首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thisstudy investigated the effects of shelter surface area (SSA) on the feeding,growth and survival of the donkey-ear abalone, Haliotisasinina reared in mesh cages (0.38×0.38×0.28m) suspended in flow-through tanks (water volume = 6m3). Cages had sections of polyvinylchloride (PVC) thatprovided shelters with surface area of 0.22 m2, 0.44m2 and 0.66 m2.Hatchery-produced abalone with initial shell length of 32 ± 1mm and wet weight of 7.5 g were stocked at 50individuals cage–1 that corresponded to stocking densities ofca. 227, 113 and 75 abalone m–2 of SSA. The ratios of sheltersurface area to cage volume (SSA:CV) were 5.5, 11 and 16.5. Abalones wereprovided an excess red seaweed Gracilariopsis bailinae(= Gracilaria heteroclada) at weekly intervals overa 270-day culture period. Feeding rates (18–20% of wet weight), foodconversion ratio (26–27) and percent survival (88–92%) did notdiffer significantly among treatments (p > 0.05). Body size at harvest rangedfrom 56 to 59 mm SL and 52 to 57 g wet body weightwith significant differences between abalone reared at SSA 0.22m2 and 0.66 m2 (p < 0.05).Abalone reared in cages with 0.66 m2 SSA grewsignificantly faster at average daily growth rates of 132 m and188 mg day–1. Stocking densities of 75–113m–2 SSA in mesh cages suspended in flow-throughtanks resulted in better growth of abalone fed red seaweed.  相似文献   

2.
Intensification in the commercial culture of prawns can have a significant impact on the water quality and hence on the survival, growth and the surrounding environment. The present study aims to evaluate the effects of stocking density on the water quality and performance of the western king prawns (Penaeus latisulcatus) and the nutrient budget of the culture environment. Four stocking densities of 4, 8, 16 and 32 prawns m?2 were tested in 12 recirculating systems. Prawn weight and specific growth rate increased with decreasing stocking density, while the survival rate showed the reverse trend. The mean total ammonia nitrogen, nitrate nitrogen, total phosphorus and soluble reactive phosphorus were significantly higher (P<0.05) at the higher stocking density. The nutrient budget revealed that the prawns could assimilate only 9.34–20.13% nitrogen and 4.97–11.25% phosphorus of the total nutrient inputs. The drained water at harvest was the major sink of phosphorus and nitrogen at stocking densities of 4, 8 and 16, which accounted for 45.59–64.82% and 44.28–65.62% of the total inputs, respectively, while a significant proportion of nitrogen sunk into the sediment at 32 prawns m?2. The study suggested that the stocking densities of western king prawns can be up to 16 prawns m?2 in the recirculating water environment.  相似文献   

3.
ABSTRACT

Catla, Catla catla, and rohu, Labeo rohita, fry were cultured at 6,667,8,333, and 10,000/m3 in 15-L aquaria in recirculating systems for 30 days. Larvae were fed with exogenous live plankton. Cultures at 6,667 and 8,333 larvae/m3 showed significantly (P <0.05) higher survival and growth than larvae stocked at 10,000 larvae/m3 for both species. Food was more efficiently used in low stocking density, as evident from the significantly (P <0.05) lower values of feed conversion ratio in lower density compared to those for high stocking density. Specific growth rate of both species was high in the early stage and gradually declined along with the ontogenic development. Dissolved oxygen level was higher in the low density system than in the high density one. Values of phosphate and COD increased during the experiment. Ammonia, nitrite, phosphate, and COD levels were significantly (P <0.05) higher in the 10,000 larvae/m3 density system than in the other two systems for both species. Considering the survival and growth of fish and values of water quality parameters, it appears that stocking density can be raised up to 8,333 larvae/m3 with a recirculating system for both catla and rohu.  相似文献   

