首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Sandy soils have low reserves of mineral N in spring. Therefore organic-bound N is the most important pool available for crops. The objective of the present investigation was to study the importance of the organic-bound N extracted by electro-ultrafiltration and by a CaCl2 solution for the supply of N to rape and for N mineralization. Mitscherlich-pot experiments carried out with 12 different sandy soils (Germany) showed a highly significant correlation between the organic N extracted (two fractions) and the N uptake by the rape (electroultrafiltration extract: r=0.76***; CaCl2 extract: r=0.76***). Organic N extracted by both methods before the application of N fertilizer was also significantly correlated with N mineralization (electro-ultrafiltration extract: r=0.75***; CaCl2 extract: r=0.79***). N uptake by the rape and the mineralization of organic N increased with soil pH and decreased with an increasing C:N ratio and an increasing proportion of sand in the soils. Ninety-eight percent of the variation in N uptake by the rape was determined by the differences in net mineralization of organic N. This show that in sandy soils with low mineral N reserves (NO inf3 sup- -N, NH 4 + -N) the organic soil N extracted by electro-ultrafiltration or CaCl2 solutions indicates the variance in plant-available N. Total soil N was not related to the N uptake by plants nor to N mineralization.  相似文献   

2.
Summary Topsoils (0–75 mm) from four soil types with different sulphate retention capacities were collected from stock camp and non-camp (main grazing area) sites of grazed pastures in New Zealand which had been annually fertilized with superphosphate for more than 15 years. These soils were analysed for different S fractions and incubated at 30°C for 10 weeks using an open incubation technique in order to assess the extent of S mineralization and the release of soluble soil organic S from camp and non-camp soils during incubation. The soils were preleached with 0.01 M KCl, followed by 0.04 M Ca(H2PO4)2 before being incubated. Pre-incubation leachates and weekly 0.01 M KCl leachates were analysed for mineralized S (i.e., hydriodic acid-reducible S) and total S. Soluble organic S was estimated as the difference between these two S fractions. Results obtained show higher cumulative amounts of all three S fractions in leachates over a 10-week incubation period in camp than in non-camp soils, suggesting that higher mineralization occurred in camp soils. Cumulative amounts of mineralized S from camp and non-camp soils showed a linear relationship with duration of incubation (R 20.985***), while the cumulative release of soluble organic S followed a quadratic relationship (R 20.975***). A significant proportion (14.6%–40.8%) of total S release in KCl leachates was soluble organic S, indcating that organic S should be taken into account when assessing S mineralization. Mineralized S and soluble organic S were best correlated with 0.01 M CaCl2-extractable soil inorganic S (R 2=0.767***) and 0.04 M Ca(H2PO4)2-extractable soil inorganic S(R 2=0.823***), respectively. Soil sulphate retention capacity was found to influence amounts of mineralized S and soluble organic S, and thus periodic leaching with KCl to remove mineralized S from soils may not adequately reflect the extent of soil S mineralization in high sulphate-retentive soils. In low (<10%) sulphateretentive soils, increasing the superphosphate applications from 188 to 376 kg ha–1 year–1 increased S mineralization but not amounts of C-bonded and hydriodic acid-reducible soil S fractions.  相似文献   

