首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Sixteen Quarter Horse-type geldings were used to examine the response of biochemical markers of bone metabolism to forced exercise prior to and during race training. The study began when the average age of the horses was 15 months. Horses were exercised on a high-speed treadmill for 14 weeks, and were subsequently placed into race training. Serum was collected and assayed for concentrations of osteocalcin (BGP), the carboxyterminal telopeptide of type I collagen (ICTP) and the carboxyterminal propeptide of type I procollagen (PICP). When data were normalized from the onset of race training, ICTP and PICP concentrations were higher in the pre-exercised horses (P<.05 and P<.1, respectively) indicating higher rates of bone turnover. Overall, bone turnover appeared to be decreased during race training, as concentrations of PICP and ICTP were lower when compared to values seen during the pre-training Phase.  相似文献   

2.
REASONS FOR PERFORMING STUDY: Dorsal metacarpal disease (DMD) is a common problem in 2-year-old racehorses and results in loss of a significant number of days from training. Biochemical markers of bone cell activity measured early in the training season could have value for identifying 2-year-old Thoroughbred racehorses that develop DMD. OBJECTIVES: To determine the association between serum concentrations of osteocalcin, the carboxyterminal propeptide of type I collagen (PICP) and the carboxyterminal cross-linked telopeptide of type I collagen (ICTP) measured early in the training season and the risk of DMD. METHODS: Blood samples were collected from 165 two-year-old Thoroughbreds during late November/early December. Osteocalcin and PICP were measured as markers of bone formation, and ICTP as a marker of bone resorption. Training and veterinary records for each horse were monitored over the following training/racing season (10 months). Cases were defined as an episode where signs of DMD were sufficiently severe for a horse to miss at least 5 consecutive days of training. Classification tree and logistic regression analysis were used to identify the most important factors suitable for prediction of DMD risk. RESULTS: There were 24 cases of DMD during the season (14.6% cumulative incidence), with an average time to recognition of approximately 6 months (May). The earliest recognised case was in February and the latest in September. Osteocalcin and ICTP concentrations in the early stages of the training season were significantly higher in horses that subsequently developed DMD (P = 0.017 and 0.019, respectively). DMD cases were also significantly older compared to noncases (21.04 vs. 20.44 months, P = 0.023). Using a multivariable logistic regression model, it was possible to postulate a set of diagnostic rules to predict the likelihood of DMD injury during the season. This suggested that horses with ICTP concentrations above 12365 ug/l and older than 20.5 months are 2.6 times more likely to develop DMD. CONCLUSIONS: The measurement of the bone resorption marker ICTP could be useful for identification of 2-year-olds at increased risk of developing DMD. POTENTIAL RELEVANCE: These findings, together with other strategies such as modification of training regimens, e.g. early introduction of short distances of high-speed exercise into the training programme, could help reduce the days lost to training as a result of DMD.  相似文献   

3.
This study describes longitudinal changes in serum levels of biochemical markers of bone cell activity in a group of 24 thoroughbred foals from birth to 18 months of age. The markers of bone formation included the type I collagen carboxy-terminal propeptide (PICP), the bone-specific isoenzyme of alkaline phosphatase (BAP), and osteocalcin (OC). Levels of the cross-linked telopeptide of type I collagen (ICTP), a marker of bone resorption, and the N-terminal propeptide of type III collagen (PNIIIP), a marker of soft tissue turnover, were also measured. Levels of all markers fell significantly between birth and 18 months of age (70-80 per cent); this decrease being most marked between 0 and 6 months. However, a transient increase in levels of the markers then occurred between 6 and 14 months of age. The timing of this increase was specific for each parameter. ICTP and OC concentrations increased between October and December. PICP concentrations increased between December and April whereas the increase in PIIINP was coincident with the peak in weight gain between April and June. Changes in BAP concentration were less distinct at this time. Season was shown to have significant effects on the biochemical markers independent from the effect of age. Concentrations of all markers decreased with increasing body weight and at any given age heavier horses had lower marker levels. These results show that biochemical markers of bone cell activity and soft tissue turnover follow characteristic patterns of change in growing thoroughbreds influenced by age, season and bodyweight. The demonstration that the reference ranges for the biochemical markers change from month to month means that single samples from individuals are of little value for monitoring bone cell activity in growing thoroughbreds.  相似文献   

