共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary To demonstrate the applicability of the target region amplification polymorphism (TRAP) marker technique to lettuce genotyping,
we fingerprinted 53 lettuce (Lactuca sativa L.) cultivars and six wild accessions (three from each of the two wild species, L. saligna L. and L. serriola L.). Seven hundred and sixty-nine fragments from 50 to 900 bp in length were amplified in 10 PCR reactions using 10 fixed
primers in combination with four fluorescent labeled arbitrary primers. Three hundred and eighty-eight of these fragments
were polymorphic among the 59 Lactuca entries and 107 fragments were polymorphic among the 53 lettuce cultivars and the six wild accessions; 251 fragments were
present only in the wild species. These markers not only discriminated all cultivars, but also revealed the evolutionary relationship
among the three species: L. sativa, the cultivated species, is more closely related to L. serriola than to L. saligna. Cluster analysis grouped the cultivars by horticultural types with a few exceptions. These results are consistent with previous
findings using RFLP, AFLP, and SAMPL markers. The TRAP markers revealed significant differences in genetic variability among
horticultural types, measured by the average genetic similarity among the cultivars of the same type. Within the sample set,
the leaf type and butterhead types possessed relatively high genetic variability, the iceberg types had moderate variability
and the romaine types had the lowest variability. The genetic behavior of TRAP markers was assessed with a mapping population
of 45 recombinant inbred lines (RILs) derived from an interspecific cross between L. serriola and L. sativa. Almost all the markers segregated in the expected 1:1 Mendelian ratio and are being incorporated into the existing lettuce
linkage maps. Our results indicate that the TRAP markers can provide a powerful technique for fingerprinting lettuce cultivars.
The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged. 相似文献
2.
Three CMS lines, Ogu1A, Ogu2A and Ogu3A were selected among ten lines after BC7 based on superior commercial, floral and seed setting traits. Introgression of sterile Ogura cytoplasm in cauliflower nuclear
background reduced the flower size but did not affect commercial and seed setting traits drastically. Line × Tester analysis
was done by taking these three CMS lines free from floral deformities as female parent with nine diverse lines of snowball
cauliflower as tester. The parent Ogu2A exhibited highest GCA effect for curd yield (4.51) and harvest index (1.97) while
Ogu1A exhibited highest GCA for earliness (−2.73). The parent, Ogu2A exhibited significant GCA for curd length (0.39) while,
none of the CMS lines showed significant GCA for curd diameter and depth. Heterosis for curd yield was highest in the hybrid,
Ogu2A × Kt-22 (63.5%) followed by Ogu1A × WF (36.9%) and Ogu1A × Kt-15 was the best hybrid for earliness followed by Ogu3A × Kt-22
with heterosis of −14.4% and −11.7%. However, the number of heterotic hybrids for yield and earliness was low indicating narrow
genetic base of the snowball cauliflower. 相似文献
3.
Thierry Pascal Romain Aberlenc Carole Confolent Mathilde Hoerter Elodie Lecerf Christophe Tuéro Patrick Lambert 《Euphytica》2017,213(6):132
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study. 相似文献
4.
João Gomes da Costa Edjane Vieira Pires Alessandro Riffel Michael A. Birkett Ervino Bleicher Antônio Euzébio Goulart Sant’Ana 《Euphytica》2011,177(3):299-307
The aim of this study was to demonstrate that Capsicum spp. cultivars are differentially preferred by the cotton aphid, Aphis gossypii, and to investigate the role of volatile semiochemicals in conferring differences in host preferences. Two preference assays
were conducted in 2008 under greenhouse conditions. Fourteen different commercially available cultivars were grown in cages
protected by an anti-aphid net, and were infested 60 days after planting, through the release of ten adult female A. gossypii per plant. The results showed that after a five-day infestation period, statistically significant differences in the mean
number of A. gossypii between cultivars were observed, with Sweet Pepper Hybrid Green Belt (SPHGB) being one of the cultivars with the lowest number
of A. gossypii per plant. To test the hypothesis that the preference of cultivars was associated with release of volatile, Capsicum spp-derived semiochemicals, olfactometer behavior bioassays were conducted with A. gossypii, using volatile organic compounds (VOCs) collected from non-preferred SPHGB and preferred SPAB cultivars. A. gossypii was significantly repelled only by the VOCs of infested SPHGB. Furthermore, coupled gas chromatography-mass spectrometry
(GC-MS) analysis of VOCs released by plants prior to, and after, A. gossypii infestation, revealed that the non-preferred SPHGB cultivar released nine additional compounds after infestation, including
6-methyl-5-hepten-2-one, a known plant defense semiochemical involved in plant—aphid interactions. These data suggest that
non-preferred cultivars releasing this semiochemical have the potential to be used in breeding programs aimed at producing
A. gossypii-resistant Capsicum spp. cultivars. 相似文献
5.
