首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Humic acids (HA)  extracted with alkali from unfertilized and fertilized (NPK + organic manure) plots of  long-term, i.e. 45 years, field experiments were added as a supplemental source of nutrients or as the sole sources of carbon and nitrogen to semi-aerobic cultures of complex microbial communities indigenous to the same individual soils. Depending on the experimental conditions, between 2.7% and 47.3% of the added HA preparations were utilized in 12 months. In full strength nutrient media these numbers seemed affected by some novel microbially produced HA-like substances. An average utilization rate was 33% for the HA from an unfertilized   Orthic-Luvisol plot, whereas HA preparations extracted from fertilized plots of the Orthic-Luvisol or  a Dystric-Cambisol soil site were utilized to 27% and 15% respectively. The HA preparations re-isolated after 12 months from microbial cultures exhibited differences in elemental and structural characteristics, corresponding mainly with the nutrient status of the individual  cultures. Those from nitrogen-deficient cultures, e.g., were partly depleted in N. The Fourier-transformed infrared (FTIR) spectra of  the re-isolated HA preparations indicated loss in aliphatic structures. Aromatic structures were strongly associated with  mineral moieties and  remained rather  unaffected. The results indicate in general that an increase in soil organic matter contents as frequently observed in long-term fertilized soils could be attributed to an enhanced resistance of humic acid fractions to microbial degradation.  相似文献   

2.
Humic acids (HAs) from a pseudogley soil with various metal contents were added as supplemental sources of nutrients, or as the sole sources of carbon or nitrogen, to aerobic cultures of complex microbial populations indigenous to the same individual soils. Depending on nutrient conditions in the individual cultures and origin of HAs, between 44% and 67% of the added HAs were utilized. The lowest utilization rate was obtained for HAs from soil heavily contaminated with Mg. The overall carbon mineralization in the microbial cultures was significantly reduced in the presence of HAs. Simultaneously, the formation of microbial biomass was enhanced up to 261%. Variovorax (Alcaligenes) paradoxus, Pseudomonas fluorescens, and a yeast Cryptococcus sp. have been identified as the dominant microbial species utilizing HAs. The individual HA preparations re-isolated from the microbial cultures exhibited distinct changes in elemental and structural characteristics. Diminished contents of ash and alterations in infra-red absorptions indicated a splitting of organic and mineral components in HAs exposed to microbial activities.  相似文献   

3.
We used NMR spectroscopy to characterize humid acids extracted from soils that had received long-term application of 2 levels of biosolids to evaluate the soil organic matter (SOM) stability in biosolids-amended soils. The study also quantified fulvic acids (FAs), humic acids (HAs) and Fe/Al oxides. The soils were collected in 2004 from 7 fields, in Fulton County, southwestern Illinois, which received biosolids at a cumulative rate of 0 (control), 554 (low biosolids) and 1,066 (high biosolids) Mg ha−1. The application of biosolids increased both FA and HA contents, but biosolids-amended soil and control soil did not differ in FA/HA ratio. Biosolids application had no effect on water-soluble organic carbon content. Biosolids application increased the presence of Fe/Al in the SOM complex and lowered its C/Fe and C/Al ratios. 13C NMR spectra showed increased alkyl C and decreased aromatic C content in soil HAs with the application of biosolids, and the extent of such changes was higher with high than low biosolids treatment. Under biosolids application, the soil HAs’ C structure shifts from O-alkyl-dominant to alkyl-dominant. Biosolids application does not decrease SOM stability but rather increases the stability of soil humic substances.  相似文献   

4.
The effect of three annually consecutive additions of pig slurry at two rates (90 and 150 m3 x ha(-1) x year(-1) on soils and soil humic acids (HAs) was investigated in a field experiment under semiarid conditions. Soils and pig slurries were analyzed by standard methods. The HAs were isolated from soils and pig slurry by a conventional procedure based on alkaline extraction, acidic precipitation to pH 1, purification by repeated alkaline dissolutions and acidic precipitations, water washing, dialysis, and final freeze-drying. The HAs obtained were analyzed for elemental (C, H, N, S, and O) and acidic functional group (carboxylic and phenolic) composition, and by UV-vis, FT-IR, fluorescence, and ESR spectroscopies. With respect to the control soil, the pig slurry amended soils had greater pH and electrical conductivity, slightly larger total N content, and smaller values of C/N ratio. A decrease of total organic C was observed only in soils amended for 2 and 3 years at the higher slurry rate. With respect to control soil HA, pig slurry HA was characterized by larger contents of S- and N-containing groups, smaller acidic functional group and organic free radical contents, a prevalent aliphatic character, extended molecular heterogeneity, and smaller aromatic polycondensation and humification degrees. Amendment with pig slurry HA determines a number of modifications in soil HAs, including increase of C, S, and COOH contents, C/N ratios, and aliphaticity and decrease of extraction yields and N, O, phenolic OH, and organic free radical contents. These effects are generally more evident after the first year of slurry application and tend to disappear with increasing number of treatments. Most probably, over the years the slightly humified slurry HA is mineralized through extended microbial oxidation, whereas only the most recalcitrant components, such as S-containing, phenolic, and aliphatic structures, are partially accumulated by incorporation into soil HA.  相似文献   