3.
Management of N fertilization depends not only on the mineral N measured at the beginning of the growing season but also on the status of the low-molecular-weight organic-N fraction. Our study was conducted to analyze how much of the 15N applied in labeled cornshoot tissue would be recovered in 0.01 M CaCl2-extractable 15N fractions and wheter a decrease in the CaCl2-extractable 15N fraction quantitatively followed the trend in net mineralization of the 15N applied in corn-shoot tissue during an incubation period. The effects of adding 15N-labeled young corn-shoot tissue to a sandy soil and a clay soil were investigated for 46 days in an aerobic incubation experiment at 25°C. The application of 80 mg N kg-1 soil in the form of labeled corn-shoot tissue (24.62 mg 15N kg-1 soil) resulted in a significant initial increase, followed by a decrease the labeled organic-N fraction in comparison with the untreated soils during the incubation. The labeled organic-N fraction was significantly higher in the sandy soil than in the clay soil until the 4th day of incubation. The decrease in labeled organic N in the sandy soil resulted in a subsequent increase in 15NO inf3 sup- during the incubation. Ammonification of applied plant N resulted in a significant increase in the 1 M HCl-extractable non-exchangeable 15NH inf4 sup+ fraction in the clay soik, owing to the vermiculite content. The 15N recovery was analyzed by the 0.01 M CaCl2 extraction method; at the beginning of the incubation experiment, recovery was 37.0% in the sandy soil and 36.7% in the clay soil. After 46 days of incubation, recovery increased to 47.2 and 43.8% in the sandy and clay soils, respectively. Net mineralization of the 15N applied in corn-shoot tissue determined after the 46-day incubation was 6.60 mg 15N kg-1 soil (=34.9% of the applied organic 15N) and 4.37 mg 15N kg-1 soil (=23.1% of the applied organic 15N) in the sandy and the clay soils, respectively. The decrease in the labeled organic-N fraction extracted by 0.01 M CaCl2 over the whole incubation period was 3.14 and 2.33 mg 15N kg-1 soil in the sandy and clay soil, respectively. These results indicate that net mineralization of 15N was not consistent with the decrease in the labeled organic-N fraction. This may have been due to the inability of 0.01 M CaCl2 to extract or desorb all of the applied organic 15N that was mineralized during the incubation period.  相似文献   

4.
A laboratory soil incubation and a pot experiment with ryegrass were carried out in order to examine the extractability of microbial biomass N by using either 10-mM CaCl2 extraction or the electro-ultrafiltration (EUF) method. The aim of the experiment was to test the hypothesis whether the organic N (Norg) extracted by EUF or CaCl2 from dried soil samples represents a part of the microbial biomass. For the laboratory incubation a 15N-labelled Escherichia coli suspension was mixed with the soil. For the pot experiment a suspension of 15N-labelled bacteria was applied which had previously been isolated from the soil used. Soil samples of both treatments, with and without applied bacterial suspension, were extracted by EUF and CaCl2. The extractability of applied microbial biomass was estimated from the difference in extractable Norg between the two treatments. In addition, the N isotopic composition in the upper plant matter, in the soil, and in organic and inorganic N fractions of EUF and CaCl2 extracts was analysed. Both experiments showed that the applied microbial biomass was highly accessible to mineralization and thus represented potentially mineralizable N. However, this mineralizable N was not extractable by CaCl2 or by the EUF method. It was, therefore, concluded that the organic N released on soil drying and which was thus extractable was derived from the non-biomass soil organic matter. The result suggests that both extraction methods may provide a suitable index for mineralizable N only in cases where the decomposable organic substrates are derived mainly from sources other than the living soil biota.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

5.
Aerobic incubation of soils with sequential leachings to extract mineralized N is often used to determine N mineralization potential and N availability in the laboratory. This study used tropical forest soils with differing mineralogy and texture to address: (1) the effects of filter type and equilibration time on soil moisture and N mineralization and (2) the N extraction efficiency of 0.01 M CaCl2, minus-N nutrient solution (containing 0.004 M CaCl2) and 2 M KCl. Use of glass microfiber filters compared to cellulose acetate or polyethersulfone membrane filters resulted in a lower moisture content for both low-and high-clay soils. However, filter type did not affect N mineralization. Under 47 kPa suction, soil moisture equilibration occurred between 240 and 360 min regardless of filter type. Extraction efficiency for mineralized N using 0.01 M CaCl2 or minus-N nutrient solution was lower in forest soils of smectitic mineralogy and soils with a higher proportion of macroaggregates. However, with the exception of allophanic soils, the cumulative amount of N mineralized measured in a long-term incubation for approximately 1 year was not different when either a leaching or an unleached incubation method was used. These results indicate that researchers may wish to conduct preliminary evaluations to determine whether their incubation method will achieve a desired uniform moisture level and N extraction efficiency.  相似文献   

