共查询到20条相似文献,搜索用时 0 毫秒
1.
为考察大孔NKA-Ⅱ吸附树脂对苯醚甲环唑的吸附可行性,采用静态吸附法研究了NKA-Ⅱ型大孔树脂对苯醚甲环唑吸附过程的热力学性质。结果表明,在288、298、308 K温度条件下,在一定浓度范围内,苯醚甲环唑在NKA-Ⅱ型树脂上的吸附等温线符合Freundlich等温吸附方程,Freundlich吸附等温线和吸附焓变表明NKA-Ⅱ型树脂对苯醚甲环唑的吸附是吸热过程。吸附自由能ΔG<0,表明吸附具有自发性;吸附熵变ΔS>0,说明吸附质分子在溶液中的运动比在吸附树脂表面上受到更大的限制。 相似文献
2.
[目的]为NKA-Ⅱ大孔吸附树脂在啶虫脒废水处理中的应用提供理论依据。[方法]通过静态吸附试验研究啶虫脒在NKA-Ⅱ大孔吸附树脂上的吸附特性。[结果]用Freundlich吸附等温线拟合所得的可决系数显著大于用Langrnuir吸附等温线拟合所得的可决系数,且均大于0.98。说明Freundlich吸附等温线可以很好地描述啶虫脒在树脂上的吸附行为。在试验温度范围内,啶虫脒在NKA-Ⅱ大孔树脂上的吸附量随温度的升高而增加。啶虫脒在NKA-Ⅱ大孔树脂上的吸附焓变为17.70kJ/mol,NKA—Ⅱ大孔树脂吸附啶虫脒的主要作用力是氢键力.△G^0的绝对值随温度的增加而增加。400min后吸附达到动态平衡。啶虫脒在NKA—Ⅱ大孔树脂上的吸附过程符合准一级动力学方程。[结论]啶虫脒在NKA—Ⅱ大孔吸附树脂上的吸附过程为自发的吸热反应,符合Freundlich吸附等温线。 相似文献
3.
目的 选择合适的树脂并选择最佳的工艺条件处理模拟苯甲酸废水.方法 用大孔吸附树脂对模拟苯甲酸废水进行处理,通过静态吸附和动态吸附相结合的方法 得出H-103大孔吸附树脂处理苯甲酸废水的最适合的工艺条件.结果 在苯甲酸浓度3 000 mg/L、温度室温18 ℃~20 ℃时,最佳吸附条件是动态吸附流速7 BV/h;最佳洗脱条件乙醇用量为80 mL.静态吸附后,苯甲酸的浓度去除率为78.7%,动态吸附后浓度去除率为99.98%,树脂的反复使用性能良好.结论 用H-103大孔吸附树脂处理苯甲酸废水效果良好. 相似文献
4.
5.
[目的]研究D101大孔树脂对金丝桃素的动力学和热力学特征。[方法]采用拟1级、2级吸附动力学模型和颗粒内扩散Kannan方程对吸附动力学过程进行拟合;等温吸附模型采用Langmuir模型、Freundlich模型和Temkin模型,使用Origin分别对3种模型进行线性拟合。[结果]动力学研究表明,D101大孔树脂对金丝桃素的吸附符合拟2级动力学方程描述;热力学研究表明,D101大孔树脂对金丝桃素的吸附符合Freundlich等温吸附方程。吸附焓变ΔH〈0,说明D101大孔树脂对金丝桃素的吸附过程是放热过程,且|ΔH|〈20kJ/mol,表明吸附过程为物理吸附过程;吉布斯自由能ΔG〈0,表明吸附过程是自发的;吸附熵变ΔS〉0,表明吸附伴有熵值增加的过程。[结论]该研究可为大孔树脂分离纯化金丝桃素的工业化放大生产提供理论依据。 相似文献
6.
大孔吸附树脂对冠毒素的吸附工艺研究 总被引:1,自引:0,他引:1
从5种不同类型大孔吸附树脂中筛选出HZ-818树脂对发酵液中冠毒素进行静态、动态吸附性试验,考察不同条件下对发酵液中冠毒素吸附、解吸的影响。结果表明:在静态试验中,吸附4 h后达到平衡,最高吸附量为27.06 mg/g,COR在20℃、发酵液pH为5时吸附率最高,吸附曲线符合Langmuir曲线,采用1%氨水∶60%乙醇=1∶2的混合洗脱剂,回收率可达85.8%;在动态试验中,室温及调整发酵液pH为5时,上柱流速为4.5BV/h时,绝大部分COR能被树脂吸附,动态贯穿吸附量为30.87 mg/mL湿树脂,吸附率为91.63%;正交最佳吸附条件为:20℃,上柱pH 5,上柱流速为3 BV/h时,冠毒素吸附量最佳,吸附率为93.14%;随后用洗脱剂通过树脂,洗脱流速为4.5BV/h,其回收率可达86.62%。 相似文献
7.
8.
9.
大孔吸附树脂提取荞麦芦丁工艺研究 总被引:12,自引:0,他引:12
利用热水浸提荞麦茎叶,用大孔吸附树脂分离制备芦丁的新工艺,制得芦丁纯度达95%以上,提取率达85%以上,采用本方法分离制备芦丁,具有工艺流程简单,安全,试剂无毒,成本低廉的特点。对于充分开发利用荞麦资源有一定意义。 相似文献
10.