5.
One of the challenges in organic farming systems is to match nitrogen (N) mineralization from organic fertilizers and crop demand for N. The mineralization rate of organic N is mainly determined by the chemical composition of the organic matter being decomposed and the activity of the soil microflora. It has been shown that long-term organic fertilization can affect soil microbial biomass (MB), the microbial community structure, and the activity of enzymes involved in the decomposition of organic matter, but whether this has an impact on short-term N mineralization from recently applied organic substances is not yet clear. Here, we sampled soils from a long-term field experiment, which had either not been fertilized, or fertilized with 30 or 60 t ha−1 year−1 of farmyard manure (FYM) since 1989. These soil samples were used in a 10-week pot experiment with or without addition of FYM before starting (recent fertilization). At the start and end of this experiment, soil MB, microbial basal respiration, total plant N, and mineral soil N content were measured, and a simplified N balance was calculated. Although the different treatments used in the long-term experiment induced significant differences in soil MB, as well as total soil C and N contents, the total N mineralization from FYM was not significantly affected by soil fertilization history. The amount of N released from FYM and not immobilized by soil microflora was about twice as high in the soil that had been fertilized with 60 t ha−1 year−1 of FYM as compared with the non-fertilized soil (p < 0.05).  相似文献   

6.
The humic acids (HAs) isolated by conventional procedure from rhizosphere (r) and bulk (c) soils were analyzed by means of chemical and physico-chemical techniques. Two different crops were selected, tomato (T) and artichoke (A), and each HA was fractionated by size-exclusion chromatography (SEC) into three fractions with increasing molecular size, respectively, Fraction I (FrI) < Fraction II (FrII) < Fraction III (FrIII). Elemental analysis data indicated greater N and S contents in the rhizosphere T-HAs, with respect to rhizosphere A-HA, which suggests the occurrence in the former ones of a large amount of organic nitrogen- and sulfur-containing compounds that are released by the rhizodeposition processes. Further, the three HA fractions from the bulk soils of the two series showed a gradual increase of C, H, and N contents, and a decrease of O and S contents and C/N and C/H ratios. These results suggested that the lowest molecular size fractions are richer in oxygenated functional groups, whereas the higher molecular size fractions are richer in N-containing groups and structural C- and H-containing units. The three HA fractions from the rhizosphere soils of the two series showed a gradual decrease in C content, and an increase of H, N, and O contents, which suggests the possible incorporation into soil HAs of a multitude of C-containing compounds of low molecular size released by plant roots. The FT-IR data, in general, suggested that the contents of carboxylic, phenolic and N-containing groups and polysaccharide-like components in HAs from rhizosphere soils are larger than those of HAs from the corresponding bulk soils. Further, the FrI fraction consisted mainly of simple structural units, likely quinonic and phenolic units with a prevalent aromatic character, whereas the FrII and, especially, FrIII fractions featured a mixed aliphatic/aromatic nature and a greater molecular complexity. The extent of these differences appeared to depend on the plant species and age, and is mainly due to the partial incorporation into rhizosphere HAs of typical root exudate components, such as amino acids, amides, aliphatic and aromatic acids of low molecular size, polysaccharides and sugars, fatty acids and sterols, and enzymes.  相似文献   