Junghyun Shim Olivier Panaud Clémentine Vitte Merlyn S. Mendioro Darshan S. Brar 《Euphytica》2010,176(2):269-279
Molecular markers have been successfully used in rice breeding however available markers based on Oryza
sativa sequences are not efficient to monitor alien introgression from distant genomes of Oryza. We developed O. minuta (2n = 48, BBCC)-specific clones comprising of 105 clones (266–715 bp) from the initial library composed of 1,920 clones against
O. sativa by representational difference analysis (RDA), a subtractive cloning method and validated through Southern blot hybridization.
Chromosomal location of O. minuta-specific clones was identified by hybridization with the genomic DNA of eight monosomic alien additional lines (MAALs). The
37 clones were located either on chromosomes 6, 7, or 12. Different hybridization patterns between O. minuta-specific clones and wild species such as O. punctata, O. officinalis, O. rhizomatis, O. australiensis, and O. ridleyi were observed indicating conservation of the O. minuta fragments across Oryza spp. A highly repetitive clone, OmSC45 hybridized with O. minuta and O. australiensis (EE), and was found in 6,500 and 9,000 copies, respectively, suggesting an independent and exponential amplification of the
fragment in both species during the evolution of Oryza. Hybridization of 105 O. minuta specific clones with BB- and CC-genome wild Oryza species resulted in the identification of 4 BB-genome-specific and 14 CC-genome-specific clones. OmSC45 was identified as a fragment of RIRE1, an LTR-retrotransposon. Furthermore this clone was introgressed from O. minuta into the advanced breeding lines of O. sativa. 相似文献
6.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza
ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time
PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including
RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed
that transgenic plants contained more K+, Ca2+, and NO3
−, and less NH4
+, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background. 相似文献
7.
Furong Wang Yongchao Gong Chuanyun Zhang Guodong Liu Liuming Wang Zhenzhen Xu Jun Zhang 《Euphytica》2011,181(1):41-53
The germplasm with exotic genomic components especially from Sea Island cotton (Gossypium barbadense L. Gb) is the dominant genetic resources to enhance fiber quality of upland cotton (G. hirsutum L., Gh). Due to low efficiency of phenotypic evaluation and selection on fiber quality, genetic dissection of favorable alleles
using molecular markers is essential. Genetic dissection on putative Gb introgressions related to fiber traits were conducted by SSR markers with mapping populations derived from a cross between
Luyuan343 (LY343), a superior fiber quality introgression line (IL) with genomic components from Gb, and an elite Upland cotton cv. Lumianyan#22 (LMY22). Among 82 polymorphic loci screened out from 4050 SSRs, 42 were identified
as putative introgression alleles. A total of 29 fiber-related QTLs (23 for fiber quality and six for lint percentage) were
detected and most of which clustered on the putative Gb introgression chromosomal segments of Chr.2, Chr.16, Chr.23 and Chr.25. As expected, a majority of favorable alleles of fiber
quality QTLs (12/17, not considering the QTLs for fiber fineness) came from the IL parent and most of which (11/12) were conferred
by the introgression genomic components while three of the six (3/6) favorable alleles for lint percentage came from the Gh parent. Validation of these QTLs using an F8 breeding population from the same cross made previously indicated that 13 out of 29 QTLs showed considerable stability. The
results suggest that fiber quality improvement using the introgression components could be facilitated by marker-assisted
selection in cotton breeding program. 相似文献
8.
9.
Franceli R. Kulcheski Felipe A. S. Graichen José A. Martinelli Ana B. Locatelli Luiz C. Federizzi Carla A. Delatorre 《Euphytica》2010,175(3):423-432
Crown rust, which is caused by Puccinia
coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena
sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely
great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify
amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in
12 linkage groups. The map covered 409.4 cM of the Avena
sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located
in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes. 相似文献
10.
