首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Solutions obtained by heating carrot roots in water (stocks) are widely used in the food industry, but little information is available regarding the metabolites (intermediates and products of metabolism) found in the stock. The effect of treatment temperature and duration on the sugar composition of stocks was investigated directly by quantitative (1)H NMR spectroscopy, to understand the extraction mechanism when processing at 100 degrees C. Stocks prepared at three different temperatures (50, 75, and 100 degrees C) were investigated for up to 36 h. Three sugars (sucrose, glucose, and fructose) were detected and quantified. The concentrations of these three sugars reached a maximum after 9 h when the temperature of treatment was 50 or 75 degrees C. At 100 degrees C, the sucrose concentration reached a maximum after 3 h, whereas the concentration of glucose and fructose was still increasing at that time. Comparison of the kinetic composition of these carrot stocks with that of model sugar solutions leads to the proposal that the changes in stock composition result from sugar diffusion, sucrose hydrolysis, and hydroxymethylfurfural (HMF) formation.  相似文献   

2.
The chemical reactivity of 5-(hydroxymethyl)-2-furaldehyde (HMF) with lysine, glycine, and proline was studied using isotope labeling technique. To confirm the formation of HMF adducts in glucose amino acid model systems, a useful strategy was developed in which products simultaneously possessing six glucose (HMF moiety) and any number of amino acid carbon atoms in addition to nitrogen were targeted using specifically labeled precursors such as [(15)N(α)]lysine·2HCl, [(15)N(ε)]lysine·2HCl, [U-(13)C(6)]lysine·2HCl, [(13)C(6)]lysine·2HCl, and [U-(13)C(6)]glucose in the case of lysine model system. In addition, model systems containing HMF and amino acids were also studied to confirm specific adduct formation. Complete labeling studies along with structural analysis using appropriate synthetic precursors such as HMF Schiff base adducts of piperidine and glycine have indicated that HMF generated in the glucose/amino acid model systems initially forms a Schiff base adduct that can undergo decarboxylation through an oxazolidin-5-one intermediate and form two isomeric decarboxylated Schiff bases. Unlike the Schiff bases resulting from primary amines or amino acids such as glycine or lysine, those resulting from secondary amino acids such as proline or secondary amines such as piperidine can further undergo vinylogous Amadori rearrangement, forming N-substituted 5-(aminomethyl)furan-2-carbaldehyde derivatives.  相似文献   

3.
Thermal decomposition of HMF has been so far studied indirectly through carbohydrate degradation reactions assuming HMF as the main product. Such studies, however, do not necessarily generate relevant information on HMF decomposition because many other products are generated simultaneously. Direct thermal decomposition using different concentrations of HMF in silica gel was studied using pyrolysis-GC-MS. Undiluted HMF generated four peaks corresponding to 5-methylfurfural, 2,5-furandicarboxaldehdye, HMF, and a major unknown peak at retention time of 20.73 min. The diluted HMF in silica gel (15-fold) generated only the first three peaks. The generation of the unknown peak was dependent on the concentration of HMF, indicating the possibility of a dimeric structure; furthermore, when HMF was generated from [U-13C6]glucose in the reaction mixture, the highest mass in the spectrum of the unknown peak showed the incorporation of 11 carbon atoms from the glucose. Thermal decomposition studies of HMF have also indicated that in the absence of amino acids it can mainly dimerize and the initially formed dimer can degrade to generate 5-methylfurfural and 2,5-furandicarboxaldehyde. On the other hand, thermal degradation of HMF in the presence of glycine generated Schiff base adducts of HMF, 5-methylfurfural, and 2,5-furandicarboxaldehdye in addition to 2-acetyl-5-methylfuran and a newly discovered adduct, 5-[(dimethylamino)methyl]-2-furanmethanol.  相似文献   

