首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of phosphate and carboxylate ions in maillard browning   总被引:4,自引:0,他引:4  
The Maillard reaction of carbohydrates and amino acids is the underlying chemical basis for flavor and color formation in many processed foods. Phosphate and other polyatomic anions will accelerate the rate of Maillard browning, and this effect has been explained by invoking enhanced proton abstraction from intermediate Amadori compounds. In this work, the effect of phosphate and carboxylate ions on browning was measured for a series of reducing sugars with and without the presence of beta-alanine. Significant browning was observed for sugars alone suggesting that polyatomic anions contribute to Maillard browning by providing reactive intermediates directly from sugars. A mechanism is proposed for decomposition of sugars by polyatomic anions and efforts to trap reactive species using o-phenylenediamine (OPD) are described. The results of this study suggest how complications may arise from the popular usage of phosphate buffers in the study of Maillard reaction kinetics. In addition, the results imply how phosphates may be useful for enhancing browning during food processing.  相似文献   

2.
The effect of tetraborate ions on Maillard browning was investigated in a series of monosaccharide-glycine reactions in aqueous bis-tris buffer at pH 7.2. Addition of borax (sodium tetraborate) in catalytic amounts led to enhanced browning measured by absorbance at 420 nm in the order xylose > arabinose > galactose approximately = fructose > ribose > mannose > rhamnose, and the degree of browning with borax was uniformly greater than that produced by phosphate on an equimolar basis. A mechanism is proposed for borax catalysis in which monosaccharide-borate complexation shifts carbohydrate equilibria to favor open-chain (carbonyl) forms, thereby enhancing the rate of the Maillard reaction.  相似文献   

3.
Research efforts aim to enhance fundamental understanding about the role of salt in cereal products. Such knowledge may open new strategies for salt reduction in respective product categories. A model system, containing pregelatinized starch, glucose, and amino acids heated at 230°C for up to 10 min demonstrated that NaCl leads to darker products compared with the same model heated without NaCl (P < 0.05). The same trend was observed in wheat breakfast cereal flakes toasted at 230°C. The present study investigated two hypotheses how salt may influence color formation through Maillard Reaction: 1) hygroscopic behavior of salt may change the retention of water during heating and encourage Maillard reactions by improving mobility of reactants; 2) salt has a plasticizing effect and the presence of salt might keep the product in a rubbery state longer while heating, hence improving mobility and Maillard reactions of reactants. The same models (pregelatinized starch, glucose, and amino acids) mixed with several types of plasticizers (NaCl, KCl, or trehalose) and a blank without plasticizer were made and heat‐treated under controlled conditions. The presence of plasticizers always led to darker products but no correlation was found between color formation, the hygroscopic behavior of the system, and its glass transition temperature as measured by phase transition analyzer.  相似文献   

4.
Polyphenolic composition of raisins   总被引:1,自引:0,他引:1  
The polyphenolics of raisins were extracted, separated by HPLC, and characterized by their UV-vis spectra, and their concentrations measured. Color measurements and browning indices were also determined. Samples (n = 20) included sun-dried, dipped, and golden raisins. Comparisons were also made with fresh and frozen Thompson Seedless grapes. Golden raisins (which are treated with SO(2)) had the highest amount of hydroxycinnamic acids and the highest lightness values. In comparison with fresh grapes, percent losses of the two major hydroxycinnamics (caftaric and coutaric acids) in sun-dried, dipped, and golden raisins were on the order of 90%. Flavonols were not influenced by processing as much as hydroxycinnamics, while procyanidins and flavan-3-ols were completely degraded in all raisin samples. Formation of hydroxymethylfurfural and loss of amino acids in sun-dried and dipped raisins are ascribed to Maillard browning reactions.  相似文献   

