首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Brassica vegetable crops are rich source of important antioxidant compounds having anticancer and health promoting properties. Development of F1 hybrids with better nutritional traits is one of the main breeding objectives in different vegetable crops. Our study is the first report of determining heterotic combinations utilizing cytoplasmic male sterile (CMS) and doubled haploid (DH) inbred lines for antioxidant compounds in snowball cauliflower. Twenty genetically diverse Ogura CMS lines of cauliflower and six DH male fertile inbred lines were crossed to develop 120 F1 hybrids in line?×?tester mating design. The resulting 120 test cross progenies along with 26 parents and 4 standard checks were evaluated in 10?×?15 alpha lattice design with three replications during next cropping season. The CMS lines Ogu33-1A, Ogu122-5A and Ogu119-1A were good general combiner and CMS line Ogu118-6A was poor general combiner for majority of traits. Most of the heterotic hybrids were associated with high positive SCA effects. The proportions of σ2A/D and \(\upsigma^{2}_{\text{gca}} /\upsigma^{2}_{\text{sca}}\) ratios were less than unity in all the cases indicating preponderance of non-additive gene action in the genetic control of all the traits. Highest number of heterotic hybrids with SCA effects in desired positive direction was recorded for ascorbic acid content and phenolic content followed by total carotenoid content. The F1 hybrids with better combining ability and better per se performance could be useful in accumulation of favourable allele for higher concentration of important anti-oxidant compounds.  相似文献   

2.
Maize (Zea mays L.) is grown on 15 million ha in eastern and southern Africa. Several diseases are of common occurrence in the region and regularly result in significant yield losses. A collaborative regional disease nursery (REGNUR) project was initiated in 1998 to identify and increase access to disease resistant germplasm, generate and disseminate information on disease and insect resistance sources, and facilitate the development of resistant cultivars by project partners. A diallel among 12 elite inbred lines was formed with the specific objective of evaluating the combining ability of these inbred lines for grain yield and resistance to seven diseases. The trial was grown at six sites in 2001. Results showed that both general (GCA) and specific combining ability effects were significant for most diseases. On the average, GCA accounted for 69% of resistance to diseases and only 37% of variation for grain yield. Correlations between GCA effects for disease scores were generally non-significant, implying that it is possible to pyramid genes for disease resistance in inbred lines. This underscores the need for screening for resistance to prevailing diseases using artificial inoculation or reliable hot-spots. Based on GCA effects for grain yield and across diseases, P12 and P6 were the best inbred lines. The crosses P4 × P9 (6.7 t ha−1) and P4 × P12 (6.9 t ha−1) were the best hybrids in the earlier maturity group, while P3 × P9 (8.3 t ha−1) and P2 × P8 (7.4 t ha−1) were the best hybrids in the late maturity group.  相似文献   

3.
Five open pollinated onion cultivars Red Creole, Kaharda, Koumassa, Sokoto local and Ori were crossed in a complete diallel and their progenies were evaluated in replicated trials, at Sokoto and Talata Mafara, Nigeria, during the 2004/2005 and 2005/2006 seasons. The experiments were randomised as complete block design with three replications. 30 mls of 10−1 cfu of spore suspension of Alternaria porri prepared by serial dilution was poured into the centre of each plot (sunken bed) immediately after irrigation at 2 weeks after transplanting. Combined analysis across seasons and locations indicated significant (P < 0.05) differences between the populations with respect to all the characters under study. Crosses Ori × Koumassa and Koumassa × Ori recorded highly significant (P < 0.01) positive high parent heterosis for bulb diameter. Crosses Ori × Sokoto local and Ori × Koumassa recorded highly significant (P < 0.01) negative high parent heterosis for days to maturity. Cross Sokoto local × Koumassa exhibited highly significant (P < 0.01) positive high parent heterosis for number of leaves/plant. Crosses Red Creole × Kaharda and Kaharda × Red Creeole recorded highly significant (P < 0.01) positive high parent heterosis for disease incidence. Red Creole × Kaharda and Kaharda × Red Creeole also recorded highly significant (P < 0.01) positive high parent heterosis for fresh bulb yield. Cross Kaharda × Ori recorded highly significant (P < 0.01) positive high parent heterosis for bulb weight. The cross Kaharda × Sokoto local recorded significant (P < 0.05) negative high parent heterosis for days to maturity while the cross Red Creole × Kaharda recorded highly significant (P < 0.01) positive high parent heterosis for number of leaves/plant. Bulb diameter and bulb weight recorded highly significant (P < 0.01) and significant (P < 0.05) environmental correlation with days to maturity.  相似文献   

