no differences for pollen viability among the genotypes. However, for PI 399073, a mix of dyads, triads, tetrads and pentads was observed. A high frequency of meiotic abnormalities including fragments, laggards, multinucleated microspores; and microcytes containing DNA was also observed in Rps8/rps8 Williams × PI 399073 BC4F2:3 RILs. These meiotic abnormalities may contribute to the high degree of segregation distortion present in the Williams × PI 399073 populations.  相似文献   

16.

Background

Cucumber mosaic virus (CMV) is the most serious virus disease affecting chilli (Capsicum annuum L.) worldwide and the absence of natural resistance makes management of CMV outbreaks difficult. The characterization of improved sources of resistance to CMV in chilli would facilitate the development of commercially acceptable chilli varieties with adequate levels of CMV resistance. A total of 30 chilli genotypes were evaluated for their reaction to CMV in field and artificial inoculated conditions during 2010-2011 and 2011-2012. Large differences were observed among genotypes for disease incidence, severity indexes, and yield losses. Based on observed data, genotype CA23 (Noakhali) was identified as resistant, while CA12 (Comilla-2) was categorized as moderately resistant to CMV both in natural and inoculated conditions. Enzyme-linked immunosorbent assay absorbance values of samples taken from CMV-infected leaves corresponded well with visible viral symptoms for these genotypes. The identified C. annuum CA23 and CA12 genotypes represent previously undescribed and potentially useful sources of CMV resistance.
  相似文献   

17.
A quantitative trait loci (QTL) associated with resistance to pea rust, caused by the fungus Uromyces pisi (Pers.) Wint., has been identified in a F2 population derived from an intraspecific cross between two wild pea (Pisum fulvum L.) accessions, IFPI3260 (resistant) and IFPI3251 (susceptible). Both parental lines and all the segregating population displayed a fully compatible interaction (high infection type), which indicates absence of hypersensitive response. Nevertheless, differences on the percentage of symptomatic area of the whole plant (disease severity) were observed. A genetic map was developed covering 1283.3 cM and including 146 markers (144 random amplified polymorphic DNA (RAPDs) and two sequence tagged sites (STSs) markers) distributed in 9 linkage groups. A QTL explaining 63% of the total phenotypic variation was located in linkage group 3. RAPDs markers (OPY111316 and OPV171078) flanking this QTL should allow, after their conversion in SCARs, a reliable marker-assisted selection for rust resistance.  相似文献   

18.
The genetics of resistance to Cucumber mosaic virus (CMV) in Cucumis sativus var. hardwickii R. Alef, the wild progenitor of cultivated cucumber was assessed by challenge inoculation and by natural infection of CMV. Among the 31 genotypes of C. sativus var. hardwickii collected from 21 locations in India the lowest mean percent disease intensity (PDI) was recorded in IC-277048 (6.33%) while the highest PDI was observed in IC-331631 (75.33%). All the four cultivated varieties (DC-1, DC-2, CHC-1 and CHC-2) showed very high PDI and susceptible disease reaction. Based on mean PDI, 8 genotypes were categorized as resistant, 13 as moderately resistant, 9 as moderately susceptible and one as susceptible. A chi-square test of frequency distribution based on mean PDI in F2 progenies of six resistant × susceptible crosses revealed monogenic recessive Mendelian ratio 1(R):3(S) to be the best fit. This monogenic recessive model was further confirmed by 1(R):1(S) ratio as the best fit for back cross with resistant parent and no fit for either 3:1 or 1:1 in the back cross with the susceptible parent. The results revealed that CMV resistance in C. sativus var. hardwickii was controlled by a single recessive gene. Considering the cross compatibility between C. sativus var. hardwickii and cultivated cucumber, the resistance trait can be easily transferred to cultivated species through simple backcross breeding.  相似文献   

19.
Late blight (Phytophthora infestans) can have devastating effects on tomato production over the whole world. Most of the commercial cultivars of tomato, Solanum lycopersicum, are susceptible. Qualitative and quantitative resistance has been described in wild relatives of tomato. In general qualitative resistance can more easily be overcome by newly evolved isolates. Screening of three S. habrochaites accessions (LA1033, LA2099 and LA1777) through a whole plant assay showed that accession LA1777 had a good level of resistance to several isolates of P. infestans. To explore the potential in this wild species, an introgression line (IL) population of S. habrochaites LA1777 was used to screen individual chromosome regions of the wild species by a detached leaf assay. Two major isolates (T1,2 and T1,2,4) were used and two parameters were measured: lesion size (LS), and disease incidence (DI). Substantial variation was observed between the individual lines. QTLs were identified for LS but not for DI. The presence of five QTLs derived from LA1777 (Rlbq4a, Rlbq4b, Rlbq7, Rlbq8 and Rlbq12) results in unambiguous higher levels of resistance. All QTLs co-localized with previously described QTLs from S. habrochaites LA2099 except QTL Rlbq4b, which is therefore a novel QTL.  相似文献   

20.
Stagonospora nodorum blotch (SNB) is an important foliar disease of durum wheat (Triticum turgidum var. durum) worldwide. The combined effects of SNB and tan spot, considered as components of the leaf spotting disease complex, result in significant damage to wheat production in the northern Great Plains of North America. The main objective of this study was the genetic analysis of resistance to SNB caused by Phaeosphaeria nodorum in tetraploid wheat, and its association with tan spot caused by Pyrenophora tritici-repentis race 2. The 133 recombinant inbred chromosome lines (RICL) developed from the cross LDN/LDN(Dic-5B) were evaluated for SNB reaction at the seedling stage under greenhouse conditions. Molecular markers were used to map a quantitative trait locus (QTL) on chromosome 5B, explaining 37.6% of the phenotypic variation in SNB reaction. The location of the QTL was 8.8 cM distal to the tsn1 locus coding for resistance to P. tritici-repentis race 2. The presence of genes for resistance to both SNB and tan spot in close proximity in tetraploid wheat and the identification of molecular markers linked to these genes or QTLs will be useful for incorporating resistance to these diseases in wheat breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号