7.
Background, Aim and Scope   Humic acids (HAs) are the most important humified component of dissolved organic carbon (DOC) present in sewage water used for irrigation. It is well known that HAs affect the toxicity and availability of heavy metals (HMs) in soil-plant systems, and may increase the human exposure to HMs in contaminated soil through plant uptake. This study was conducted to assess the effects of HAs on HM availability, plant growth and HM uptake. Materials and Methods: With wheat (Triticum aestivum) as a test plant, a greenhouse pot experiment was conducted to investigate the effects of HAs in irrigation water on the phytoavailability of cadmium (Cd) and lead (Pb) in soil. Cd and Pb were added to the soil at concentrations of 1.5 and 150 mg/kg, respectively. Wheat seedlings grown in Cd and Pb-contaminated soil were watered with 4 levels of HA solution (0, 140, 280 and 560 mg/kg of HAs, respectively). Results: In control and Pb treatments, both plant biomass and plant HM concentrations increased with increasing concentrations of HAs in the solution. Plant biomass was markedly decreased when metal concentrations in plants increased, particularly in Cd and Cd/Pb treatments. In the soil, extractable metals, and water soluble organic carbon (WSOC) and its fractions significantly increased with increasing HA concentrations. Discussion: The results suggested that the application of HAs in barren soils may improve plant nutrition by mobilizing soil nutrients and providing plants with carbon sources. On the other hand, HAs present in sewage water may increase both the availability and transfer of HMs in the soil-plant continuum and subsequently increase human exposure to HMs in polluted soil. Conclusions. Conclusions: HA solution as irrigation water significantly increased HM availability to plants cultivated in the HM-amended soil and may increase the environmental risk of sewage irrigation. Recommendations and Perspectives: These results suggested that, when assessing the effect of sewage irrigation on soil quality, HAs contained in sewage water should be taken into consideration.  相似文献   

8.
We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were formed on old lava (about 9 000 years ago), old tephra (about 8 700 years ago), recent lava (about 2 600 years ago) and recent tephra (about 3 600 years ago). A part of the organic matter of the soils, deprived of HAs and fulvic acids (FAs), was isolated by glycerol extraction. The GEOF can not be extracted with alkaline solutions, probably because it is closely bound to the mineral component of the soil. The characterization of the extracted organic fraction was carried out using elementary and functional group analysis and Fourier transform infrared (FT-IR) spectroscopy. About 20 extractions were necessary to extract the HA and FA from the older soils and about 10 extractions to extract them from the younger soils. Data showed that the GEOFs had a greater ash content and a smaller N content, as well as a greater presence of aliphatic compounds and carboxylic groups as compared to the HA extracted from the same soil. The GEOFs extracted from younger soils also had a lower yield, ash and COOH-group content, and were more aliphatic than the GEOF extracted from older soils. Finally, the GEOFs were more closely bound to the amorphous component of the soil (‘short-range’ minerals) and consequently less subject to biodegradation.  相似文献   

9.
Autotrophic nitrification in a fertilized acid heath soil   总被引:1,自引:0,他引:1  
The nature of nitrification in fertilized, acid heath soils was studied. Autotrophic ammoniumand nitrite-oxidizing bacteria were enumerated in non-fertilized and fertilized heath soils. Ammoniumoxidizing bacteria were not detected in the non-fertilized soils, whereas nitrite-oxidizing bacteria were only found in the organic layer. Enrichment of acid heath soils with NPK fertilizer increased the number of autotrophic ammonium- and nitrite-oxidizing bacteria in the organic (F + H) layer as well as in the upper part of the mineral (Ah) layer, although the pH of the soil hardly changed with fertilization. In soil suspensions of the upper mineral layer of fertilized heath soils, nitrification was shown to be autotrophic as nitrification was completely inhibited by the addition of nitrapyrin under both neutral and acid conditions. Stimulation of nitrification by addition of peptone appeared to be due to the increase in pH caused by ammonification of peptone. Under acid conditions, nitrification seemed to be coupled with net nitrogen mineralization. The possible influence of vegetation on nitrification is discussed.  相似文献   

10.
Microorganisms play a critical role in nutrient transformation, soil health and for sustaining the productivity of soils. Effects of long-term cropping, fertilization, manuring and their integration on microbial community were studied in soil samples from five long-term fertilizer experiments under various rainfed production systems in the semi-arid tropics (SAT) of India. Microbial population counts were analyzed by dilution plating and were in turn compared with different parameters such as soil treatments, soil type, soil microbial biomass C, soil organic C, rainfall and soil pH. The counts were high in treatments where combinations of organic and inorganic fertilizers were applied compared to control. Vertisols showed larger organic carbon levels than Alfisols. Fungal population was higher in acidic soils and in treatments under continuous inorganic fertilization treatments whereas a high number of bacteria were found in integrated use of organic and inorganic fertilizers. At most of the locations soil organic C and microbial biomass C showed significant positive (p ≤ 0.05) correlation with microbial populations. Thus, results suggest that even under arid and semi-arid tropical conditions, regular addition of nutrients in an integrated manner could improve soil organic carbon and microbial population counts. For each production system, better carbon sequestration management practices were identified.  相似文献   

11.