4.
Pearl millet (Pennisetum glaucum) is the most important cereal in crop-livestock production systems in arid and drier semi-arid environments valued for its grain and dry stover. The conventional approach of improving grain yield through greater partitioning of biomass to the grain and decreased stover yield is not a viable strategy for arid regions where biomass also needs to be improved. The current research tested the hypothesis whether biomass can be improved without extending the crop duration. The 232 F5 lines derived from a cross (J28 × RIB 335/18) were evaluated in their testcross form along with three commercial hybrids under arid zone conditions. Biomass, grain and stover yields, panicle number, grain size and grain number panicle−1 varied 1.8 to 2.7 fold in progeny testcrosses. Variation in duration of flowering time accounted for only 2% of variation in biomass, indicating that considerable scope existed for selection of testcrosses, and by implication, of F5 progenies with high biomass independent of crop duration. Stover yield accounted for 72% of differences in total biomass with remaining accounted for by grain yield. From among 92 and 132 testcrosses that had flowering time comparable to two early checks, most had significantly higher biomass, grain and stover yields than these early checks but none of the testcrosses had earliness on par with extra-early maturing hybrid HHB 67. Mean superiority of best 5% testcrosses over early checks was 58% for biomass, 68% for stover yield and 53% for grain yield. The results indicated that there are good prospects of improving biomass in arid zone pearl millet without significantly compromising crop duration.  相似文献   

5.
Grain yield is more likely to be compromised by poor seed germination and vigour in low phytic acid (LPA) and quality protein maize (QPM) than normal maize (Nm), especially when grown under stressful tropical environmental conditions. The objectives of this study were to determine the effect of stress conditions on seed germination and vigour traits (percentage germination, seedling dry weight, average root and shoot length and vigour index) and to determine the GCA effects of the parental lines and SCA effects of the crosses. A ten parent half diallel (LPA, Nm, QPM lines) was subjected to the standard germination (non-stress) and accelerated aging (AA) (stress) tests. All seed lots were at the same physiological age and produced under the same season and conditions. Genotypic and group differences were investigated. General combining ability (GCA) and specific combining ability (SCA) effects were significant (P ≤ 0.001) for all traits under both stress and non-stress conditions indicating that both additive and non-additive gene effects were significant. Generally SCA effects were superior for all traits. The LPA lines displayed 61 % reduction in germination and 23–52 % reduction in vigour under stress conditions thereby underscoring challenges that are expected in deploying LPA maize in stress conditions. However, LPA line CM 31 exhibited large positive and mostly significant GCA effects, while two LPA × LPA crosses showed significant positive SCA effects. Results indicate breeding is required to improve both germination and vigour of the LPA lines to adapt them to tropical conditions that are generally stress-prone.  相似文献   

6.
Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ vs. ‘conventional’) rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85 and 96 cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.  相似文献   