4.
OBJECTIVE: To investigate the relationship between stage of estrous cycle and bone cell activity in Thoroughbreds. SAMPLE POPULATION: Blood samples collected from forty-seven 2-year-old Thoroughbred mares in training for racing. PROCEDURES: Blood samples were collected monthly (in April through September) from the mares. Stage of estrus was determined by assessing serum progesterone concentration. Bone cell activity was determined by measuring concentrations of 2 markers of bone formation (osteocalcin and the carboxy-terminal propeptide of type I collagen [PICP]) and a marker of bone resorption (the cross-linked carboxy-terminal telopeptide of type I collagen [ICTP]) in sera. RESULTS: When the relationship between stage of the estrous cycle and markers of bone cell activity was examined, serum concentrations of both osteocalcin and ICTP were significantly higher in mares that were in the luteal phase, compared with mares that were at other stages of the estrous cycle. Stage of estrus did not affect serum PICP concentration. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that bone cell activity in Thoroughbred mares fluctuates during the estrous cycle; serum concentrations of markers of bone formation and bone resorption are increased during the luteal phase. Further studies are required to determine whether these changes are of clinical importance and increase the risk of injury for mares in training during the breeding season. As in humans, stage of estrus must be considered as a source of uncontrollable variability in serum bone marker concentrations in horses.  相似文献   

5.
OBJECTIVE: To evaluate changes in serum concentrations of biochemical markers of bone metabolism and insulin-like growth factor I (IGF-I) associated with treadmill exercise in young horses. ANIMALS: 12 two-year-old Thoroughbred mares. PROCEDURE: During a 20-week study period, 6 horses were exercised on a treadmill 3 times a week (exercise group) and 6 horses received walking exercise 6 days a week (controls). Serum concentrations or activity of biochemical markers and IGF-I were assessed biweekly. Bone mineral density and content of the first phalanx were measured by dual-energy X-ray absorbiometry (DEXA) on completion of the study. RESULTS: Compared with values in controls, bone mineral density and content were higher and serum concentrations of osteocalcin (a marker of bone formation) and the carboxy-terminal telopeptide of type I collagen (a marker of bone resorption; ICTP) were lower in exercised horses. Serum concentration and activity of the bone formation markers carboxy-terminal propeptide of type I collagen and bone-specific alkaline phosphatase (BAP) were not different between the 2 groups. Serum IGF-I concentration was lower in the exercise group, compared with control values; there was a significant correlation between change in IGF-I values and changes in osteocalcin, ICTP, and BAP values at the end of the study. CONCLUSIONS AND CLINICAL RELEVANCE: Treadmill exercise over 20 weeks induced adaptive changes in bones of 2-year-old Thoroughbreds; training appears to increase bone mineral density, thereby enhancing mechanical strength of bone, but decreases bone turnover. Results indicated an association between changes in serum IGF-I concentration and bone cell activity in horses.  相似文献   