Purpose

The aim of this study was to evaluate in the medium term (5 years) the effect of two organic amendments, which were spiked to a degraded soil as a strategy for bioremediation, on the amount and characteristics of soil humic acids (HAs) and their ability to associate with certain extracellular enzymes.

Materials and methods

Soil samples were collected in an experimental field where 5 years earlier, a mixture of the organic fraction of household waste and sewage sludge (2:1 ratio), both composted (composted residue, CR) and non-composted (fresh residue, FR), had been added in triplicate at rates equivalent to 1 % (D1) and 3 % of organic carbon (D2) to 30-m2 plots as a strategy for degraded soil restoration. Humic substances (HSs) and HAs were extracted from the collected soil samples and submitted to chemical, biochemical, spectroscopic (FTIR), and chemical-structural (CPMAS 13C NMR) analyses.

Results and discussion

After 5 years, the amended soils showed significantly higher HS and HA content than did the control soil, and the differences with respect to the control were greater with compost addition than with FR addition. The HA from the amended soils had higher H, N, and S contents than the HA from the non-amended soil in addition to a lower oxygen content and lower O/C ratio values. Furthermore, the FTIR spectra of the HA from the amended soils showed a higher absorption intensity in bands corresponding to aliphatic and amide-carboxylic groups and polysaccharide structures and a lower absorption intensity in bands corresponding to carbonyls and carboxylic groups than the HA from the control. These results were confirmed by 13C-NMR spectra, which showed a clear increase of aliphatic compounds in the HA from the amended soils with respect to the HA from the control. HA spectra were not greatly influenced by the maturity of the amendment or by the application dose.

Conclusions

In general, the addition of organic amendments increased the quantity of enzymes immobilized in the humic colloid. Furthermore, the addition of the composted residues favored to a greater extent the immobilization of the abovementioned enzymes, which represent a biological reservoir in the soil. This is of great importance since these enzymes possess functional capacity even when the soils are under conditions that are stressful or unfavorable for microbial life. An increase in the quantity of immobilized enzymes such as that observed in amended soils supposes an important improvement in soil quality.
  相似文献   

12.
The main physical and chemical properties of a composted mixture of sewage sludge and wood chips, the nonamended soil, and soils amended with two rates of the compost, in the presence or absence of barley, were determined. Humic acids (HAs) isolated from these materials were characterized by various methods including elemental analysis and Fourier Transform infrared (FTIR), fluorescence, and electron spin resonance spectroscopies. With respect to the nonamended soil HA, the compost HA was characterized by a prevalent aliphatic character, low oxygenated functional group content, high contents of S, N-containing groups and polysaccharide components, low free radical concentration, high molecular heterogeneity, and low degrees of ring polycondensation, polymerization and humification. Compost application at the low rate appeared to induce only limited modifications in the structural and chemical properties of HAs from amended soils, whereas apparent modifications of HA properties occurred where a high amendment rate was used. The absence or presence of barley cultivation appeared not to exert any measurable effect on the composition and properties of compost-amended soil HAs.  相似文献   

13.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

14.
Purpose

Biochar is one of the most widely used ameliorants for soil amendment, which is known as factor which rises crop yields and levels of soil biological activity. Nowadays, it is under investigated how biochar application affects the dynamics of the humic components and whole soil organic matter (SOM) and the processes of its alteration. This investigation is aimed to evaluate the influence of biochar on the content, composition, and transformation of humic acids (HAs) as the main component of the SOM.

Materials and methods

The incubation experiment was carried out on three Podzol Antric soils, with varying amounts of initial total organic carbon. The incubation time was 90 days, using biochar gravimetric doses of 0.1 and 1.0%. The biochar was produced by fast pyrolysis of birch and aspen wood at 550 °С. Humus composition was analyzed for the organic matter fractions extracted with 0.1 M NaOH (containing HAs 1 + fulvic acids (FAs) 1) and 0.1 M Na4P2O7 (containing HAs 1 + FAs 1 + HAs 2 + FAs 2). Isolated HAs were characterized for their elemental composition (C, N, H, and S) and molecular composition with the use of solid-state 13C nuclear magnetic resonance (13C-NMR) techniques.