4.
The effect of stocking density on the survival and growth of pikeperch, Sander lucioperca (L.), larvae was examined in two consecutive experiments. In experiment I, 4-day-old larvae [body wet weight (BW): 0.5 mg; total body length (TL): 5.6 mm] were reared in 200-l cylindro-conical tanks in a closed, recirculating system (20 ± 0.5°C) at three stocking densities (25, 50 and 100 larvae l−1) and fed a mixed feed (Artemia nauplii and Lansy A2 artificial feed) for 14 consecutive days. At densities of 25 and 100 larvae l−1, growth rate and survival ranged from 2.7 to 1.9 mg day−1 and from 79.2 to 72.3%, and fish biomass gain ranged from 0.6 to 2.0 g l−1, respectively. There were two periods of increased larval mortality: the first was at beginning of exogenous feeding and the second during swim bladder inflation. In experiment II, 18-day-old larvae (BW: 35 mg; TL: 15.6 mm) obtained from experiment I were reared under culture conditions similar to those of experiment I, but at lower stocking densities (6, 10 and 15 larvae l−1). The fish were fed exclusively with artificial feed (trout starter) for 21 consecutive days. At densities of 6 and 15 larvae l−1, the growth rate and fish biomass gain ranged from 28.8 to 23.1 mg day−1 and from 2.0 to 3.3 g l−1, respectively. The highest survival (56.5%) was achieved at a density of 6 larvae l−1. Mortality at all densities was mainly caused by cannibalism II type behaviour (27–35% of total). In both experiments, growth and survival were negatively correlated and fish biomass gain positively correlated with stocking densities. The present study suggests that the initial stocking density of pikeperch larvae reared in a recirculating system can be 100 individuals l−1 for the 4- to 18-day period post-hatch and 15 individuals l−1 for the post-19-day period.  相似文献   

5.
The growth rate of disk abalone, Haliotis discus hannai, energy consumption and changes in water quality were monitored in a pilot-scale recirculating aquaculture system (RAS) for 155 days. Baffles were installed in the RAS culture tanks to enlarge the attachment area and clean out solid waste materials automatically by hydraulic force only. The experimental disk abalones, of shell length 24.5 ± 0.5 mm, were cultured at three stocking densities, 700, 1300 and 1910 individuals/m2 bottom area, in triplicate. The abalones were fed with sea mustard, Undaria pinnatifida, once a week. The abalone feed conversion rates and daily growth rates ranged from 24.5 to 25.9 and 0.32 to 0.36%, respectively. Their daily shell increments and survival rates ranged from 67.7 to 78.6 μm/day and 87.6–92.2%, respectively. The growth in weight tended to decrease at a culture density of 1300 individuals/m2 bottom area, while shell increments and survival rates were acceptable at this density. The total power consumption for heating was 1185.4 kW, comprising 30.2% of the total power consumption, while the average water exchange rate was only 2.9% per day. The total ammonia nitrogen stabilized below 0.07 mg/L, after conditioning of the biofilter. The NO2–N, NO3–N and total suspended solid concentrations were also maintained within acceptable ranges for the normal growth of disk abalone. The use of the RAS with these newly designed culture tanks for disk abalone culture produced 1300 individuals/m2 bottom area with a water exchange rate of only 2.9% per day and used about one-tenth of the heat energy of a conventional flow-through system.  相似文献   

6.
为研究配合饲料条件下循环水养殖系统(RAS)中养殖密度对松江鲈生长的影响,选取体长为(2.97±0.12)cm、体质量为(0.26±0.03)g的松江鲈,分别按40尾/m2(A组)、80尾/m2(B组)和120尾/m2(C组)共3个养殖密度,在RAS中进行了为期240 d的养殖试验。试验结果显示:A组鱼的终末体质量、终末体长、体质量日增长量、存活率等均显著高于其他两组,A组鱼的体长日增长量显著高于C组(P<0.05);不同密度组间鱼体肥满度无显著性差异(P>0.05)。试验组单位面积产量由高到低依次为:C组(2.83 kg/m2)、B组(2.51 kg/m2)、A组(1.72 kg/m2)。试验组鱼体质量与体长均呈幂函数相关(m=aLb,a=0.007 6~0.008 9,b=3.123 6~3.209 4),体长、体质量生长均以三次函数拟合较好。各组间的鱼体长、体质量变异系数均差异显著(P<0.05),其中B组最小...  相似文献   

7.
The feeding trial was conducted in 80 days to assess the effects of stoking densities on growth, digestive enzymes activities, serum biochemical parameters and antioxidant status of juvenile genetically improved farmed tilapia (GIFT, Oreochromis niloticus) reared in in‐pond raceway recirculating culture system (IPRS). Fish (initial body weight: 6.25 ± 0.32g ) were randomly allotted to six in‐pond raceways (22 × 5 × 2.5 m) stocked at three different stocking densities: low stocking density (LSD, 0.28 kg/m3), medium stocking density (MSD, 0.57kg /m3) and high stocking density (HSD, 0.85 kg /m3). The results indicated that no significant differences were observed in final body weight, weight gain and specific growth rate of GIFT reared at different stocking densities on day 20 (p > 0.05). Fish reared in the HSD group showed poor growth than those reared in the LSD and MSD groups on day 50, but fish reared in the MSD and HSD groups showed poor growth than those reared in the LSD group on day 80. There were no significant differences found in digestive enzyme activities, serum cortisol, lysozyme and superoxide dismutase (SOD) content, hepatic catalase (CAT), total SOD, total antioxidant capacity (T‐AOC) activities and malondialdehyde (MDA) content among fish reared at different densities treatments (p > 0.05). Fish reared in the HSD group exhibited significant higher red blood cell number, haematocrit and glucose (GLU) contents on day 80 (p < 0.05). In brief, under this trial conditions, high stocking densities (0.57 kg/m3) resulted in decrease in growth, and GIFT might have an adaptation capability to crowding stress without a change in antioxidant activity, some physiological and immune parameters.  相似文献   