6.
This study tested whether the supplement (Aquacid), high in calcium and other minerals, can alter markers of bone metabolism and mineralization of the equine third metacarpus bone. Radiographs were taken of the left third metacarpus of 14 yearlings. Radiographic bone aluminum equivalence (RBAE) of each cortex was calculated to estimate mineral content. Blood samples were also taken at this time. Horses were ranked according to RBAE and gender, were pair-matched, and randomly assigned to two treatment groups. Each group was provided one of two mineral supplements in addition to their normal diet. The treated group (Aq) received 75 g Aquacid/horse/d, which provided an additional 15 g of calcium. The control group (Co) received 39.5 g of limestone to provide similar amounts of calcium. The study lasted for 112 days, with blood being taken every 28 days. At day 56 and 112, additional radiographs was taken to track changes in RBAE. Blood was analyzed for osteocalcin (a bone formation marker) and serum C-telopeptide crosslaps of type I collagen (a bone resorption marker) to detect alterations in bone metabolism. Using day 0 values as a covariate for bone markers, there was a trend (P = .07) for osteocalcin concentrations to be greater in Aq horses than in Co. Likewise, C-telopeptide crosslaps of type I collagen concentrations were greater (P < .0001) in Aq horses than in Co. There were minimal differences in RBAE values. These findings suggest Aquacid, while not altering bone mass, increases bone turnover and may aid in repairing damaged bone and preventing injuries.  相似文献   

7.
OBJECTIVE: To determine whether plasma concentrations of bone turnover markers in growing Hanoverian foals are influenced by age, housing conditions, or osteochondrosis. ANIMALS: 165 healthy foals and 119 foals with osteochondrosis. PROCEDURES: Foals were allocated according to birth date and housing management into groups of early-born (born before March 31, 2001; n = 154 foals, 88 of which were healthy and 66 of which had osteochondrosis) and late-born (born after March 31, 2001; 130 foals, 77 of which were healthy and 53 of which had osteochondrosis) foals. Plasma osteocalcin and carboxyterminal propeptide of type I collagen concentrations were analyzed as markers of bone formation, and carboxyterminal telopeptide of type I collagen concentration was analyzed as a marker of bone resorption. Foals underwent radiographic evaluation to screen for osteochondrosis. RESULTS: Plasma concentrations of osteocalcin, carboxyterminal propeptide of type I collagen, and carboxyterminal telopeptide of type I collagen decreased with age, but these changes were more distinct in late-born foals than in early-born foals. Neither sex nor predisposition to develop osteochondrosis affected the pattern of bone marker changes in either group. CONCLUSIONS AND CLINICAL RELEVANCE: An age-related decrease in concentrations of bone markers was seen during the first 200 days of life. Changes in bone marker concentrations were similar for foals with osteochondrosis and healthy foals. The correlation between the decrease in bone marker concentration and date of birth indicates that there are differences in skeletal development between early- and late-born foals.  相似文献   

8.
OBJECTIVE: To determine the effects of orally administered glucosamine on concentrations of markers of bone and cartilage metabolism in Standardbred horses during race training. ANIMALS: Twenty 16- to 20-month-old Standardbreds beginning race training. PROCEDURE: Horses were randomly assigned to 2 groups. One group received glucosamine hydrochloride (4 g, PO, q 12 h), and the second (control) group received glucose (4 g, PO, q 12 h). Serum samples were obtained prior to onset of the study (baseline) and at regular intervals for 48 weeks for determination of concentrations of keratan sulfate (KS), osteocalcin (OC), and pyridinoline crosslinks (PYD). RESULTS: Osteocalcin concentrations changed significantly with time; mean serum concentrations were significantly higher than baseline values for samples obtained at 24 to 48 weeks after onset of the study. Although a significant effect of time was observed for mean concentration of KS, concentrations did not differ significantly from baseline values at any time during the study when groups were analyzed separately. However, pooled analysis revealed significant increases of mean serum KS concentration at weeks 24 and 30. Significant changes in serum PYD concentrations were not detected. Oral administration of glucosamine did not significantly affect serum concentrations of any of the markers. CONCLUSIONS AND CLINICAL RELEVANCE: Increased serum OC in clinically normal Standardbreds during race training may reflect bone formation that accompanies adaptive remodeling of the appendicular skeleton. For these experimental conditions, glucosamine did not appear to exert a detectable influence on serum concentrations of these 3 markers of connective tissue metabolism.  相似文献   