4.
Further to part I of this study, this paper discusses mathematical modeling of the relationship between caramelization of several sugars including fructose, glucose, and sucrose and their glass transition temperatures ( T g). Differential scanning calorimetry (DSC) was used for creating caramelized sugar samples and determining their glass transition temperatures ( T g). UV-vis absorbance measurement and high-performance liquid chromatography (HPLC) analysis were used for quantifying the extent of caramelization. Specifically, absorbances at 284 and 420 nm were obtained from UV-vis measurement, and the contents of sucrose, glucose, fructose, and 5-hydroxymethyl-furfural (HMF) in the caramelized sugars were obtained from HPLC measurements. Results from the UV and HPLC measurements were correlated with the Tg values measured by DSC. By using both linear and nonlinear regressions, two sets of mathematical models were developed for the prediction of Tg values of sugar caramels. The first set utilized information obtained from both UV-vis measurement and HPLC analysis, while the second set utilized only information from the UV-vis measurement, which is much easier to perform in practice. As a caramelization process is typically characterized by two stages, separate models were developed for each of the stages within a set. Furthermore, a third set of nonlinear equations were developed, serving as criteria to decide at which stage a caramelized sample is. The models were evaluated through a validation process.  相似文献   

5.
The use of chlorophyll fluorescence measurements to noninvasively evaluate degrees of ripeness was investigated in berries at various stages of ripening from two white grapevine cultivars (Vitis vinifera L. Cv. Bacchus and Silvaner). Berries were characterized by diameter, weight, and density and by concentrations of fructose, glucose, sucrose, and total sugars, as well as fructose/glucose ratios, and also by chlorophyll fluorescence at F(0) and F(M) levels and the fluorescence ratio F(V)/F(M). Pearson product moment correlation analysis on data from both cultivars revealed clear negative associations between F(0) and concentrations of fructose, glucose, and total sugars, and fructose/glucose ratios (correlation coefficient < -0.89). Curvilinear trend-lines were established for plots of F(0) versus concentrations of fructose, glucose, and total sugars, but a linear relationship between F(0) and fructose/glucose ratios was found: the corresponding coefficients of determination were always >0.82. Therefore, chlorophyll fluorescence measurements are well-suited to determine noninvasively sugar accumulation in grape berries during ripening.  相似文献   

6.
A study was conducted to investigate irradiation-induced formation of malondialdehyde (MDA), formaldehyde (FA), and acetaldehyde (ACT) from fructose, sucrose, glucose, and malic acid solutions. MDA and FA were generated from the carbohydrate solutions upon irradiation while little was formed from malic acid solution. On the other hand, a much higher amount of ACT was formed from malic acid than from the carbohydrate solutions. The G values (number of molecules formed per 100 eV radiation) for MDA were 0.042, 0.0066, and 0.0026 from 0.9 mg mL(-1) fructose, sucrose, and glucose solutions at pH 3.5, respectively. The G values for FA formation were 0.134, 0.233, and 0.0081 from the fructose, sucrose, and glucose solutions, respectively. As concentration of sugars in solutions increased from 0 to 90 mg mL(-1), the formation of these compounds increased rapidly. A further increase in sugar concentration from 90 to 900 mg mL(-1) resulted in a lower rate of increase in MDA and FA formation. pH had a profound effect on the irradiation-induced formation of these compounds from carbohydrates, especially on MDA formation. The minimum amount of MDA from fructose and glucose solutions was observed at pH 5 while formation of MDA from sucrose solution decreased as pH decreased from 7 to 2. The results can be used by the food industry to optimize food formulation in order to minimize formation of these compounds.  相似文献   