5.
The formation of alpha-dicarbonyl-containing substances and Amadori rearrangement products was studied in the glycine-catalyzed (Maillard reaction) and uncatalyzed thermal degradation of glucose, maltose, and maltotriose using o-phenylenediamine as trapping agent. Various degradation products, especially alpha-dicarbonyl compounds, are formed from carbohydrates with differing degrees of polymerization during nonenzymatic browning. The different Amadori rearrangement products, isomerization products, and alpha-dicarbonyls produced by the used carbohydrates were quantified throughout the observed reaction time, and the relevance of the different degradation pathways is discussed. In the Maillard reaction (MR) the amino-catalyzed rearrangement with subsequent elimination of water predominated, giving rise to hexosuloses with alpha-dicarbonyl structure, whereas under caramelization conditions more sugar fragments with an alpha-dicarbonyl moiety were formed. For the MR of oligosaccharides a mechanism is proposed in which 1,4-dideoxyosone is formed as the predominating alpha-dicarbonyl in the quasi-water-free thermolysis of di- and trisaccharides in the presence of glycine.  相似文献   

6.
Zinc and aluminum ions at 0.05% of wheat flour, dry basis (7.4 and 18.5 mmol/100 g, respectively), improved the brightness of raw and dried spaghetti and salt and alkaline noodles. They also retarded bacteria and yeast and mold growth in salt noodles held at 25°C for two days as determined by total plate counts. Neither metal ion caused a change in noodle cooking quality, but they imparted a slight aftertaste in cooked noodles. Wheat flour dough mixed with 0.05% zinc or 0.025% aluminum ion (fwb), when kneaded in aqueous 0.1% calcium chloride, gave gluten with increased brightness. Zinc and aluminum ions appear to complex with enzymic browning chromophores in wheat dough and gluten and change their spectral properties. Zinc and aluminum ions affected the dispersion of gluten in water at pH ~5.0 and facilitated its spray-drying, but they were not detrimental to baking quality. Citric and tartaric acids at 5 mmol/100 g of gluten (db) gave wet gluten with pH ~4.5, which improved its brightness and water dispersibility.  相似文献   

7.
The solubility and chemical changes due to the Maillard reaction were investigated in milk protein concentrate powder containing 80% protein (MPC80) during storage at temperatures and relative humidities in the ranges of 25-40 °C and 44-84%, respectively. The Maillard reaction was studied by measuring furosine (a product of lactosylated protein after digestion with acid) and free hydroxymethylfurfural (HMF) contents by HPLC and L*, a*, b* values with a color-meter. Furosine, free HMF, and browning in MPC80 increased during storage, whereas the solubility decreased. The correlation between the Maillard reaction and solubility loss was explored in modified MPC80 to which glucose was added to enhance the rate of the Maillard reaction. More furosine and brown pigments were observed in the glucose-containing MPC80 than in MPC80 with added lactose. The opposite trend occurred for solubility, suggesting that the Maillard reaction may be a cause of solubility loss in MPC powder.  相似文献   

8.
The Maillard reaction (MR) has a clear impact in food science, nutrition, and medical research. Free radical scavenging capacities of several MR mixtures made from single combinations of glucose or lactose and amino acids (gly, his, lys, trp, met, and cys) were evaluated by using the N,N-dimethyl-p-phenylenediamine radical cation assay. Medium-roasted coffee brew was used as reference of a thermally processed food. A novel approach has been applied in order to get more information about the kinetic behavior of the radical scavenging properties of MR mixtures in a watery environment. Antiradical efficiency (AE) concept has been applied, and it takes into consideration the reaction time, apart from the amount of antioxidant necessary to decrease by 50% the radical initial concentration (EC(50)). Cysteine and histidine reveal as powerful amino acids to exert a high AE in the MR mixtures. No relationship between AE parameter and browning was observed.  相似文献   

9.
The interaction between glucose and essential amino acids at 100 degrees C at pH values ranging from 4.0 to 12.0 was investigated by monitoring the disappearance of glucose and amino acids as well as the appearance of brown color. Lysine was the most strongly destroyed amino acid, followed by threonine which induced very little additional browning as compared with that undergone by glucose. Around neutrality, the nonenzymatic browning followed pseudo-zero-order kinetics after a lag time, while the glucose and amino acid losses did not follow first-order kinetics at any of the pH values tested. Glucose was more strongly destroyed than all of the essential amino acids, the losses of which are really small at pH values lower than 9.0. However, glucose was less susceptible to thermal degradation in the presence of amino acids, especially at pH 8.0 with threonine and at pH 10.0 with lysine. The contribution of the caramelization reaction to the overall nonenzymatic browning above neutrality should lead to an overestimation of the Maillard reaction in foods.  相似文献   