9.
Seven untrained Standardbred horses were used in a training programme of 6 weeks to evaluate the effects of exercise and training on bone metabolism. The horses were exercised on a treadmill according to a standardized exercise test (SET 1: six incremental steps, 5 min duration each; start 5 m/s, increase 1 m/s). SET 1 was followed by a training programme of 6 weeks. In alternating order: high-speed exercise (HSE): 15 min duration, start at VLa4, continuous increase in speed every 60 s by 0.3 m/s (14 incremental steps); low-speed exercise (LSE): constant velocity at VLa2.5, duration: approximately 60-90 min (total training programme: eight HSE and eight LSE sessions). SET 2 finished the training programme and a deconditioning period of 12 weeks followed. Blood samples for lactate, total plasma protein (TPP), osteocalcin, and ICTP (cross-linked C-telopeptide of type I collagen) were collected. ICTP increased during SET 1 and SET 2, whereas osteocalcin decreased to below resting concentration 24 h after SET 1. A rise in ICTP was observed during LSE 1 and LSE 8, which was followed by a drop 24 h after exercise. No changes in osteocalcin were noted during LSE 1, but 24 h after LSE 1 osteocalcin dropped to below pre-exercise levels. LSE 8 resulted in an increase in osteocalcin, followed by a drop 24 h after LSE 8. Osteocalcin and ICTP were not affected by HSE. Baseline osteocalcin levels dropped during the course of training. The acute response of biochemical bone markers indicates a direct influence of a single bout of exercise on bone metabolism.  相似文献   

10.
The aim of the present study was to determine the efficacy of the bone markers osteocalcin (OC) and carboxyterminal cross-linked telopeptide of type-I collagen (ICTP) in evaluating new bone formation in the dog, using commercially available immunoassay kits. Dogs were randomly divided into three groups and a circular external skeletal fixation system (CESF) was mounted on the tibia. In the first group a distraction osteogenesis procedure of the crus was performed. The second group received an osteotomy without crural lengthening, whereas the third group served as a sham-operated control. Bone formation was assessed using densitometric image analysis of crural radiographs. Despite significant differences in the amount of newly formed bone, this finding was not reflected in the plasma levels of OC and ICTP. In conclusion, OC and ICTP were not efficacious as markers of bone formation and resorption during osteogenesis in this canine model.  相似文献   

11.
Serum and urinary markers of bone turnover may be of value in animals as noninvasive tools for determining the response of the skeleton to disease and injury. Although normal values for bone markers have been reported for the Beagle, concerns remain that breed to breed differences will complicate the interpretation of bone marker data in dogs. To explore this, we examined serum bone markers in two breeds of vastly different size, Pomeranians and Irish Wolfhounds. Our hypothesis was that serum concentrations of bone markers are similar in toy and giant dog breeds and fall within the same range as those reported for Beagles. Bone alkaline phosphatase (BALP) and carboxy-terminal telopeptide of type I collagen (ICTP), respectively markers of bone formation and bone resorption, were measured in age matched Pomeranians (n=14) and Irish Wolfhounds (n=14). No statistically significant differences between the mean BALP and mean ICTP serum concentrations from Pomeranians and Irish Wolfhounds were found. All BALP and ICTP concentrations were within the reference range reported for Beagles. The results of this study suggest that serum BALP and ICTP concentrations in giant and toy breeds are the same as in Beagles and that these assays may be used for dogs of all sizes.  相似文献   