7.
Combining ability for some important physiological parameters in sesame were examined to understand the nature of gene action and to identify parents for breeding programme. Seven diverse genotypes of sesame, their 21 F1s and 21 F2s were grown in summer, 2003, in a randomized complete block design with three replications. Data were collected on leaf area index (LAI) at 30, 45, 60 and 75 days after sowing (DAS), crop growth rate (CGR) estimated between 30–45 DAS, 45–60 DAS and 60–75 DAS, days to peak flowering (DPF), duration of flowering (DF), duration from peak flowering to maturity (DFM), oil content in percentage (OC) and oil yield (OY) plant−1. Analysis of combining ability was done on the above physiological characters following Method-2, Model-I of Griffing (Aust J Biol Sci 9:463–493 1956). Variances due to general combining ability (GCA) and specific combining ability (SCA) for all the physiological traits were highly significant in both F1 and F2 generations indicating importance of both additive and non-additive gene actions for the inheritance of all the physiological characters in both F1 and F2 generations. Preponderance of non-additive gene action was recorded for CGRs, LAI 3, LAI 4, DPF, DF and OY in both the F1 and the F2 generations. For OC additive gene action was predominant in F1 while non-additive gene action in F2. The genotype OS-Sel-2 appeared as best overall general combiner in both the F1 and the F2 generations. For DPF, DF and DFM, the variety B 67 was best general combiner, followed by CST 2002, which could be utilized for developing early flowering and early maturing lines with determinate growth habit. Association between GCA-effects and mean performance of the parents suggested that the performance per se could be a good indicator of its ability to transmit the desirable attributes to its progenies. Crosses CST 2002 × TKG 22, CST 2002 × MT 34, MT 34 × AAUDT 9304-14-4, AAUDT 9304-14-4 × B 67, TKG 22 × Rama and TKG 22 × B 67 which showed high SCA-effect for OY, also exhibited positive and significant SCA-effects for other physiological component characters in F1 generation. The overall results indicated that crosses CST 2002 × TKG 22 and MT 34 × AAUDT 9304-14-4 could be utilized for development of high oil yielding hybrids. The crosses OS-Sel-2 × AAUDT 9304-14-4, AAUDT 9304-14-4 × B 67 and MT 34 × OS-Sel-2 could be promising for isolation of superior recombinants for high oil yield coupled with early maturity and other growth characters in advanced generations of segregation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Agrobacterium-mediated genetic transformation was performed using embryonic axes explants of pigeon pea. Both legume pod borer resistant gene (cry1Ac) and plant selectable marker neomycine phosphor transferase (nptII) genes under the constitutive expression of the cauliflower mosaic virus 35S promoter (CaMV35S) assembled in pPZP211 binary vector were used for the experiments. An optimum average of 44.61% successfully hardened dot blot Southern hybridization positive plants were obtained on co-cultivation media supplemented with 200 μM acetosyringone without L-cysteine. The increased transformation efficiency from a baseline of 11.53% without acetosyringone to 44.61% with acetosyringone was further declined with the addition of different concentrations of L-cysteine to co-cultivation media. Transgenic shoots were selected on 50 and 75 mg L−1 kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 20 g L−1 sucrose and 0.5 mg L−1 indole butyric acid in the absence of kanamycin. Furthermore, 100% seed setting was found among all the transgenic events. The plants obtained were subjected to multi- and nochoice tests to determine the behavioral responses and mortality through Helicoverpa armigera bioassays on the leaf and relate their relationship with the expression of cry1Ac protein which was found to be less in leaf as compared to the floral buds, anther, pod, and seed.  相似文献   

9.
Cytoplasmic-nuclear male-sterility is an important biological tool, which has been used by plant breeders to increase yields in cross-pollinated cereals and vegetables by commercial exploitation of the phenomenon of hybrid vigor. In legumes, no such example exists due to the absence of an economic way of mass pollen transfer from male to female parent. Pigeonpea [Cajanus cajan (L.) Millsp.], however, is a different legume where a moderate level of insect-aided natural out-crossing (25–70%) exists and it can be used to produce commercial hybrid cultivars, if an efficient and stable cytoplasmic-nuclear male-sterility (CMS) system is available. This paper reports the development of a stable CMS system (ICP 2039A), derived from an inter-specific hybrid of Cajanus cajanifolius, a wild relative of pigeonpea, with a cultivar ICP 11501. Using this genetic material, designated as the A4 cytoplasm, a number of fertility restorers and maintainers have been developed. The best short-duration experimental pigeonpea hybrid ICPH 2470 produced 3205 kg ha−1 grain yield in 125 days, exhibiting 77.5% advantage over the control cultivar UPAS 120. At present, all the important biological systems necessary for a successful commercial hybrid breeding program are available in pigeonpea and the package of this technology has been adopted by private seed sector in India for the production and marketing of hybrid varieties.  相似文献   