7.
A stable isotope dilution assay (SIDA) for the quantitation of N(2)-[1-(carboxy)ethyl]folic acid (CEF) has been developed by using [(2)H(4)]CEF as the internal standard. After sample cleanup by anion exchange chromatography, the three-dimensional specifity of liquid chromatography-tandem mass spectrometry enabled unequivocal determination of the nonenzymatic glycation product of folic acid (FA). When CEF was added to cornstarch, the detection limit for CEF was found to be 0.4 microg/100 g, and a recovery of 98.5% was determined. In analyses of cookies, the intra-assay coefficient of variation was 8.0% (n = 5). Application of the SIDA to commercial cookies produced from wheat flour fortified with FA revealed CEF contents of up to 7.1 microg/100 g, which accounted for approximately 10-20% of the cookies' FA content. In baby foods, multivitamin juices, and multivitamin sweets, however, CEF was not detectable. Further studies on CEF formation during baking of cookies made from fortified flour and different carbohydrates revealed that fructose was most effective in generating CEF followed by glucose, lactose, and sucrose with 12.5, 3.9, 2.5, and 2.5 microg/100 g of dry mass, respectively. During baking, approximately 50% of FA was retained for both monosaccharides fructose and glucose, and 77% as well as 85% of its initial content was retained for the disaccharides lactose and sucrose, respectively. Of the degraded amount of FA, CEF comprised 28% for fructose as well as 18, 12, and 8% for sucrose, lactose, and glucose, respectively. Therefore, CEF can be considered an important degradation product of FA in baked foods made from fructose. To retain a maximum amount of FA, products should rather be baked with sucrose than with reducing carbohydrates.  相似文献   

8.
Solutions of L-cysteine (Cys) and N-acetyl-L-cysteine (AcCys), containing glucose or rhamnose, with or without arginine, were buffered to pH 3, 5, and 7 and incubated at 70 degrees C for 48 h. Cys and AcCys inhibited the formation of (hydroxymethyl)furfural (HMF) from glucose and methylfurfural (MF) from rhamnose under acidic conditions. AcCys inhibited the accumulation of 4-hydroxy-2, 5-dimethyl- 3(2H)-furanone (DMHF, Furaneol) from rhamnose, but Cys, under our experimental conditions, enhanced Furaneol accumulation from rhamnose. Cys and AcCys reacted directly with Furaneol but not with HMF or MF. Both Cys and AcCys inhibited nonenzymatic browning at pH 7. At pH 3, however, Cys reacted with both glucose and rhamnose to produce unidentified compounds that increased the visible absorbency.  相似文献   

9.
The kinetics of acrylamide (AA) was analyzed by heating a simple model system consisting of asparagine and glucose, fructose, or sucrose (0.01 M, pH 6) at temperatures between 140 and 200 degrees C. The AA concentration appeared to be the net result of simultaneous formation and elimination. A general kinetic model describing the AA yield was identified, and kinetic parameters were obtained by nonlinear regression on the nonisothermally derived data. On the basis of kinetic parameters, the AA formation appeared to proceed faster and to be more temperature sensitive in the asparagine-glucose than in the asparagine-fructose model system. The AA elimination kinetics, on the other hand, was similar. Significantly less AA was formed in the asparagine-sucrose model system as compared to the model systems with glucose or fructose.  相似文献   

10.
The suitability of delignified cellulosic (DC) material supported kefir yeast to ferment raw materials that contain various single carbohydrates, for the production of potable alcohol and alcoholic drinks, is examined in this investigation. Results are reported of fermentations carried out with sucrose, fructose, and glucose in synthetic media. Repeated batch fermentations at various initial sugar concentrations of sucrose, fructose, and glucose were performed at 30 degrees C in the presence of the aforementioned biocatalyst. The results clearly show feasible yields in the range of 0.38-0.41 g/g, alcohol concentrations of 7.6-8.2% v/v, fermentation time of 90-115 h, and conversion of 92-96%. DC material supported kefir fermented 11-fold more rapidly than free cells and 9-fold more rapidly in comparison to kissiris supported kefir. The main volatile byproducts such as amyl alcohols (mixture of 2-methyl-1-butanol and 3-methyl-1-butanol), ethanal, and ethyl acetate were formed in all sugar fermentation products. The formation of 65-110 ppm of ethyl acetate is as high and even higher than that obtained with traditional wine yeasts. The increase of the initial concentration of sugar in the fermentation media resulted in an increase in contents of volatiles. The fine aroma that was obtained in the product of fructose could be attributed to the high percentage of ethyl acetate on total volatiles. The efficiency of DC material supported kefir was the same for the fermentations of individual sugars or a mixture of fructose, sucrose, and glucose. When whey with raisin extracts was fermented, lower yields were obtained but the aroma of the product was even better.  相似文献   