The genus Kalanchoe is currently divided into section Kalanchoe and section Bryophyllum, and there has been no successful report on the production
of inter-sectional hybrids. Therefore, reciprocal crosses were made between Kalanchoe spathulata (sect. Kalanchoe) and K. laxiflora (sect. Bryophyllum) in order to obtain basic information on the reproductive barriers between these two sections. The seeds
were aseptically germinated in vitro and the plants were grown in greenhouse till flowering. When K. spathulata was used as a maternal donor, 39 out of 80 plants showed intermediate characteristics between K. spathulata and K. laxiflora. In contrast, no plants were obtained in the reverse crosses. Hybridity of these plants was confirmed by flow cytometric
analysis, chromosome numbers and RAPD analysis. Bulbil formation on the leaf margin as one of the conspicuous characteristics
of K. laxiflora was not observed in the hybrids. Some of the hybrid lines showed some pollen fertility, but failed to yield viable seeds
by self-pollination or backcross-pollination. Successful production of the inter-sectional hybrid between the two species
suggests that they are not so distantly related as considered previously. 相似文献
11.
Chaozhi Ma Chunyan Li Yongqiang Tan Wei Tang Jianfeng Zhang Changbin Gao Tingdong Fu 《Euphytica》2009,166(1):123-129
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance
of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based
on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S
1300
S
1300
sp
1300
sp
1300
and S
135
S
135
sp
135
sp
135
, respectively. S
135
is dominant to S
1300
, but coexistence of sp
1300
and sp
135
fails to suppress S locus. Both S
1300
and S
135
can be suppressed by sp
135
, while sp
1300
can suppress S
135
but not S
1300
. The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and
for dissecting the mechanism of SI/SC in B. napus. 相似文献
12.
Honggen Zhang Xiaojun Cheng Lijia Zhang Hua Si Yongshen Ge Minghong Gu Shuzhu Tang 《Euphytica》2018,214(3):49
Wild abortive (WA)-type cytoplasmic male sterility (CMS) has been exclusively used for breeding three-line hybrid indica rice, but it has not been applied for generating japonica hybrids because of the difficulties related to breeding japonica restorer lines. Determining whether the major restorer-of-fertility (Rf) gene used for indica hybrids can efficiently restore the fertility of WA-type japonica CMS lines may be useful for breeding WA-type japonica restorer lines. In this study, japonica restorer lines for Chinsurah Boro II (BT)-type CMS exhibited varying abilities to restore the fertility of ‘WA-LiuqianxinA’, which is a WA-type japonica CMS line. Additionally, Rf genes for WA-type CMS were identified in the BT-type japonica restorers. Meanwhile, ‘C9083’, which is a BT-type japonica restorer, exhibited a limited ability to restore the fertility of WA-type japonica CMS lines, and a genetic analysis revealed that the fertility restoration was controlled by one locus. The Rf gene was mapped to an approximately 370-kb physical region and was identified as Rf4. Furthermore, Rf gene dosage effects and the temperature influenced the fertility restoration of WA-type japonica CMS lines. This study is the first to confirm that Rf4 has only minor effects on the fertility restoration of WA-type japonica CMS lines. These results may be relevant for the development of WA-type japonica hybrids. 相似文献
13.
Matías González-Arcos Maria Esther de Noronha Fonseca Ana Arruabarrena Mirtes F. Lima Miguel Michereff-Filho Enrique Moriones Rafael Fernández-Muñoz Leonardo S. Boiteux 《Euphytica》2018,214(10):178
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions. 相似文献
14.
É. C. Dianese M. E. N. Fonseca A. K. Inoue-Nagata R. O. Resende L. S. Boiteux 《Euphytica》2011,180(3):307-319
The genus Tospovirus was considered as monotypic with Tomato spotted wilt virus (TSWV) being the only assigned species. However, extensive studies with worldwide isolates revealed that this genus comprises
a number of species with distinct virulence profiles. The Neotropical South America is one center of Tospovirus diversity with many endemic species. Groundnut ringspot virus (GRSV), TSWV, Tomato chlorotic spot virus (TCSV), and Chrysanthemum stem necrosis virus (CSNV) are the predominant tomato-infecting species in Brazil. Sources of resistance were found in Solanum (section Lycopersicon) mainly against TSWV isolates from distinct continents, but there is an overall lack of information about resistance to other
viral species. One-hundred and five Solanum (section Lycopersicon: Solanaceae) accessions were initially evaluated for their reaction against a GRSV isolate by analysis of symptom expression
and systemic virus accumulation using DAS-ELISA. A subgroup comprising the most resistant accessions was re-evaluated in a
second assay with TSWV, TCSV, and GRSV isolates and in a third assay with a CSNV isolate. Seven S. peruvianum accessions displayed a broad-spectrum resistance to all viral species with all plants being free of symptoms and systemic
infection. Sources of resistance were also found in tomato cultivars with the Sw-5 gene and also in accessions of S. pimpinellifolium, S. chilense, S. arcanum, S. habrochaites, S. corneliomuelleri, and S. lycopersicum. The introgression/incorporation of these genetic factors into cultivated tomato varieties might allow the development of
genetic materials with broad-spectrum resistance, as well as with improved levels of phenotypic expression. 相似文献
15.