10.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies.  相似文献   

11.
Xieyou 57, an elite hybrid rice with high grain yield and broad eco-adaptability, is widely planted in China. Its cooking and eating quality, however, is unsatisfactory due to high-amylose content (AC). In this research, a molecular marker-assisted selection method was used to breed for low-amylose content through the modification of the Wx genes in both parents of Xieyou 57. The quality of the parent and hybrid lines were then compared before and after modification. Amylose content of GT-type hybrids derived from crosses of Xieqingzao A(GG) × 057(TT) or Xieqingzao A(TT) × 057(GG), was reduced to about 19% from about 26% in the original hybrid Xieqingzao A(GG) × 057(GG). Wide variation in amylose contents, however, was observed in these GT-type hybrids. With further improvements in both parental lines, the TT type hybrid of Xieqingzao A(TT) × 057(TT) contained even lower amylose (12.5%) with good uniformity and exhibited much better cooking and eating quality than the original hybrid of Xieqingzao A(GG) × 057(GG). Meanwhile, yield potential was also improved by increasing panicle size and grain number of the male sterile line. These results demonstrated the success in significantly improving the cooking and eating quality of hybrid rice while maintaining the good agronomical attributes of the parent lines by using molecular marker-assisted breeding in combination with conventional agronomical selection.  相似文献   

12.
Phytophthora root and stem rot caused by Phytophthora sojae, is one of the most damaging diseases of soybean, for which management is principally done by planting resistant cultivars with race specific resistance which are conferred by Rps (Resistance to Phytophthora sojae) genes. The Rps8 locus, identified in the South Korean landrace PI 399073, is located in a 2.23 Mbp region on soybean chromosome 13. In eight cv. Williams (rps8/rps8) × PI 399073 (Rps8/Rps8) populations, this region exhibited strong segregation distortion. In a cross between the South Korean lines PI 399073 (Rps8/Rps8) and PI 408211B (multiple Rps genes) this region segregated in a Mendelian fashion. In this study, microsporogenesis was evaluated to identify meiotic abnormalities that may be associated with the segregation distortion of the Rps8 region. Pollen was collected from greenhouse-grown plants of the parental genotypes: Williams, PI 399073, and PI 408211B; as well as selected Rps8/rps8 RILs from Williams × PI 399073 BC4F2:3 and PI 399073 × PI 408211B F4:5 populations. There were no differences for pollen viability among the genotypes. However, for PI 399073, a mix of dyads, triads, tetrads and pentads was observed. A high frequency of meiotic abnormalities including fragments, laggards, multinucleated microspores; and microcytes containing DNA was also observed in Rps8/rps8 Williams × PI 399073 BC4F2:3 RILs. These meiotic abnormalities may contribute to the high degree of segregation distortion present in the Williams × PI 399073 populations.  相似文献   

13.
The oilseed Brassica rapa flowers and matures earlier than B. oleracea, as well as their amphidiploid B. napus. Therefore, earliness of B. rapa has been investigated as a source of variation for earliness in B. napus breeding programs. Variation for days to flower exists in B. oleracea; however, its earliest flowering variant B. alboglabra flowers 2–3 weeks later than B. napus. We hypothesized that the C genome of B. alboglabra carries alleles for early flowering which are different from the C-genome alleles of B. napus; and these alleles can be used for the improvement of B. napus. To test this, we examined flowering time in pedigree and DH populations from two B. napus × B. alboglabra crosses. A B. napus line with about a week earlier flowering than the B. napus parent was achieved through reconstitution of its C genome following pedigree selection. Introgression of the B. alboglabra allele in the early flowering pedigree lines is also evident from the presence of B. alboglabra-specific SSR alleles in this line. However, application of doubled haploidy failed to generate any line that flowered earlier than the B. napus parent, which is probably due to the difficulty of obtaining large numbers of euploid B. napus DH lines from this interspecific cross. Thus, we demonstrate that a trait of the diploid species, which apparently looks undesirable, might in fact be highly valuable for the improvement of amphidiploids; and knowledge from this research can also be applied for other traits.  相似文献   