Results and discussion

We found that 0.1% of biochar amendment does not influence SOM mineralization, but 1.0% of biochar increases the mineralization by 15–18%. This process is accompanied by changes in the composition and properties of the HS. The increased proportion of HA aromatic fragments in biochar indicates an increasing of their stability. However, in soils with high humus content and a significant amount of insoluble matter, the processes of mineralization and the growth of HAs are taking place simultaneously. The replenishment of HAs could be the outcome of both the intensification of the transformation processes (mineralization and humification) of the more sustainable insoluble matter compounds and the humification of the biochar itself.

Conclusions

The influence of biochar on humification in Podzol Antric soils was revealed on the basis of incubation experiment. Both negative and positive changes under biochar in HS system were demonstrated. The active decrease of humus total contents and also the labile HS ought to qualify as negative changes. The increase of HA chemical maturity that leads to the stability of humus in whole as well as the intensive new HA formation thought to qualify as positive changes.

  相似文献   

15.
The adsorption of three humic acid (HA) preparations by clays—montmorillonite (Wyoming, USA) and palygorskite (Kolomenskoe district, Moscow oblast)—has been studied. The HA preparations were isolated from samples of the humus-accumulative horizons of a leached chernozem (Voronezh) and a chestnut soil (Volgograd), and a commercial preparation of sodium humate (Aldrich) was also used. The solid-state 13C NMR spectroscopy and IR spectroscopy revealed the selective adsorption of structural HA fragments (alkyls, O-alkyls (carbohydrates), and acetal groups) on these minerals. As a result, the aromaticity of the organic matter (OM) in the organic-mineral complexes (OMCs) and the degree of its humification have been found to be lower compared to the original HA preparations. The fractionation of HAs is controlled by the properties of the mineral surfaces. The predominant enrichment of OMCs with alkyls has been observed for montmorillonite, as well as an enrichment with O-alkyls (carbohydrates) for palygorskite. A decrease in the C : N ratio has been noted in the elemental composition of the OM in complexes, which reflected its more aromatic nature and (or) predominant sorption of N-containing structural components of HA molecules. The adsorption of HA preparations by montmorillonite predominantly occurs on the external surface of mineral particles, and the interaction of nonpolar alkyl groups of HAs with this mineral belongs to weak (van der Waals, hydrophobic) interactions. The adsorption of HA preparations by palygorskite is at least partly of chemical nature: Si-OH groups of minerals are involved in the adsorption process. The formation of strong bonds between the OM and palygorskite explains the long-term (over 300 million years) retention of fossil fulvate-type OM in its complex with palygorskite, which we revealed previously.  相似文献   

16.
《Applied soil ecology》2007,35(3):610-621
Green manuring practices can influence soil microbial community composition and function and there is a need to investigate the influence compared with other types of organic amendment. This study reports long-term effects of green manure amendments on soil microbial properties, based on a field experiment started in 1956. In the experiment, various organic amendments, including green manure, have been applied at a rate of 4 t C ha−1 every second year. Phospholipid fatty acid analysis (PLFA) indicated that the biomass of bacteria, fungi and total microbial biomass, but not arbuscular mycorrhizal (AM) fungi, generally increased due to green manuring compared with soils receiving no organic amendments. Some differences in abundance of different microbial groups were also found compared with other organic amendments (farmyard manure and sawdust) such as a higher fungal biomass and consequently a higher fungal/bacterial ratio compared with amendment with farmyard manure. The microbial community composition (PLFA profile) in the green manure treatment differed from the other treatments, but there was no effect on microbial substrate-utilization potential, determined using the Biolog EcoPlate. Protease and arylsulphatase activities in the green manure treatment were comparable to a mineral fertilized treatment receiving no additional C, whereas acid phosphatase activity increased. It can be concluded that green manuring had a beneficial impact on soil microbial properties, but differed in some aspects to other organic amendments which might be attributed to differences in quality of the amendments.  相似文献   