12.
Serum markers of bone metabolism were analyzed in Arabian horses from birth through 2 yr. The marker of bone formation utilized was osteocalcin (OC), and the marker for degradation was carboxy-terminal pyridinoline cross-linked telopeptide region of type I collagen (ICTP). Blood samples were taken via jugular venipuncture the day of birth, d 15, d 30, d 45, d 60, and every 30 d thereafter through d 720. Serum was obtained and analyzed for OC and ICTP. Osteocalcin concentrations increased immediately after birth, were variable, and returned to baseline by d 300. By d 330, concentrations of OC began to decrease from d 0 and stayed at this lower concentration through d 510. From d 540 through 720, OC concentrations were similar to baseline. A decrease from baseline (d 0) in ICTP concentrations was seen on d 60, and ICTP continued to decline in concentration through d 720. Therefore, concentrations of OC and ICTP decreased over time as previously reported, and this study characterizes those changes on a monthly basis. Variability and general concentrations for OC and ICTP obtained in this study will provide valuable information for future experimental design and use of these markers in young horses and will aid researchers in determining treatment effects without being confounded by changes in concentrations caused by growth.  相似文献   

13.
This study examined the effect of supplementation of a bioavailable source of silicon (sodium zeolite A) on altering systemic markers of bone metabolism in horses. Twenty yearlings (ten Quarter Horses and ten Arabians) were randomly grouped as silicon (Si) supplemented (S; n=10), in which yearlings consumed 2% of the total diet as a Si-containing supplement, and a second non-supplemented control group (C; n=10). Blood samples were taken on days 0, 15, 30 and 45. Both plasma and serum were collected; the plasma was analyzed for Si concentrations and serum was analyzed for osteocalcin (OC), carboxy-terminal pyridinoline cross-linked telopeptide region of type I collagen (ICTP), and pyridinoline and deoxypyridinoline crosslinks (PYD). Supplemented yearlings had higher plasma Si concentrations than C yearlings by day 15, and remained higher than C yearlings on days 30 and 45 (P < 0.0001 for all days). There were no differences between treatment groups for OC or PYD concentrations (P > .05); however, ICTP concentrations were lower in S yearlings on day 45 when compared to C yearlings (P = .04). Results indicate that sodium zeolite A supplementation (consumed at 2% of the total diet) increases plasma Si concentrations. Furthermore, results indicate that Si-supplemented yearlings may have decreased bone resorption, which may provide for greater net bone formations, as OC concentrations were not different between groups. Unfortunately, systemic markers give no indication as to the quality of the bone that may be formed, and further research in the area of Si supplementation, bone metabolism and bone strength is required to establish conclusive evidence as to the benefits of supplemental Si to the skeletal system.  相似文献   

14.
The purpose of this study was to investigate, if different Ca concentrations in diets have an influence on bone mineral metabolism in growing goats and sheep. Twelve growing goats and sheep were divided into two groups. The two control groups received 6.1 g calcium/day (nG) and 6.7 g calcium/day (nS) for goat and sheep respectively. The other two groups were fed 17.7 g calcium/day (hG) and 18.5 g calcium/day (hS). Blood samples were taken 2, 4, 5 and 6 weeks after the start of the experiment. In serum Ca and vitamin D were determined and bone metabolism was measured using crosslinked carboxyterminal telopeptide of type I collagen (ICTP), crosslaps, bone-specific alkaline phosphatase and osteocalcin (OC). Bone mineral density (BMD) was quantified using quantitative computed tomography. Bone resorption marker (ICTP) concentrations were significantly different between both groups control sheep/control goat and hS/hG, but no significant differences were evident in the different feeding groups within one species. OC concentrations showed a similar course to ICTP. The goats had significantly higher concentrations compared with sheep. The 1,25 dihydroxyvitamin D (VITD) concentrations in both hCa groups were significantly lower than in the control groups. BMD increased in the hCa groups compared with the control groups with the time, but significant differences were only evident in sheep in week 2. The hCa diet did not induce differences between the groups within one species for all bone markers. The control Ca diet seems to improve the active Ca absorption via VITD whereas the hCa diet leads to a higher amount of Ca apparently digested. Higher BMD was only observed in group hS compared with nS.  相似文献   