6.
Within different land‐use systems such as agriculture, forestry, and fallow, the different morphology and physiology of the plants, together with their specific management, lead to a system‐typical set of ecological conditions in the soil. The response of total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities involved in C and N cycling to different soil management was investigated in a sandy soil at a field study at Riesa, Northeastern Germany. The management systems included agricultural management (AM), succession fallow (SF), and forest management (FM). Samples of the mineral soil (0—5, 5—10, and 10—30 cm) were taken in spring 1999 and analyzed for their contents on organic C, total N, NH4+‐N and NO3‐N, KCl‐extractable organic C and N fractions (Corg(KCl) and Norg(KCl)), microbial biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With the exception of Norg(KCl), all investigated C and N pools showed a clear relationship to the land‐use system that was most pronounced in the 0—5 cm profile increment. SF resulted in greater contents of readily available C (Corg(KCl)), NH4+‐N, microbial biomass C and N, and enzyme activities in the uppermost 5 cm of the soil compared to all other systems studied. These differences were significant at P ≤ 0.05 to P ≤ 0.001. Comparably high Cmic:Corg ratios of 2.4 to 3.9 % in the SF plot imply a faster C and N turnover than in AM and FM plots. Forest management led to 1.5‐ to 2‐fold larger organic C contents compared to SF and AM plots, respectively. High organic C contents were coupled with low microbial biomass C (78 μg g—1) and N contents (10.7 μg g—1), extremely low Cmic : Corg ratios (0.2—0.6 %) and low β‐glucosidase (81 μg PN g—1 h—1) and L‐asparaginase (7.3 μg NH4‐N g—1 2 h—1) activities. These results indicate a severe inhibition of mineralization processes in soils under locust stands. Under agricultural management, chemical and biological parameters expressed medium values with exception for NO3‐N contents which were significantly higher than in SF and FM plots (P ≤ 0.005) and increased with increasing soil depth. Nevertheless, the depth gradient found for all studied parameters was most pronounced in soils under SF. Microbial biomass C and N were correlated to β‐glucosidase and L‐asparaginase activity (r ≥ 0.63; P ≤ 0.001). Furthermore, microbial biomass and enzyme activities were related to the amounts of readily mineralizable organic C (i.e. Corg(KCl)) with r ≥ 0.41 (P ≤ 0.01), suggesting that (1) KCl‐extractable organic C compounds from field‐fresh prepared soils represent an important C source for soil microbial populations, and (2) that microbial biomass is an important source for enzymes in soil. The Norg(KCl) pool is not necessarily related to the size of microbial biomass C and N and enzyme activities in soil.<?show $6#>  相似文献   

7.
Effect of pH on nitrogen mineralization in crop-residue-treated soils   总被引:1,自引:0,他引:1  
Summary This study compares N mineralization in soils treated with crop residues [corn (Zea mays L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum vulgare Pers.)] or alfalfa (Medicago sativa L.) at three adjusted soil pH values (4, 6, and 8); pH was adjusted with dilute H2SO4 or KOH. A sample of soil (20 g) was treated with 0.448 g plant material (equivalent to 50t ha–1), mixed with 20 g silica sand adjusted to the pH of the soil, and packed in a leaching tube. The soil-sand mixture was leached with 100 ml 5 mM CaCl2 adjusted to the same pH as that of the treated soil to remove the initial mineral N, and incubated at 30°C. The leaching procedure was repeated every 2 weeks for 20 weeks. Results from three soils showed that N mineralization increased as the soil pH increased. In one soil (Lester soil), significant amounts of NH 4 + -N accumulated at pH 4 during the first 12 weeks. Treatment with corn and soybean residues resulted in a marked reduction in N mineralization, especially at pH 4. The percentage of organic N mineralized from sorghum residue and alfalfa added to soils increased as the soil pH increased; the values ranged from 7.7% to 37.0% for sorghum and from 17.2% to 30.1% for alfalfa.  相似文献   