Coffee varieties with resistance for the plant-parasitic nematodes Pratylenchus coffeae and Radopholus arabocoffeae are limited in Vietnam. A selection of imported varieties and high yield varieties of Arabica coffee in Vietnam were evaluated
for resistance to both plant-parasitic nematode species in Northern Vietnam. The same experiments were carried out with hybrid
arabica coffee, three selected clones of Coffea
canephora and one clone of Coffea excelsa in the Western Highland of Vietnam. The screened coffee accessions from Ethiopia (KH1, KH13, KH20, KH21, KH29, and KH31)
were susceptible and good host for P. coffeae. Also accessions 90P4 (Portugal) and Oro azteca (Mexico) had a reproduction factor Rf > 1. Pluma Hidalgo (Mexico), 90/6 (Vietnam), 90P3 (Portugal), 90P2 (Vietnam), Variedad (Mexico), 90T (Portugal), and Garnica
(Mexico) were poor hosts (Rf < 1) but not tolerant to P. coffeae, expressed by a reduction of root weight compared to untreated control plants. Most of the coffee accessions tested in Northern
Vietnam were intolerant to R. arabocoffeae, except 90T which showed no reduction of root weight, even at high initial nematode densities (4,000/pot). Good hosts for
R. arabocoffeae were Variedad, KH1, KH21, KH29, KH20, KH31, and KH13 with Rf > 1. Pluma Hidalgo, 90/6, 90P3, 90P2, 90T, Oro azteca, and Garnica were poor hosts (Rf < 1). In the Western Highland experiment, all arabica coffee accessions were susceptible for P. coffeae with Rf ranging from 1.41 to 1.59. Tolerance to P. coffeae was found in C. liberica var. Dewevrei, Hong34 and Nhuantren. Coffea excelsa, Hong34, Nhuantren, and H1C19 were tolerant to R. arabocoffeae at the highest inoculation density (4,000 nematodes/pot). The most susceptible accessions were Nhuantren and K55. Resistance
(Rf < 1) to R. arabocoffeae was found in C. liberica var. Dewevrei and Hong34. This article reports on the first screening for resistance and tolerance to P. coffeae and R. arabocoffeae in coffee accessions in Vietnam and shows promising results for enhanced coffee-breeding. 相似文献
16.
Aneeta Pradhan Julie A. Plummer Matthew N. Nelson Wallace A. Cowling Guijun Yan 《Euphytica》2010,176(1):87-98
A triploid hybrid with an ABC genome constitution, produced from an interspecific cross between Brassica napus (AACC genome) and B. nigra (BB genome), was used as source material for chromosome doubling. Two approaches were undertaken for the production of hexaploids:
firstly, by self-pollination and open-pollination of the triploid hybrid; and secondly, by application of colchicine to axillary
meristems of triploid plants. Sixteen seeds were harvested from triploid plants and two seedlings were confirmed to be hexaploids
with 54 chromosomes. Pollen viability increased from 13% in triploids to a maximum of 49% in hexaploids. Petal length increased
from 1.3 cm (triploid) to 1.9 cm and 1.8 cm in the two hexaploids and longest stamen length increased from 0.9 cm (triploid)
to 1.1 cm in the hexaploids. Pollen grains were longer in hexaploids (43.7 and 46.3 μm) compared to the triploid (25.4 μm).
A few aneuploid offsprings were also observed, with chromosome number ranging from 34 to 48. This study shows that trigenomic
hexaploids can be produced in Brassica through interspecific hybridisation of B. napus and B. nigra followed by colchicine treatment. 相似文献
17.