14.
Fusarium root rot (FRR) is a major disease of common bean worldwide. Knowledge of the inheritance of resistance to FRR would be important in devising strategies to breed resistant varieties. Therefore, a 12 × 12 full diallel mating scheme with reciprocal crosses was performed to generate 132 F1 progenies, which were then advanced to the F3. The progenies were evaluated for resistance to FRR under green house conditions in Uganda. General combining ability (GCA) effects were highly significant (P ≤ 0.01) for disease scores. Specific combining ability effects were not significant (P > 0.05) in the F1, but were highly significant (P < 0.01) in the F3 generation. These results indicate that resistance to FRR was governed by genes with additive effects in combination with genes with non-additive effects. Reciprocal differences were also significant (P = 0.01) at F1 and F3, primarily reflecting a large influence of maternal effects in both these generations. In fact, susceptible parents did not differ significantly (P > 0.05) for disease scores when used as paternal parents in the F3, but differed strongly as maternal parents (P = 0.0002). Generally, the progenies were distinctly more resistant when the resistant parent was used as the female in crosses, especially as observed in the F3. The maternal effects were strong in the F3 generation, suggesting a complex form of cytoplasmic–genetic interaction. The non-maternal reciprocal effects in the F3 were significant (P < 0.05) in both the resistant × resistant diallel, and in the resistant × susceptible crosses. Mid-parent heterosis (MPH) occurred in most crosses, with average heterosis approximately equal in each of the three generations, indicating that epistasis was probably more influential than dominance of individual genes. Gene-number formulas indicated that several genes were involved in resistant × susceptible crosses. Among resistant × resistant crosses, many produced continuous distributions of F1 progeny scores, suggesting polygenic inheritance, while bi-modal distributions were characteristic of the F3 distributions, and fit expected ratios for two or three loci segregating in each cross. Dominant forms of epistasis favoring resistance were strongly indicated. Parent–offspring heritability estimates were moderate. Overall, the results indicate that resistant parents contain a number of different resistance genes that can be combined with the expectation of producing strong and durable resistance. The lines MLB-49-89A, MLB-48-89, RWR719 and Vuninkingi, with large and negative GCA effects, contributed high levels of resistance in crosses and would be recommended for use in breeding programs.  相似文献   

15.
Eight cross combinations of Zinnia elegans were made using two recessive nuclear male sterile lines crossed with four restorers using the North Carolina Design II statistical method. Heterosis, combining ability and heritability was analysed using 12 horticultural traits and these demonstrated the advantage of heterosis in hybrid breeding of Zinnia elegans. Heterosis served to increase the number of whorls of ray florets across capitulum and the number of branches, and also decreased plant height, crown size, pedicel length and length of node. Thus, six horticultural traits were improved over mid parent and best parent status to fulfill major breeding goals of this herbaceous flower. The traits of plant height, number of whorls of ray florets across capitulum and pedicel length were primarily controlled by paternal additive effects, whereas crown size was mainly controlled by non-additive effects. Number of branches and length of node were affected both by paternal additive effects and non-additive effects. The ratio of general combining ability to specific combining ability indicated the importance of additive genes in the expression of these traits. Among the parental lines, AH003A and restorer A3 were chosen as primary female and male combiners, respectively. AH001A and restorer S5 were chosen as secondary combiners. The cross AH003A × A3 was determined as the most promising combination for producing potted plant characteristics, and AH001A × S5 was the best hybrid obtained in this study for cut flower traits. The analysis of combining ability for the parental lines showed that there was no causal relationship between general combining ability and specific combining ability effects.  相似文献   