8.
Very few studies have been related to soluble organic nitrogen (SON) in forest soils. However, this nitrogen pool could be a sensitive indicator to evaluate the soil nitrogen status. The current study was conducted in temperate forests of Thuringia, Germany, where soils had SON (extracted in 0.5 M K2SO4) varying from 0.3 to 2.2% of total N, which was about one-third of the soil microbial biomass N by CFE. SON in study soils were positively correlated to microbial biomass N and soil total N. Multiple regression analysis also showed that mineral N negatively affected SON pool. The dynamics of the SON was significantly affected by mineralization and immobilization. During the 2 months of aerobic incubation, the SON were significantly correlated with net N mineralization and microbial biomass N. SON extracted by two different salt solution (i.e. 1 M KCl and 0.5 M K2SO4) were highly correlated. In mineral soil, SON concentrations extracted by 1 M KCl and 0.5 M K2SO4 solutions were similar. In contrast, in organic soil layer the amount of KCl-extractable SON was about 1.2-1.4 times higher than the K2SO4-extractable SON. Further studies such as the differences of organic N form and pool size between SON and dissolved organic N (DON) are recommended.  相似文献   

9.
To test the relative usefulness of different methods of chemical analysis for soil nitrogen fractions in the assessment of the fertilizer nitrogen needs of sugar beet, different doses of nitrogen were applied in field experiments laid out during the years 1985–1991. The chemical methods used were N mineral (NO 3 +NH + 4 ) analyses on soil samples taken in late winter, and extraction with 0.01 M CaCl2 from soil samples taken the preceding autumn and in late winter. The results of the chemical methods were evaluated in models using estimated optimum nitrogen fertilization, nitrogen present in beets or beets+leaves at leaf maximum and sugar yield as variables. In addition, parameters such as estimates of possible rooting depth and mineralization capacity of the soil were also included in the model. All models for estimating nitrogen fertilization need showed low R 2 values. The two methods of soil chemical analysis yielded similar R 2 values for nitrogen uptake in plots both with and without nitrogen fertilization. The N mineral method was least useful in predicting sugar yield. Addition of the covariables rooting depth and mineralization capacity appreciably improved the explanatory value of the models with 0.01 M CaCl2, especially when the analytical results of soil samples taken in autumn were used. For the N mineral method the addition of covariates was found to have far less influence.  相似文献   

10.
Abstract

Mineralization of soil organic nitrogen (N) and its contribution toward crop N uptake is central to developing efficient N‐management practices. Because biological incubation methods are time consuming and do not fit into the batch‐analysis techniques of soil‐testing laboratories, an analytical procedure that can provide an estimate of the mineralizable N would be useful as a soil‐test method for predicting plant‐available N in soil. In the present studies, the ability of boiling potassium chloride (KCl) to extract potentially mineralizable and plant‐available N in arable soils of semi‐arid India was tested against results from biological incubations and uptake of N by wheat in a pot experiment. Mineralization of organic N in soils was studied in the laboratory by conducting aerobic incubations for 112 days at 32°C and 33 KPa of moisture. Cumulative N mineralization in different soils ranged from 8.2 to 75.6 mg N kg?1 soil that constituted 2.7 to 8.8% of organic N. The amount of mineral N extracted by KCl increased with increase in length of boiling from 0.5 to 2 h. Boiling for 0.5, 1, 1.5, and 2 h resulted in an increase in mineral‐N extraction by 9.3, 12.7, 19.6, and 26.1%, respectively, as compared to mineral N extracted at room temperature. The boiling‐KCl‐hydrolyzable N (ΔNi) was directly dependent upon soil organic N content, but the presence of clay retarded hydrolysis for boiling lengths of 0.5 and 1 h. However, for boiling lengths of 1.5, and 2 h, the negative effect of clay was not apparent. The ΔN i was significantly (P=0.05) correlated to cumulative N mineralized and N‐mineralization potential (N0). The relationship between N0 and ΔN i was curvilinear and was best described by a power function. Boiling length of 2 h accounted for 78% of the variability in N0. Results of the pot experiment showed that at 21‐ and 63‐day growth stages, dry‐matter yield and N uptake by wheat were significantly correlated to boiling‐KCl‐extractable mineral N. Thus, boiling KCl could be used to predict potentially mineralizable and plant‐available N in these soils, and a boiling time of 2 h was most suitable to avoid the negatively affected estimates of boiling‐KCl‐hydrolyzable N in the presence of clay. The results have implications for selecting length of boiling in soils varying widely in clay content, and this may explain why, in earlier studies, longer boiling times (viz. 2 or 4 h) were better predictors of N availability as compared to 0.5 and 1 h.  相似文献   