11.
以辽园多丽和樱桃番茄红玉为试材,采用叶面喷施磷酸二氢钾、葡萄糖及其两者的混合液,研究叶面喷肥对两个品种番茄光合速率及蔗糖代谢的影响。结果表明:叶面喷肥可明显提高番茄叶片中叶绿素的含量及叶片的净光合速率。通过叶面喷肥处理,提高了2个品种番茄果实内果糖和葡萄糖的含量,提高了果实中酸性转化酶和中性转化酶的活力水平,蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活力也得到明显提高。以叶面喷施磷酸二氢钾及其与葡萄糖两者的混合液效果较好,单独喷施葡萄糖效果稍差。表明在叶面喷施葡萄糖、磷酸二氢钾和两者的混合液条件下,果实是通过提高4种酶的活力来提高库强度的。果实库强度增加的同时,相应地促进了同化产物的运转和干物质的积累。  相似文献   

12.
The loss of crystalline structure in sucrose, glucose, and fructose has been shown to be due to the kinetic process of thermal decomposition (termed apparent melting), rather than thermodynamic melting. The purpose of this research was to investigate whether or not it is possible to scan quickly enough to suppress the kinetic process of thermal decomposition and reach the thermodynamic melting temperature of these sugars using a new rapid-scanning DSC. Indium, a thermodynamic melting material, and sucrose, glucose, and fructose were analyzed at three heating rates from 1 to 25 °C/min using standard DSC and at seven heating rates from 50 to 2000 °C/min using rapid-scanning DSC. Thermodynamic melting was achieved when the onset temperature (T(m onset)) of the endothermic peak leveled off to a constant value independent of heating rate. The T(m onset) for indium was constant (156.74 ± 0.42 °C) at all heating rates. In the case of fructose, the T(m onset) increased considerably until a heating rate of approximately 698 °C/min, after which the average T(m onset) for the remaining three heating rates was constant at 135.83 ± 1.14 °C. Thus, 135.83 °C is proposed to be the thermodynamic melting temperature of fructose. It is important to note that the heating rate at which this thermodynamic melting temperature is achieved is most likely influenced by the type and amount of trace components (e.g., water and salts) contained in the fructose, which are known to vary widely in sugars. In the case of sucrose and glucose, thermodynamic melting temperatures were not able to be obtained, because the upper limit heating rate used was not fast enough to suppress thermal decomposition and achieve thermodynamic melting, perhaps due to the higher apparent T(m onset) for sucrose and glucose compared to that for fructose.  相似文献   

13.
The delta(13)C values of fructose, glucose, and sucrose have been determined in authentic pineapple juices. The sugar fraction is separated from the organic acids by an anionic exchange process. Then the individual components (fructose, glucose, and sucrose) are isolated on a preparative HPLC device using a NH(2)-type column. It is demonstrated that no significant isotope fractionation occurs when close to 100% of material is recovered and when the hydrolysis of sucrose is avoided. The control of the recovery rates and of the sucrose hydrolysis rate after purification is recommended for a reliable interpretation of the results. Correlations between the delta(13)C values of fructose (delta(13)Cf), glucose (delta(13)Cg), and sucrose (delta(13)Csu) can be characterized by systematic differences between these values. For the set of measurements on authentic pineapple juices and concentrates, the mean and the standard deviation of the differences are delta(13)Cf - delta(13)Cg = -0.6 +/- 0.6 per thousand, delta(13)Cf - delta(13)Csu = -1.3 +/- 0. 6 per thousand, and delta(13)Cf - delta(13)Csu = -0.7 +/- 0.5 per thousand. The determinations of the (13)C content of fructose, glucose, and sucrose enable a refinement of the detection of added sugars in fruit juices, re-enforcing the SNIP-IRMS method.  相似文献   

14.