16.
Pomegranate cultivation is one of the most attractive farming enterprises in the Indian arid tropics. However, the quality of the fruit is often severely affected by a physiological disorder called ‘aril browning’ in which a part or all the arils show discolouration (browning) and such fruits are unfit for consumption. This has become a serious concern to consumers, growers and researchers in the recent times. In order to understand the genotypic variation for aril browning and its association with other fruit traits, 158 progenies obtained by selfing two pomegranate multiple hybrids viz., {(‘Ganesh’ × ‘Kabul’) × ‘Yercaud’} × {(‘Ganesh’ × ‘Gulsha Rose Pink’)-F2} and {(‘Yercaud’ × ‘Jyothi’) × (‘Ganesh’ × ‘Gulsha Rose Pink’)-F2} × {(‘Ganesh’ × ‘Kabul’) × ‘Yercaud’} were studied. Because of heterozygous nature of the crop and diverse genetic base of parents, a wide array of recombinants were produced which were scored for aril browning, fruit skin colour, aril colour, total soluble solids (TSS) and seed mellowness. Results of Spearman’s correlation analysis revealed that aril browning is inversely related with aril colour (r = −0.41). A statistical model constructed to study the reasons for the observed variation in aril browning showed that about 82.9% of it was accounted collectively by skin colour, aril colour, TSS and seed mellowness. Further, a refined model represented by Y (aril browning severity) = 0.78 − 0.52 X1 (aril colour) + 0.23 X2 (TSS) was found to contribute to 73.5% of the observed variability in aril browning with least error in prediction. Analysis of data further showed that every unit increase in intensity of aril colour amounted to decrease in severity of aril browning by 0.52 units. However, for every unit increase in TSS there was an increase of 0.23 units in severity of aril browning. Thus, with the increase in intensity of aril colour there was a reduction in severity of aril browning while with raise in TSS, aril browning incidence was higher, an association often not favourable in selection of desirable genotypes. The results of the present study suggested that while developing varieties free from aril browning it is important to strike a balance between aril colour and TSS level.  相似文献   

17.
The seed-specific expression of recombinant proteins in transgenic plants offers several interesting advantages over other production platforms. The aim of this study was to select accessions of Arabidopsis thaliana with the highest potential as a platform for seed-specific production of recombinant proteins. A. thaliana was chosen because of its flexibility, high seed yield per m2, high natural protein content and its non-food status. Seven characteristics were measured for 96 accessions; days to first flower bud, days to complete senescence, rosette size, number of main bolts, dry biomass of plant, seed yield and protein content of seeds. Three characteristics (length of life cycle, seed yield and protein content) were used to select accessions with a maximal yield. A variation of length of life cycle between 87 ± 11 days (Ler-1) and more than 200 days (several accessions) was registered. Seed yields per accession varied between 18 ± 16 mg (Wa-1) and 274 ± 76 mg (Mr-0). Protein content ranged between 30% (Ws-2) and 38% (Cvi-0). Based on the results of this study, accession Nok-3 is selected as the accession best suited for exploitation as a seed-based platform for the production of recombinant proteins. Nok-3 has a high seed yield (194 ± 66 mg) combined with a moderate protein content of 34.8% and short life cycle of 126 ± 17 days, resulting in a calculated protein yield per year three times higher than reference accession Col-0. In conclusion, this study illustrates the unexploited variability present in the Arabidopsis gene pool that can be used directly for further optimization of Arabidopsis seeds as production platform. In combination with A. thaliana’s rapid life cycle, flexibility, and high fertility, this makes it an attractive platform for the production of specific groups of recombinant proteins, such as high-purity products produced on a relatively small scale.  相似文献   