10.
Recent studies have hypothesized that pyrrole formation and polymerization may be contribute to the nonenzymatic browning produced in both oxidized lipid/protein reactions and the Maillard reaction. To develop a methodology that would allow investigation of the contribution of this browning mechanism, the kinetics of formation of color, fluorescence, and pyrrolization in 4, 5(E)-epoxy-2(E)-heptenal/lysine and linolenic acid/lysine model systems were studied. In both cases similar kinetics for the three measurements were observed at the two temperatures assayed (37 and 60 degrees C), and there was a high correlation among color, fluorescence, and pyrrolization measurements obtained as a function of incubation time. Because the color and fluorescence production in the 4,5(E)-epoxy-2(E)-heptenal/lysine system is a consequence of pyrrole formation and polymerization, the high correlations observed with the unsaturated fatty acid also suggest a contribution of the pyrrole formation and polymerization to the development of color and fluorescence observed in the fatty acid/lysine system. Although the contribution of other mechanisms cannot be discarded, all of these results suggest that when the pyrrole formation and polymerization mechanism contributes to the nonenzymatic browning of foods, a high correlation among color, fluorescence, and pyrrolization measurements should be expected.  相似文献   

11.
During the cooking process of Agave tequilana Weber var. azul to produce tequila, besides the hydrolysis of inulin to generate fermentable sugars, many volatiles, mainly Maillard compounds, are produced, most of which may have a significant impact on the overall flavor of tequila. Exudates (agave juice) from a tequila company were collected periodically, and color, Brix, fructose concentration, and reducing sugars were determined as inulin breakdown took place. Maillard compounds were obtained by extraction with CH(2)Cl(2), and the extracts were analyzed by GC-MS. Increments in color, Brix, and reducing sugars were observed as a function of time, but a decrease in fructose concentration was found. Many Maillard compounds were identified in the exudates, including furans, pyrans, aldehydes, and nitrogen and sulfur compounds. The most abundant Maillard compounds were methyl-2-furoate, 2,3-dihydroxy-3,5-dihydro-6-methyl-4(H)-pyran-4-one, and 5-(hydroxymethyl)furfural. In addition, a series of short- and long-chain fatty acids was also found. A large number of the volatiles in A. tequilana Weber var. azul were also detected in tequila extracts, and most of these have been reported as a powerful odorants, responsible for the unique tequila flavor.  相似文献   

12.
The relations between the formation of acrylamide and color, pyrazines, or antioxidants in an asparagine/d-glucose browning model system under various conditions were investigated. The highest level of acrylamide was produced in the asparagine/glucose (1:3) system heated at 170 degrees C for 30 min (2629 microg/g asparagine). Color intensity increased with temperature and heating time. The formation of pyrazines increased steadily with an increase of temperature (140-170 degrees C) and heating time (15-60 min). Antioxidant formation varied among the samples heated under different conditions. A clear correlation between formation of acrylamide and browning color was obtained. The formation of acrylamide was linearly correlated with the formation of total pyrazines during the initial stages of the Maillard reaction. No obvious correlation between formation of acrylamide and antioxidants was observed. However, excess amounts of asparagine increased the formation of antioxidants, whereas excess amounts of glucose reduced its formation.  相似文献   