Noelle Giacomini Lemos Alessandro de Lucca e Braccini Ricardo Vilela Abdelnoor Maria Cristina Neves de Oliveira Kazuhiro Suenaga Naoki Yamanaka 《Euphytica》2011,182(1):53-64
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top
priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced
into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having
uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation
period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes
carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with
their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters
in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors.
Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance
allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that
these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role
in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype
indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance. 相似文献
18.
Josefine Nymark Hegelund Uffe Bjerre Lauridsen Sabá Victoria Wallström Renate Müller Henrik Lütken 《Euphytica》2017,213(2):51
Compact growth is an important quality criterion in horticulture. Many Campanula species and cultivars exhibit elongated growth which is suppressed by chemical retardation and cultural practice during production to accommodate to the consumer’s desire. The production of compact plants via transformation with wild type Agrobacterium rhizogenes is an approach with great potential to produce plants that are non-GMO. Efficient transformation and regeneration procedures vary widely among both plant genera and species. Here we present a transformation protocol for Campanula. Hairy roots were produced on 26–90% of the petioles that were used for transformation of C. portenschlagiana (Cp), a C. takesimana × C. punctata hybrid (Chybr) and C. glomerata (Cg). Isolated hairy roots grew autonomously and vigorously without added hormones. The Cg hairy roots produced chlorophyll and generated plantlets in response to treatments with cytokinin (42 µM 2iP) and auxin (0.67 µM NAA). In contrast, regeneration attempts of transformed Cp and Chybr roots lead neither to the production of chlorophyll nor to the regeneration of shoots. Agropine A. rhizogenes strains integrate split T-DNA in TL- and TR-DNA fragments into the plant genome. In this study, regenerated plants of Cg did not contain TR-DNA, indicating that a selective pressure against this T-DNA fragment may exist in Campanula. 相似文献
19.
The Brassicas are affected by several diseases, of which black rot, Xanthomonas campestris pv. campestris (Pam.) Dowson (Xcc), is one of the most widespread and devastating worldwide. The black rot bacteria causes systemic infection in the susceptible plants and penetrate the plants through the hydathodes or wounds. Typical disease symptoms are ‘V’ shaped necrotic lesions appearing from the leaf margins with blackened veins. Periodic outbreaks of the black rot pathogen have occurred worldwide, especially in the continental regions, where high temperatures and humidity favor the incidence of disease occurrence causing huge yield loss. The challenge to control the losses in vegetable brassicas production is made more difficult by the adverse climatic changes and evolution of new pathogenic races. The development of black rot resistant hybrids/varieties is the most reliable long term practical solution for effective disease control. Identification of new resistant genetic resources, tightly linked markers with resistance loci and QTL mapping would facilitate the breeding programme for black rot resistance. Information regarding genetics of resistance and mapping of resistance genes/QTLs will accelerate the marker assisted resistance breeding in brassica crops against Xcc. In future we need to identify the race specific candidate genes for and their validation through transgenics and gene expression. Moreover, it is imperative to identify functional markers for resistance genes through identification of R gene families and their relationship with resistance expression. This comprehensive review will help the researchers working in this area to understand the dynamics of black resistance breeding and to formulate future breeding strategies. 相似文献
20.
The Lr56/Yr38 translocation consists primarily of alien-derived chromatin with only the 6AL telomeric region being of wheat origin. To
improve its utility in wheat breeding, an attempt was made to exchange excess Ae. sharonensis chromatin for wheat chromatin through homoeologous crossover in the absence of Ph1. Translocation heterozygotes that lacked Ph1 were test-crossed with Chinese Spring nullisomic 6A tetrasomic 6B and nullisomic 6A-tetrasomic 6D plants and the resistant
(hemizygous 6A) progeny were analyzed with four microsatellite markers. Genetic mapping suggested general homoeology between
wheat chromosome 6A and the translocation chromosomes, and showed that Lr56 was located near the long arm telomere. Thirty of the 53 recombinants had breakpoints between Lr56 and the most distal marker Xgwm427. These were characterized with additional markers. The data suggested that recombinants #39, 157 and 175 were wheat chromosomes
6A with small intercalary inserts of foreign chromatin containing Lr56 and Yr38, located distally on the long arms. These three recombinants are being incorporated into adapted germplasm. Attempts to identify
the single shortest translocation and to develop appropriate markers are being continued. 相似文献