采用大孔树脂吸附分离的方法对粉单竹竹叶黄酮提取物进行纯化,探讨D101大孔吸附树脂的静态及动态吸附解吸动力学特性,并对树脂动态柱层析的工艺条件进行优化。结果表明,D101大孔树脂较适宜于竹叶黄酮提取物的纯化;动态柱层析的工艺条件为:上样溶液的p H为8.0,上样流速1.0 m L/min,分别用2倍柱床体积的20%、40%、60%及80%乙醇以1.5 m L/min的洗脱速率进行阶梯梯度洗脱。在优化工艺条件下,可以收集得到纯度分别为50.9%、38.0%、35.8%等3个竹叶黄酮产品,黄酮总回收率可达63%左右。该工艺既可满足产品高纯度的要求,又保证了竹叶黄酮的高回收利用率,具有可行性。 相似文献
11.
12.
大孔吸附树脂具有表面积较大、交换速度较快、机械强度高、抗污染能力强、热稳定性好等优点,近年来广泛应用于中草药有效成分的提取和分离。大孔吸附树脂可以用于纯化皂苷成分,如人参总皂苷、桔梗总皂苷和三七总皂苷等物质。本研究为深入研究中药的活性成分奠定了研究基础。 相似文献
13.
大孔吸附树脂脱色透明质酸的初步研究 总被引:1,自引:0,他引:1
考察了6种不同型号大孔吸附树脂对透明质酸(HA)溶液的脱色作用,初步研究了吸附条件对树脂脱色能力的影响。结果表明:S-8树脂具有较好的脱色效果,当脱色时间为2.5h,树脂用量为1.0g/L,pH为5时效果最好。 相似文献
14.
[目的]筛选出一种大孔树脂,并研究其对皱皮木瓜鞣质的吸附和解吸附性能,从而确定大孔树脂分离纯化皱皮木瓜鞣质的最优工艺条件。[方法]通过静态吸附试验从5种大孔树脂中筛选最佳树脂,并通过单因素和正交试验确定该树脂在静态和动态试验中对皱皮木瓜鞣质的最优吸附和解吸附条件。[结果]HPD-100树脂对木瓜鞣质的吸附量最大,其吸附最佳条件为:洗脱液pH值5.0,静态吸附4 h;动态吸附流速为2.0 BV/h,吸附体积达到6.0 BV时为吸附终点,最优条件下的吸附率为87.90%。静态解吸附最佳条件:洗脱液pH值为6.0,洗脱时间为6 h,洗脱乙醇浓度为75%;动态解吸附流速为1.0 BV/h,解吸附体积达到1.6 BV时为解吸附终点,最佳条件下的解吸附率为62.40%。[结论]HPD-100大孔吸附树脂对木瓜鞣质具有良好的富集作用,适于皱皮木瓜鞣质的分离纯化。 相似文献
15.
16.
大孔树脂对紫甘薯色素的静态吸附参数研究 总被引:4,自引:0,他引:4
选取4种大孔树脂(AB-8、S-8、NAK-Ⅱ及NKA-9)吸附紫甘薯色素,研究了大孔树脂吸附过程中的静态吸附动力学和AB-8大孔树脂的静态吸附热力学。结果表明:AB-8大孔树脂是较理想的吸附树脂,其吸附平衡速率常数为每分钟0.0246,吸附过程和Freundlich经验公式拟合较好;当溶液的色素含量为0.992(以A535表示)、吸附温度为40℃、吸附时间为30min时具有最佳的吸附效果。 相似文献
17.
D-101大孔吸附树脂对人参皂苷吸附容量的影响 总被引:2,自引:2,他引:2
用比色法研究了D-101大孔树脂在不同条件下的吸附容量及使用寿命。结果表明:D-101大孔吸附树脂对人参皂苷的吸附容量较大(约为皂苷:树脂=1:10),效果好,且不受上样量及时间的影响,纯化简单,便于工业化生产。大孔树脂部分死吸附后,吸附量还是相对稳定的,约为新树脂的50%。 相似文献
18.
大孔吸附树脂分离枳实总黄酮工艺的优化研究 总被引:1,自引:0,他引:1
[目的]优化大孔吸附树脂法纯化枳实(Auraneii immaturusFructus)总黄酮的工艺。[方法]比较AB-8、HPD-450和D1013种大孔吸附树脂对枳实总黄酮的吸附和解吸效果;并对上柱液的黄酮浓度、pH值和洗脱液乙醇体积分数进行了优化。[结果]D101大孔吸附树脂对枳实总黄酮的分离纯化效果最好,其纯化枳实总黄酮的工艺条件为:上柱液浓度3mg/ml,上柱液体积2.0BV,上柱液pH值4.5,洗脱液乙醇体积分数70%,洗脱体积2.0BV。[结论]D101大孔吸附树脂对总黄酮的综合性能较好,适合于枳实总黄酮的分离纯化。 相似文献
19.
大孔吸附树脂纯化桑葚多糖的工艺研究 总被引:2,自引:1,他引:2
[目的]为桑葚的开发利用提供依据。[方法]研究了合成大孔树脂对桑葚多糖的吸附纯化,经过静态吸附和动态试验,考察了提取物溶液浓度、pH值、流速和洗脱剂等因素对树脂吸附性能的影响,确定了最佳纯化参数。[结果]试验表明,大孔吸附树脂对桑葚多糖具有良好的吸附解析效果。[结论]该纯化工艺为桑葚的综合利用提供了新途径。 相似文献
20.
利用大孔树脂吸附提取桑黄总黄酮 总被引:3,自引:0,他引:3
利用几种大孔树脂对桑黄黄酮的吸附与解吸性能进行了比较筛选实验。结果表明,样品浓度、吸附时间和解吸时间等因素都会对提取效果有影响。通过比较发现树脂DM301比较适合于吸附提取桑黄总黄酮。应用DM301型大孔树脂,样品液的体积与树脂量比为(2—3):1(mL:g),黄酮浓度为2mg/mL,吸附时间为14h,用3倍于样品液体积的60%乙醇解吸5h可以得到比较理想的提取结果,平均回收率为95.2%。 相似文献