17.
Humic acids (HA) extracted from Chernozem (Haplic Phaeozem), Brown Earth (Cambic Umbrisol) and Podzol (Humic Podzol) were added as a supplemental source of nutrients, or as the sole sources of carbon and nitrogen to aerobic cultures of complex microbial communities indigenous to the same individual soils. Depending on nutrient conditions in the individual cultures and origin of HA, between 14 and 86 % of the added HA was utilized. The formation of microbial biomass was enhanced up to six fold in the full-strength nutrient media supplemented with humic acids but was strongly inhibited if HA served as the sole C source. HA preparations re-isolated from the microbial cultures exhibited elemental and structural changes characteristic for early diagenetic transformations of humic substances. These included an increase in carbon content, C:N ratio, infra-red absorption typical for aromatics, and a decrease in infra-red absorption associated with aliphatic acids, nitrogenous and carbohydrate-like substances.  相似文献   

18.
J. Kwiatkowska  N. Senesi 《Geoderma》2008,148(2):200-205
In this study a typical grey-brown podzolic soil was amended with different doses of a brown coal-based preparation called Rekulter (R) largely used in Poland. After seven years, soils were analyzed and humic acids (HAs) were extracted both from the control soil and from the amended soils. All HAs were characterized by Fourier transform infrared spectroscopy and fluorescence spectroscopy both in emission, excitation and synchronous-scan mode and as Excitation-Emission-Matrix (EEM) contour maps. A higher carbon content was observed in the amended soils whereas significant differences were highlighted between the unamended and the amended soil HAs. HAs from amended soils showed a higher content of carboxyl groups and a more aromatic character, particularly HA extracted from the soil amended with the highest dose of R.  相似文献   

19.
A high level of biological degradation is usually observed in soils under semiarid climate where the low inputs of vegetal debris constraint the development of microbiota. Among vegetal inputs, cellulose and lignin are dominant substrates but their assimilation by the microbial community of semiarid soils is yet not understood. In the present study, 13C-labeled cellulose and 13C-labeled lignin (75 μg 13C g−1 soil) were added to two semiarid soils with different properties and degradation level. Abanilla soil is a bare, highly degraded soil without plant cover growing on it and a total organic C content of 5.0 g kg−1; Santomera soil is covered by plants (20% coverage) based on xerophytic shrubs and has a total organic C content of 12.0 g kg−1. The fate of added carbon was evaluated by analysis of the carbon isotope signature of bulk soil-derived carbon and extractable carbon fractions (water and sodium-pyrophosphate extracts). At long-term (120 days), we observed that the stability of cellulose- and lignin-derived carbon was dependent on their chemical nature. The contribution of lignin-derived carbon to the pool of humic substances was higher than that of cellulose. However, at short-term (30 days), the mineralization of the added substrates was more related to the degradation level of soils (i.e. microbial biomass). Stable isotope probing (SIP) of phospholipid fatty acids (PLFA-SIP) analysis revealed that just a minor part of the microbial community assimilated the carbon derived from cellulose and lignin. Moreover, the relative contribution of each microbial group to the assimilation of lignin-derived carbon was different in each soil.  相似文献   

20.
Declining rates of soil respiration are reliably observed during long-term laboratory incubations. However, the cause of this decline is uncertain. We explored different controls on soil respiration to elucidate the drivers of respiration rate declines during long-term soil incubations. Following a long-term (707 day) incubation (30 °C) of soils from two sites (a cultivated and a forested plot at Kellogg Biological Station, Hickory Corners, MI, USA), soils were significantly depleted of both soil carbon and microbial biomass. To test the ability of these carbon- and biomass-depleted (“incubation-depleted”) soils to respire labile organic matter, we exposed soils to a second, 42 day incubation (30 °C) with and without an addition of plant residues. We controlled for soil carbon and microbial biomass depletion by incubating field fresh (“fresh”) soils with and without an amendment of wheat and corn residues. Although respiration was consistently higher in the fresh versus incubation-depleted soil (2 and 1.2 times higher in the fresh cultivated and fresh forested soil, respectively), the ability to respire substrate did not differ between the fresh and incubation-depleted soils. Further, at the completion of the 42 day incubation, levels of microbial biomass in the incubation-depleted soils remained unchanged, while levels of microbial biomass in the field-fresh soil declined to levels similar to that of the incubation-depleted soils. Extra-cellular enzyme pools in the incubation-depleted soils were sometimes slightly reduced and did not respond to addition of labile substrate and did not limit soil respiration. Our results support the idea that available soil organic matter, rather than a lack microbial biomass and extracellular enzymes, limits soil respiration over the course of long-term incubations. That decomposition of both wheat and corn straw residues did not change after major changes in the soil biomass during extended incubation supports the omission of biomass values from biogeochemical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号