13.
Maillard reaction products (MRPs) were prepared by reacting casein peptides with different concentrations of glucose at 80 °C for up to 12 h. The chemical properties of MRPs and their effects on lipid oxidation in fish oil-in-water emulsions were investigated. Increasing browning development and absorbance in 294 nm in the MRPs caused an increase in DPPH radical scavenging, but a decrease in iron chelation, which could be related to the loss of free amino groups in the peptides. The MRPs produced with longer reaction time or higher glucose concentrations were less effective in inhibiting lipid oxidation in emulsions at pH 7.0 compared to casein peptides alone. However, the antioxidant activity of MRPs in emulsions at pH 3.0 was not decreased by prolonged heating. The bitterness of MRPs was less than that of the original casein peptides, and bitterness decreased with increasing heating time and glucose concentrations. Therefore, the Maillard reaction was a potential method to reduce the bitterness of casein peptides while not strongly decreasing their antioxidant activity.  相似文献   

14.
The effect of high pressure-high temperature (HPHT) processing on the formation of acrylamide and other Maillard-type reaction compounds was investigated in order to elucidate the impact of HPHT conditions on the different stages of the Maillard reaction. This study was performed in equimolar asparagine-glucose model systems that were treated at various HP/HT conditions (100-115 °C, 400-700 MPa, 0-60 min), and, for comparison, the model system was also heat-treated at ambient pressure. On the treated samples, the concentration of acrylamide, reactants, hydroxymethylfurfural, organic acids, and melanoidins was determined and the pH prior to and after treatment was measured. Based on the measured responses, the retarding effect of high pressure on the overall Maillard reaction was demonstrated; no or little differences were observed between 400 and 700 MPa. The study was conducted in two types of buffer, i.e. phosphate and MES buffer. In case of acrylamide, aspartic acid and browning, a higher concentration was generated in the MES buffer system, but these differences with the phosphate buffer system could be ascribed to pH changes resulting from the application of combined high pressure and high temperature. Based on the results, acrylamide formation is not expected to pose a major hazard to HPHT-treated products.  相似文献   

15.
The moisture sorption isotherms of a commercial potato powder were investigated at 20 degrees C for water activities ranging from 0.11 to 0.97. The sorption isotherms were typical type-II sigmoidal curves, with a steep increase in moisture content for water activities above 0.9 and exhibiting hysteresis over the whole water activity range. On the basis of the isotherms, the influence of the initial water activity and moisture content on both Maillard browning and acrylamide formation was determined by heating oil containing potato powder mixtures in a closed stainless-steel tubular reactor. The Maillard browning, as determined spectrophotometrically, showed an optimum at intermediate water activities. The yields of acrylamide, expressed relatively to the molar amount of asparagine, remained constant below 0.8 aw and below moisture contents of about 20% (on a dry basis). For the more intense heat treatments, an increased acrylamide yield was however observed at higher moisture contents, with an optimum at water contents of about 100% (on a dry basis). However, this increase and optimum was not observed at less intense heat treatments. At moisture contents above 100%, a significant decrease in acrylamide yields was assessed, although the water activity increased only marginally in this area of the sorption isotherms. It was thus observed that the acrylamide content was rather dependent upon the moisture content than upon the water activity in the high-moisture potato powder model system.  相似文献   

16.
Strecker degradation is one of the most important reactions leading to final aroma compounds in the Maillard reaction. In an attempt to clarify whether lipid oxidation products may be contributing to the Strecker degradation of amino acids, this study analyzes the reaction of 4,5-epoxy-2-alkenals with phenylalanine. In addition to N-substituted 2-(1-hydroxyalkyl)pyrroles and N-substituted pyrroles, which are major products of the reaction, the formation of both the Strecker aldehyde phenylacetaldehyde and 2-alkylpyridines was also observed. The aldehyde, which was produced at 37 degrees C-as could be determined by forming its corresponding thiazolidine with cysteamine-and pH 6-7, was not produced when the amino acid was esterified. This aldehyde is suggested to be produced through imine formation, which is then decarboxylated and hydrolyzed. This reaction also produces a hydroxyl amino derivative, which is the origin of the 2-alkylpyridines identified. All these data indicate that Strecker-type degradation of amino acids is produced at 37 degrees C by some lipid oxidation products. This is a new proof of the interrelations between lipid oxidation and Maillard reaction, which are able to produce common products by analogue mechanisms.  相似文献   