Some of the chemical changes inside the bulb of onions (Allium cepa L.) and the influence of various harvesting criteria on dry matter content and composition were studied during long-term storage. Onion weight, dry matter content, total N and the non-structural carbohydrates, glucose, fructose, sucrose and total fructans were examined. Significant (P<0.05) interseasonal differences were observed in the weight of the onions, dry matter content, glucose and total non-structural carbohydrates. Furthermore, the dry matter content and composition differed inside the onion bulbs depending on the length of the storage period. The stage of maturation at the time of harvest also significantly influenced the weight of the onions, the dry matter content in individual onions and the fructose content.  相似文献   

15.
Enzymatic changes are often detrimental to quality of low-moisture foods. In the present study, effects of glass transition and water on sucrose inversion in a lactose-sucrose food model were investigated. Amorphous samples were produced by freeze-drying lactose-sucrose (2:1)-invertase (20 mg invertase/49.4 g of carbohydrate) dissolved in distilled water. Sorption isotherms were determined gravimetrically at 24 degrees C. Sucrose hydrolysis was determined by monitoring glucose content using a test kit and the amounts of fructose, glucose, and sucrose using HPLC. The glass transition temperatures, T(g), at various water contents were measured using differential scanning calorimetry (DSC). The BET and the GAB sorption models were fitted to experimental data up to a(w) 0.444 and 0.538, respectively. Water sorption and DSC results suggested time-dependent crystallization of sugars at a(w) 0.444 and above. Significant sucrose hydrolysis occurred only above T(g), concomitantly with crystallization. Sucrose hydrolysis and crystallization were not likely in glassy materials.  相似文献   

16.
The reaction kinetics of two heat damage indices, HMF and furosine, were examined in four tomato products with different dry matter contents (10.2, 25.5, 28.6, and 34.5%) over a temperature-time range of 80-120 degrees C and 0-255 min. The reactions followed pseudo-zero order kinetics. E(a) and z-value were, respectively, 139. 9 kJ/mol and 19.2 degrees C for HMF, and 93.9 kJ/mol and 28.4 degrees C for furosine. The analyses of both indices in several samples of commercial and industrial tomato products showed very low levels of HMF (from 1 to 42 ppm) and a lack of correlation between HMF and furosine mainly because of the different evolution of the two indices during storage. The HMF level of a tomato paste sample stored at 25 degrees C decreased from 609 to 17 ppm after 98 days, while furosine increased from 458 to 550 mg/100 g of protein.  相似文献   

17.
不同变种甜瓜糖分积累及蔗糖代谢酶活性动态变化   总被引:1,自引:0,他引:1  
叶红霞  吕律  王同林  海睿  汪炳良 《核农学报》2019,33(10):1959-1966
为了解不同类型甜瓜糖分积累及糖代谢特点,选用厚皮甜瓜品种X228、普通甜瓜品种B154及越瓜品种H227为材料,定期取样测定果实成熟过程中的葡萄糖、果糖、蔗糖含量和蔗糖代谢相关酶活性,研究不同变种甜瓜果实发育过程中糖分积累及相关酶动态变化差异。结果表明,授粉15 d至果实成熟期间,3个甜瓜品种的果实葡萄糖与果糖含量的变化均较小,品种间差异不显著。3个甜瓜品种果实蔗糖含量存在显著性差异,其中H227果实几乎无蔗糖积累,葡萄糖和果糖是果实的主要糖组分;B154和X228果实蔗糖含量随着果实发育而快速增加,蔗糖积累存在明显的转折点,蔗糖是B154和X228这2个品种成熟果实中最主要的糖组分,且果实蔗糖含量提高的同时蔗糖磷酸合成酶(SPS)活性上升、酸性转化酶(AI)活性降低,蔗糖合成酶(SS)合成方向的活性与蔗糖含量关系不显著。根据蔗糖含量的差异,可将甜瓜分为蔗糖积累型和低蔗糖积累型两类,前者果实蔗糖含量的上升被认为是SPS活性上升与转化酶(特别是AI)活性下降共同作用的结果,后者果实内极低的蔗糖含量被认为是SPS活性较低导致的。本研究结果为甜瓜种质资源创新利用和甜瓜果实糖分积累调控研究奠定了理论基础。  相似文献   