11.
Organic N solubilized by NH3(aq) was extracted from 15N-labelled or unlabelled soil, concentrated and added to non-extracted soil, which was incubated under aerobic conditions at 27±1°C. Gross N mineralization, gross N immobilization, and nitrification in soils with or without addition of unlabelled soluble organic N were estimated by models based on the dilution of the NH 4 + or NO inf3 sup- pools, which were labelled with 15N at the beginning of incubation. Mineralization of labelled organic N was measured by the appearance of label in the mineral N pool. Although gross N mineralization and gross N immobilization were increased in two soils between day 0 and day 7 following addition of unlabelled organic N solubilized by NH3(aq), there was no increase in net N mineralization. Solubilization of 15N-labelled organic N increased and the 15N enrichment of the soluble organic N decereased as the concentration of NH3(aq) added increased. A constant proportion of approximately one-quarter of the labelled organic N added at different rates to non-extracted soil was recovered in the mineral N pool after an incubation period of 14 days, and the availability ratios calculated from net N mineralization data were 1.1:1 and 2.1:1 for 111 and 186 mg added organic-N kg-1 soil, respectively, indicating that the mineralization of organic N was increased by solubilization.  相似文献   

12.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

13.
Total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities in a sandy soil under pine (Pinus sylvestris L.) and black locust (Robinia pseudoacacia L.) stands were investigated in a field study near Riesa, NE Germany. Samples of the organic layers (Oi and Oe‐Oa) and the mineral soil (0–5, 5–10, 10–20, and 10–30 cm) were taken in fall 1999 and analyzed for their contents of organic C and total N, hot‐water‐extractable organic C and N (HWC and HWN), KCl‐extractable organic C and N (Corg(KCl) and Norg(KCl)), NH ‐N and NO ‐N, microbial‐biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With exception of the HWC, all investigated C and N pools showed a clear response to tilling, which was most pronounced in the Oi horizon. Compared to soils under pine, those under black locust had higher contents of medium‐ and short‐term available C (HWC, Corg(KCl)) and N (HWN, Norg(KCl)), mineral N (NH ‐N, NO ‐N), microbial‐biomass C and N, and enzyme activities in the uppermost horizons of the soil. The strong depth gradient found for all studied parameters was most pronounced in soils under black locust. Microbial‐biomass C and N and enzyme activities were closely related to the amounts of readily mineralizable organic C (HWC and Corg(KCl)). However, the presented results implicate a faster C and N turnover in the top‐soil layers under black locust caused by higher N‐input rates by symbiotic N2 fixation.  相似文献   

14.
The relationships between potential laboratory indices for plant‐available nitrogen (N) and the plant N uptake in a pot experiment with ryegrass were assessed for 13 mineral soils and 2 peat soils. The methods included aerobic soil incubation, soil incubation in a bioreactor, hot potassium chloride (KCl)–extractable mineral N, 0.01 M calcium chloride (CaCl2)–extractable N, and N loss at heating. The indices for total plant‐available N accounted for 63–93% of the variance in N uptake in a statistical analysis with all soils (n = 15) and 27–89% for the mineral soils (n = 13). Most indices were not a direct quantitative measure of the plant N uptake. The N mineralization indices accounted for 57–86% of the variance in N mineralization for all soils and 5–50% for the mineral soils. Hot KCl‐extractable mineral N and 0.01 M CaCl2–extractable N were the most promising rapid indices for plant‐available N.  相似文献   