18.
The presence of high levels of sinigrin in the seeds represents a serious constraint for the commercial utilisation of Ethiopian mustard (Brassica carinata A. Braun) meal. The objective of this research was the introgression of genes for low glucosinolate content from B. juncea into B. carinata. BC1F1 seed from crosses between double zero B. juncea line Heera and B. carinata line N2-142 was produced. Simultaneous selection for B. carinata phenotype and low glucosinolate content was conducted from BC1F2 to BC1F4 plant generations. Forty-three BC1F4 derived lines were selected and subject to a detailed phenotypic and molecular evaluation to identify lines with low glucosinolate content and genetic proximity to B. carinata. Sixteen phenotypic traits and 80 SSR markers were used. Eight BC1F4 derived lines were very close to N2-142 both at the phenotypic and molecular level. Three of them, with average glucosinolate contents from 52 to 61 micromoles g−1, compared to 35 micromoles g−1 for Heera and 86 micromoles g−1 for N2-142, were selected and evaluated in two additional environments, resulting in average glucosinolate contents from 43 to 56 micromoles g−1, compared to 29 micromoles g−1 for Heera and 84 micromoles g−1 for N2-142. The best line (BCH-1773), with a glucosinolate profile made up of sinigrin (>95%) and a chromosome number of 2n = 34, was further evaluated in two environments (field and pots in open-air conditions). Average glucosinolate contents over the four environments included in this research were 42, 31 and 74 micromoles g−1 for BCH-1773, Heera and N2-142, respectively. These are the lowest stable levels of glucosinolates reported so far in B. carinata.  相似文献   

19.
Wild abortive (WA)-type cytoplasmic male sterility (CMS) has been exclusively used for breeding three-line hybrid indica rice, but it has not been applied for generating japonica hybrids because of the difficulties related to breeding japonica restorer lines. Determining whether the major restorer-of-fertility (Rf) gene used for indica hybrids can efficiently restore the fertility of WA-type japonica CMS lines may be useful for breeding WA-type japonica restorer lines. In this study, japonica restorer lines for Chinsurah Boro II (BT)-type CMS exhibited varying abilities to restore the fertility of ‘WA-LiuqianxinA’, which is a WA-type japonica CMS line. Additionally, Rf genes for WA-type CMS were identified in the BT-type japonica restorers. Meanwhile, ‘C9083’, which is a BT-type japonica restorer, exhibited a limited ability to restore the fertility of WA-type japonica CMS lines, and a genetic analysis revealed that the fertility restoration was controlled by one locus. The Rf gene was mapped to an approximately 370-kb physical region and was identified as Rf4. Furthermore, Rf gene dosage effects and the temperature influenced the fertility restoration of WA-type japonica CMS lines. This study is the first to confirm that Rf4 has only minor effects on the fertility restoration of WA-type japonica CMS lines. These results may be relevant for the development of WA-type japonica hybrids.  相似文献   

20.
Ergot caused by Claviceps purpurea results in the contamination of rye grain by sclerotia that contain alkaloids toxic to humans and other mammals. Ergot incidence and severity are affected by various factors including the availability of pollen during flowering. To test the presence of variation for ergot resistance due to anatomical and/or biochemical factors in rye, we studied cytoplasmic-male sterile (CMS) inbred lines of the Petkus gene pool (two sets each having 30 lines) and their testcrosses with maintainer tester lines (Set I crossed with two and Set II with a third tester line). Sixty-four CMS lines (60 lines, three testers in CMS form, one standard CMS line) and 90 CMS testcrosses were evaluated in four and three environments, respectively, for ergot severity measured as sclerotia weight per ear under pollen isolation and artificial spray inoculation. We also analysed the concentration of the six most important alkaloids and their isomeres in 25 lines. A very high ergot severity was achieved, and despite that genotypic variance among the 64 CMS lines was significant (P < 0.01). In testcrosses, genotypic variance was smaller, even being not significant in testcrosses of one tester. Genotype × environment interaction variances and correlation coefficients between lines and their testcrosses were significant (r = 0.56–0.75, P < 0.01) in all instances. Most prevalent alkaloids were ergosin, ergocristin, and ergotamin. There were no significant genotypic differences among lines for any alkaloid or isomer, but total alkaloid concentration showed genotypic variation with low significance level (P < 0.1). In conclusion, we detected genotypic differences for resistance in CMS rye based on variable response of ovaries during infection process that can be exploited by multi-locational evaluation and selection to develop ergot resistant hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号