18.
Bulb samples from a range of onion cultivars grown over three consecutive years were freeze-dried and the resulting powders extracted using three previously reported methods. The extracts were analyzed for fructose, glucose, and sucrose content using HPLC coupled with ELSD, and for fructans using MALDI-MS. The three methods gave differing results, indicating that the extraction procedure is crucial in the determination of the concentration and ratios of nonstructural carbohydrates in onion bulbs. O'Donoghue et al.'s method (O'Donoghue, E. M.; Somerfield, S. D.; Shaw, M.; Bendall, M.; Hedderly, D.; Eason, J.; Sims, I. J. Agric. Food Chem. 2004, 52, 5383-5390), which utilized a more polar solvent (62.5% (v/v) aqueous methanol) and also had the benefit of shorter extraction times and lower temperatures, was far superior to 80% (v/v) ethanol-based methods in extracting significantly greater amounts of fructose, glucose, and sucrose from all onion bulbs tested. Discrepancies between and within cultivars tested also demonstrated that the ratio of monosaccharides to sucrose was affected by extraction method, such that some caution should be given to interpreting some previous work on elucidating the nonstructural carbohydrate composition in onion.  相似文献   

19.
Fructans are the reserve carbohydrates in Agave spp. plants. In mezcal factories, fructans undergoes thermal hydrolysis to release fructose and glucose, which are the basis to produce this spirit. Carbohydrate content determines the yield of the final product, which depends on plant organ, ripeness stage, and thermal hydrolysis. Thus, a qualitative and quantitative characterization of nonstructural carbohydrates was conducted in raw and hydrolyzed juices extracted from Agave salmiana stems and leaves under three ripeness stages. By high-performance liquid chromatography (HPLC), fructose, glucose, sucrose, xylose, and maltose were identified in agave juice. Only the plant fraction with hydrolysis interaction was found to be significant in the glucose concentration plant. Interactions of the fraction with hydrolysis and ripeness with hydrolysis were statistically significant in fructose concentration. Fructose concentration rose considerably with hydrolysis, but only in juice extracted from ripe agave stems (early mature and castrated). This increase was statistically significant only with acid hydrolysis.  相似文献   

20.
Studies performed on model systems using pyrolysis-GC-MS analysis and (13)C-labeled sugars and amino acids in addition to ascorbic acid have indicated that certain amino acids such as serine and cysteine can degrade and produce acetaldehyde and glycolaldehyde that can undergo aldol condensation to produce furan after cyclization and dehydration steps. Other amino acids such as aspartic acid, threonine, and alpha-alanine can degrade and produce only acetaldehyde and thus need sugars as a source of glycolaldehyde to generate furan. On the other hand, monosaccharides are also known to undergo degradation to produce both acetaldehyde and glycolaldehyde; however, (13)C-labeling studies have revealed that hexoses in general will mainly degrade into the following aldotetrose derivatives to produce the parent furan-aldotetrose itself, incorporating the C3-C4-C5-C6 carbon chain of glucose (70%); 2-deoxy-3-ketoaldotetrose; incorporating the C1-C2-C3-C4 carbon chain of glucose (15%); and 2-deoxyaldotetrose, incorporating the C2-C3-C4-C5 carbon chain of glucose (15%). Furthermore, it was also proposed that under nonoxidative conditions of pyrolysis, ascorbic acid can generate the 2-deoxyaldotetrose moiety, a direct precursor of the parent furan. In addition, 4-hydroxy-2-butenal-a known decomposition product of lipid peroxidation-was proposed as a precursor of furan originating from polyunsaturated fatty acids. Among the model systems studied, ascorbic acid had the highest potential to produce furan, followed by glycolaldehyde/alanine > erythrose > ribose/serine > sucrose/serine > fructose/serine > glucose/cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号