15.
Studies in humans have found circadian changes to be one of the most important sources of controllable preanalytical variability when evaluating bone cell activity using biochemical markers. It remains unclear whether similar circadian changes influence bone marker concentrations in the horse. The aim of this study was to characterize changes in serum concentrations of three biochemical markers of bone cell activity over a 24-h period in six 2-yr-old Thoroughbred mares, and to determine circadian variability in IGF-I, which regulates bone turnover. Three bone markers were measured in serum: osteocalcin, a marker of bone formation, the carboxy-terminal propeptide of type-I collagen (a marker of bone formation), and the carboxy-terminal telopeptide of type-I collagen (a marker of bone resorption). Data were analyzed using the cosinor technique, which fits a 24-h cycle to each dataset. A significant circadian rhythm was observed for osteocalcin (P = 0.028), with an estimated amplitude of 7.6% of the mean (95% confidence interval 1.3% to 16.3%), and an estimated peak time of 0900. However, the observed rhythm for the carboxy-terminal telopeptide of type-I collagen (amplitude = 7.4%) was not significant (P = 0.067), and there were no significant changes in concentrations of the carboxy-terminal propeptide of type-I collagen over the 24-h study period (P = 0.44). There was a small but significant circadian rhythm for IGF-I (P = 0.04), with an estimated amplitude of 3.4% (95% confidence interval 0.2 to 7.1%) and peak at 1730. Further studies are now required to determine the potential association between circadian changes in IGF-I and osteocalcin in the horse. Although no significant circadian variation was found in concentrations of the car-boxy-terminal propeptide of type-I collagen and the carboxy-terminal telopeptide of type-I collagen, this may in part be a result of the age of the animals that were still skeletally immature. Future studies should aim to determine whether these markers develop a circadian rhythm at a later age when growth is complete. In the meantime, consistency in time of sampling should continue to be considered best practice when measuring biochemical markers of bone turnover in the horse.  相似文献   

16.
Three experiments were conducted to evaluate serum osteocalcin concentrations in normal weanling and yearling Quarter Horses. In Experiment 1, jugular blood samples were taken at 3 hr intervals for 24 hr to evaluate diurnal changes in serum osteocalcin concentration of foals (n=3) and yearlings (n=5). In Experiment 2, twelve Quarter Horse foals were weaned at 4 months of age to determine the influence of sex, weaning and method of weaning of serum osteocalcin concentration. The third experiment utilized fifteen yearling Quarter Horses (7 geldings, 8 fillies) in a two-phase trial to evaluate normal peripheral osteocalcin concentration in sedentary and exercising horses. In Experiment 1, there was no detectable variation (P>.05) in serum osteocalcin concentration during the 24 hr sample period in either age group. In Experiment 2, colts had greater (P<.05) osteocalcin concentrations than fillies at weaning. Method of weaning did not alter mean serum osteocalcin concentration (P>.1). Serum osteocalcin concentrations declined (P<.05) in all horses following weaning but returned to preweaning levels within one week. In Experiment 3, sedentary horses had similar (P>.1) osteocalcin concentrations on d 0, 45 and 90. Serum osteocalcin concentrations of sedentary horses were not affected by sex (P>.1). During exercise, fillies had greater (P<.05) osteocalcin concentrations than geldings. Serum osteocalcin concentrations of all horses declined linearly (P<.0001) during the 90 d exercise period. Osteocalcin may be useful as a tool to assess bone metabolism during growth and physical conditioning in horses. However, variability in serum osteocalcin concentrations due to age, sex and level of activity suggest that these factors must also be considered.  相似文献   