15.
The amount of interlayer NH 4 + -N and net mineralization of organic N were measured at periodic intervals, over a period of 10 months, in soil samples collected from a peach orchard which had been subjected to different rates of N fertilizer application. Two different groups of soil samples, designated sampling 1 and sampling 2 were collected. Soils of sampling 1 were collected from sites where the soil was heavily penetrated by tree roots and those of sampling 2 were collected from sites where the soil remained free from tree roots. In sampling 1, during the 10-month period, the concentration of interlayer NH 4 + -N showed significant variations, while in sampling 2 no significant variation was found. In sampling 1 the amount of NH 4 + -N released from the interlayers of the clay minerals were not influenced by the N fertilizer application rate. Changes in the interlayer NH 4 + -N concentrations were related to variation in net N mineralization and immobilization rates as well as to plant uptake N. It is concluded that, in our experiment, the dynamics of interlayer NH 4 + -N in soil were influenced by the spatial distribution of the tree roots and organic N mineralization, while N application influenced seasonal variation but not the total interlayer NH 4 + -N released during the experiment.  相似文献   

16.
石灰性土壤起始NO3——N对土壤供氮能力测定方法的影响   总被引:11,自引:2,他引:11  
在陕西省的澄城、永寿、杨陵 3地区选取有机质、全N、硝态N含量差异较大的 17个石灰性土壤 ,分别在淋洗与未淋洗土壤起始NO3--N后 ,利用盆栽试验探讨土壤NO3--N淋洗前、后 ,不同方法测定的已矿化N和可矿化N与小麦吸N量之间的相关性。结果表明 ,未淋洗土壤起始NO3--N ,用KCl直接浸取、KCl煮沸法所浸取以及通气培养前CaCl2 所淋洗的起始NO3--N均与小麦吸N量密切相关 ,相关系数 (r)分别为 0.934 ,0.856和 0.862 ,均达1%显著水准。与此相反 ,通气培养、淹水培养、沸水煮沸、碱性高锰酸钾、酸性高锰酸钾及碱解扩散等方法所提取的可矿化N与小麦吸N量间无显著相关。淋洗土壤起始NO3--N后 ,用KCl直接浸取、KCl煮沸法浸取以及通气培养前CaCl2 所淋洗的起始NO3--N与小麦吸N量之间的相关系数明显降低 ,达不到 5%的显著水准。而通气培养、淹水培养、沸水煮沸、碱性高锰酸钾、酸性高锰酸钾及碱解扩散等方法所提取的可矿化N与小麦吸N量之间相关系数却明显提高 ,都达到 5%或 1%的显著水平。其中变化最明显的是淹水培养 1周矿化出的NH4+-N、通气正式培养 2周矿化出的NO3--N及碱解扩散出的NH4+-N ,其与小麦地上部吸N量之间的相关系数 (r)分别由淋洗前的0.443,0.119,0.259增加到淋洗后的 0.866 ,0.767,0.763。说明可矿化N反映土壤供N能力不佳是因为受起始NO3--N的干扰和影响,在土壤NO3--N含量较高的情况下,要正确评价可矿化N测定方法必须考虑NO3--N的作用。  相似文献   

17.
Changes in 15N abundance and amounts of biologically active soil nitrogen   总被引:1,自引:0,他引:1  
 Estimation of the capacity of soils to supply N for crop growth requires estimates of the complex interactions among organic and inorganic N components as a function of soil properties. Identification and measurement of active soil N forms could help to quantify estimates of N supply to crops. Isotopic dilution during incubation of soils with added 15NH4 + compounds could identify active N components. Dilution of 15N in KCl extracts of mineral and total N, non-exchangeable NH44 +, and N in K2SO4 extracts of fumigated and non-fumigated soil was measured during 7-week incubation. Samples from four soils varying in clay content from 60 to 710 g kg–1 were used. A constant level of 15N enrichment within KCl and K2SO4 extracted components was found at the end of the incubation period. Total N, microbial biomass C and non-exchangeable NH4 + contents of the soils were positively related to the clay contents. The mineralized N was positively related to the silt plus clay contents. The active soil N (ASN) contained 28–36% mineral N, 29–44% microbial biomass N, 0.3–5% non-exchangeable NH4 + with approximately one third of the ASN unidentified. Assuming that absolute amounts of active N are related to N availability, increasing clay content was related to increased N reserve for crop production but a slower turnover. Received: 7 July 1998  相似文献   