17.
The Maillard reaction is important during the heating and processing of foods for its contribution to food quality. To control a reaction as complex as the Maillard reaction, it is necessary to study the reactions of interest quantitatively. In this paper the main reaction products in monosaccharide-casein systems, which were heated at 120 degrees C and pH 6.7, were identified and quantified, and the reaction pathways were established. The main reaction routes were (i) sugar isomerization, (ii) degradation of the sugar into carboxylic acids, and (iii) the Maillard reaction itself, in which not only the sugar itself but also its reaction products react with the epsilon-amino group of lysine residues of the protein. Significant differences in reaction mechanism between aldose and ketose sugars were observed. Ketoses seemed to be more reactive in the sugar degradation reactions than their aldose isomers, and whereas the Amadori product was detected as a Maillard reaction intermediate in the aldose-casein system, no such intermediate could be found in the ketose-casein system. The reaction pathways found were put together into a model, which will be evaluated by kinetic modeling in a subsequent paper.  相似文献   

18.
The present investigation was undertaken to study how the antioxidative activity (AA) of nonenzymatic browning reactions is changing at the same time that the browning (by the pyrrole polymerization mechanism) is being produced. The antioxidative activities of eight model pyrroles (pyrrole, 1-methylpyrrole, 2,5-dimethylpyrrole, 1,2,5-trimethylpyrrole, 2-acetylpyrrole, 2-acetyl-1-methylpyrrole, pyrrole-2-carboxaldehyde, and 1-methyl-2-pyrrolecarboxaldehyde) as well as the browning reaction of 2-(1-hydroxyethyl)-1-methylpyrrole (HMP) and the dimer (DIM) produced during HMP browning were determined. The results obtained suggest that the AAs observed in nonenzymatic browning reactions are the result of the AAs of the different oxidized lipid/amino acid reaction products formed. Thus, the different pyrrole derivatives produced in these reactions had different AAs, and the highest AAs were observed for alkyl-substituted pyrroles without free alpha-positions. Because some of these pyrrole derivatives are implicated in nonenzymatic browning production and this browning production implies the loss of hydroxyl groups and the transformation of some pyrroles with one type of substitution into others, changes in AA during browning production were observed, and the resulting DIM derivative was more antioxidant than HMP or higher polymers. These results explain the AA observed in fatty acid/protein mixtures after slight oxidation and suggest that, when the pyrrole polymerization mechanism is predominant, slightly browned samples may be more antioxidant than samples in which nonenzymatic browning has been highly developed.  相似文献   

19.
A method using high-performance liquid chromatography with UV and electrospray ionization mass spectrometry detection was developed for monitoring the alpha-dicarbonyl compound profiles generated from nonenzymatic browning using o-phenylenediamine (OPD) as a trapping agent. The alpha-dicarbonyl compounds were generated by the "dry" reaction of sodium caseinate and lactose heated at various relative humidities (RHs). The proportions of alpha-dicarbonyls formed were different for samples heated at low, intermediate, and high RHs. This study shows that relatively large amounts of 3-deoxypentosulose and galactosyl 2-pentosulose are produced under high RHs, while galactosyl hexosulose and 1,4-dideoxyhexosulose are elevated under low RH conditions. Both caramelization and Maillard reaction pathways contributed to the generation of alpha-dicarbonyls.  相似文献   

20.
This report shows the effect of rye flour extraction rate on Maillard reaction, antioxidant activity, and acrylamide formation during toasting of rye bread crisps. Four rye flours with extraction rates of 70, 85, 95, and 100% were tested. Maillard reaction development was studied by measuring browning development, hydroxymethylfurfural (HMF), and glucosilisomaltol (GIM) formation, as well as antioxidant activity. Results showed that HMF and GIM concentrations in toasted bread crisps were higher as the flour extraction rate increases. Antioxidant activity increased during toasting as a consequence of antioxidant Maillard reaction product formation. Acrylamide concentration was clearly affected by free asparagine content of flour, while no effect of dietary fiber and natural antioxidant content of flours had an effect on acrylamide formation. Overall data suggest that the rate of Maillard reaction is higher in whole flours because of their higher free amino acid and protein content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号