17.
The purpose of this study was to investigate the effect of the nonsteroidal anti-inflammatory drug carprofen on bone turnover and to monitor the progress of chronic osteoarthritic dogs by measuring different bone markers and radiographic evalutation of the corresponding joints. For this purpose 20 dogs of different ages and weight were devided into 2 groups. Ten dogs were assigned to Group R, treated with carprofen, and ten dogs to Group C, which had no treatment. Radiographs of the affected joints were reviewed initially and six months later at the end of the experiment. Blood was taken 8 times from each dog. Four bone markers (Osteocalcin (OC), bone-specific alkaline phosphatase (bAP), carboxyterminal telopeptide of type I collagen (ICTP), serum CrossLaps (CTX) as well as 1,25-(OH)2-Vitamin D and parathyroid hormone (PTH) were monitored for 6 months. No significant group effects on bone markers were notied. In Group R a decrease in ICTP concentrations during the first three months and a significant decrease in CTX concentrations in the first two months of the study were observed. The bone formation marker bAP revealed a significant decrease throughout the experiment. Three dogs of Group C and one dog of Group R showed osteoarthritic progression in the radiographs. The significant decrease of CTX indicates that carprofentreatment could have a retarding effect on the progression of osteoarthritis. Radiological findings suggest that carprofen may delay osteophyte formation. The monitoring of focal metabolic processes as in bone of a osteoarthrotic joint is difficult, since the bone mass is very active and metabolic processes may have an influence on the monitoring.  相似文献   

18.
As osteoarthritis is a major cause of lameness in horses in the United States, improving collagen health prior to onset and increasing collagen turnover within affected joints could improve health- and welfare-related outcomes. Through its positive effects on bone mineral content and density and its role in increasing collagen synthesis, silicon (Si) may slow the development and progression of osteoarthritis, thereby reducing lameness. This study evaluated the hypothesis that Si supplementation would increase cartilage turnover through increased collagen degradation and formation markers, as well as bone formation markers, resulting in reduced lameness severity when compared with controls. Ten mature Standardbred geldings were assigned to either a Si-treated (SIL) or control (CON) group and group-housed on pasture for 84 d. Horses were individually fed to ensure no cross-contamination of Si other than what was present in the environment. For the duration of the study, SIL horses received a Si–collagen supplement at the rate of 0.3 g supplement/(100 kg body weight day). Serum samples were taken weekly for osteocalcin, and plasma samples were taken on days 0, 42, and 84 for plasma minerals. On days 0, 42, and 84, subjective and objective lameness exams were performed, and radiographs and synovial fluid samples were taken from reference and osteoarthritic joints. Plasma minerals were similar in both groups and were lower on day 84 than on day 0 (P < 0.05). Si supplementation, fed at the manufacturer’s recommended rate, did not improve lameness or radiographs when compared with controls, and supplemented horses did not show greater collagen degradation and/or synthesis markers in synovial fluid than controls, indicating that cartilage turnover remained unaffected. However, a minimum beneficial threshold and range for Si supplementation standardized to body weight need to be established.  相似文献   

19.
The aim of this study was to determine whether bone biomarkers (osteocalcin, PICP, ICTP and CTX‐I) could be used to identify 2‐ and 3‐year‐olds at increased risk of fracture in the subsequent flat racing season. It was concluded that these bone biomarkers cannot be used to identify 2‐ and 3‐year‐olds that sustain a fracture. Whether bone biomarkers have better predictive value in older horses or when measured serially in the same animal remains to be determined.  相似文献   

20.
Biochemical markers of bone turnover have been shown to be useful as inexpensive and noninvasive tools for monitoring skeletal health. The reference range for bone markers in dogs has been set by different age groups. However, other sources of biological variations were not fully investigated in dogs. To explore whether sex influences the interpretation of bone marker data we examined serum bone markers in 33 male and 25 female dogs. The bone markers selected for this study were: bone alkaline phosphatase (BALP) and osteocalcin (OC) as indicators of bone formation, and C-terminal telopeptide (CTx) of type I collagen as marker of bone resorption. All concentrations of bone markers were lower, but still within the reference range reported for dogs. We found statistically significant differences of the median OC and CTx serum concentrations between males and females. The results of this study suggest that there are sex differences in biochemical markers of bone turnover in dogs which should be considered in interpretation of bone marker data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号