18.
Abstract

The effects of heavy metals (Cu, Pb, and As) accumulated in apple orchard surface soils on the microbial biomass, dehydrogenase activity, and soil respiration were investigated. The largest concentrations of total Cu, Pb, and As found in the soils used were 1,010, 926, and 166 mg kg?1 soil, respectively. The amounts of microbial biomass C and N, expressed on a soil organic C and soil total N basis, respectively, were each negatively correlated with the amounts of total, 0.1 M HCI-extractable, and 0.1 M CaCl2-extractable Cu as logarithmic functions, the correlation coefficient being lowest for the 0.1 M CaCl2extractable Cu. Nevertheless, they were not correlated with the soil pH which was controlling the solubility of Cu in 0.1 M CaCl2. The dehydrogenase activity expressed per unit of soil organic C was also negatively correlated with the amounts of total, 0.1 M HCI-extractable Cu, and 0.1 M CaCl2-extractable Cu as logarithmic functions. However, the correlation coefficient was highest for the 0.1 M CaCl2-extractable Cu. Although the soil respiration per unit of soil total organic C did not show any significant correlations with the total concentrations of heavy metals, it showed negative significant correlations with the amount of 0.1 M HCI-extractable Cu, and to a greater extent, with the amount of 0.1 M CaCl2-extractable Cu. Both the dehydrogenase activity and respiration per unit of soil total organic C increased significantly with increasing soil pH. These results suggested that in apple orchard soils with heavy metal accumulation the microbial biomass was adversely affected by the slightly soluble Cu, whereas the microbial activities by the readily soluble Cu whose amount depended on the soil pH. The respiration per unit of microbial biomass C showed a positive significant correlation with the logarithmic concentration of total Cu. Furthermore, the contribution of fungi to substrate-induced respiration increased with increasing total Cu content in the soils.  相似文献   

19.
A laboratory incubation experiment was conducted to study the effect of indigenous inorganic N on the immobilization of applied N and on the occurrence of an added N interaction (ANI). Samples of six Mollisols from Illinois were incubated with 15N-labelled (NH4)2SO4 (100 or 200 mg N kg-1 soil), with or without the use of 0.01 M CaCl2 to extract inorganic N (mainly NO inf3 sup- ) before incubation. From 6 to 49% of the N applied was immobilized, higher percentages being obtained with unextracted soils than with the extracted soils and with the higher rate of N addition. Net mineralization of native N occurred in both the unextracted and extracted soils, but was more extensive in the unextracted soil and increased with the addition of N. The increases were accompanied by a positive ANI, which usually exceeded the amount of applied N immobilized and increased with the rate of addition. The ANI values observed with extracted soils were attributed to increased mineralization of native organic N.  相似文献   

20.
Abstract

The enzyme arylamidase [EC 3.4.11.2] catalyzes the hydrolysis of N‐terminal amino acids from arylamides. Because it has been proposed that this enzyme may play a major role in nitrogen (N) mineralization in soils, studies were carried out using short‐term laboratory incubations under aerobic and anaerobic conditions and chemical hydrolysis of soil organic N to assess the N mineralization in a range of 51 soils from six agroecological zones of the North Central region of the United States. The enzyme activity was assayed at its optimal pH value. With the exception of the values obtained for field‐moist soils incubated under anaerobic conditions, the amounts of N mineralized by all the biological and chemical methods studied were significantly correlated with arylamidase activity, with r values of 0.54*** for the amounts of inorganic N produced under aerobic incubation, of 0.44** for anaerobic incubation of air‐dried soils, of 0.53*** and 0.55*** for the amounts of ammonium (NH4 +)‐N released by steam distillation with PO4‐B4O7 for 4 and 8 min, respectively; and of 0.49*** and 0.53*** for the amounts of NH4 +‐N released by steam distillation with disodium tetraborate (Na2B4O7) for 4 min or 8 min, respectively. The amounts of N extractable with hot potassium chloride (KCl) were most significantly correlated with arylamidase activity (r=0.56***). Arylamidase activity was significantly correlated with organic carbon (C) (r=0.49***), organic N (r=0.55***), and fixed ammonium (NH4 +)‐N (r =0.42**).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号