8.
Brook trout (Salvelinus fontinalis) are a commercially important coldwater species reared in Wisconsin and the Midwestern United States. Brook trout are raised by private, tribal, state, and federal fish hatchery facilities in Wisconsin. Approximately 10% of private coldwater aquaculture operations are presently raising brook trout of various strains for stocking uses and a limited amount for food markets. Growing brook trout to a larger size, if they can be reared in a shorter time span, may present a potential new sector for the aquaculture market in the Midwestern US. The present study reports hatchery production attributes, i.e., growth, survival, fin condition, feed efficiency, water chemistry requirements and general husbandry of Lake Superior strain (Nipigon) brook trout reared in a recirculating aquaculture system (RAS), operated at an average temperature of 13 °C. The recycle system at NADF reared 1379 kg of brook trout over a 10-month period from fingerling (9 g) to market size (340–454 g). The trout grew faster (0.84 g/day and 0.64 mm/day) in the RAS than fish cultured in traditional flow-through tank culture utilizing ground water at 7.6 °C (0.14 g/day and 0.35 mm/day). Final average weight of RAS fish was 260 g, while the flow-through fish averaged 65 g. Final tank densities for the RAS averaged 40.4 kg/m3 while flow-through tanks averaged 31.2 kg/m3. Throughout the project, feed conversions in the RAS ranged from 0.9 to 1.3. Water quality variables such as TAN, nitrite, DO, temperature, TSS, CO2, ph, etc. were within safe limits for brook trout and will be discussed. It does appear from this initial research project that market size brook trout can be raised successfully in a recycle system within a similar time frame as a rainbow trout produced in a Wisconsin typical flow-through facility.  相似文献   

9.
The aims of this experiment were (1) toquantify the ability of grass carp to processduckweed and (2) to assess indirect changes inwater chemistry and phytoplankton community,caused by grass carp feeding. Yearling grass carp sized 126 ± 7.7 mm (TL) and19.6 g in weight were kept in 9 laminate tanksof 1 m3 for 14 days. Two stockingdensities (2 and 6 fish per m3) anda control without fish were used. Standard growthrate (SGR) of grass carp fed exclusively onduckweed was 0.70% body weight (BW) d–1and food conversion ratio (FCR) reached 2.0(average water temperature =21.1 ± 3.8 °C). Daily food intakewas 0.2 g of duckweed dry weight (DW), i.e.,1% of average BW of grass carp. SGR ofduckweed growing in 20 × 20 cm floatingenclosures, differed significantly[F(6,2) = 417.9; p = 0.002] between the twostocking densities of grass carp and thecontrol tanks (without fish). Mean SGR ofduckweed was 0.02 g g–1 day–1 and thehighest SGR was recorded in the control tanks.Both decrease in NH4-N and increase inNO2-N concentrations differedsignificantly between the treatments[F(2,2) = 45.3; p = 0.02 and F(2,2) = 19.2; p = 0.04 respectively]. Changes in other nitrogenand phosphorus components (NO3-N, TN, TPand PO4-P) caused by stocking of grasscarp were not significant. Biomass ofphytoplankton, dominated by filamentous algaeand blue-greens, increased proportionately tostocking density of grass carp. Althoughduckweed has a large potential for nutrientremoval, the most common pathway for thenutrients released through grass carp grazingif duckweed cover is loose is theirincorporation into phytoplankton biomass.  相似文献   

10.
The purpose of this experiment was to observe the impact of stocking density on growth and food consumption of juvenile Sepia pharaonis reared at 23 and 28°C. Two groups of 32 cuttlefish each were reared in closed recirculating seawater systems with water temperatures of 23°C (group A) and 28°C (group B). Each group was divided into three treatments with two replicates per treatment: low-density (equivalent to 20 cuttlefish m−2), medium-density (equivalent to 100 cuttlefish m−2), and high-density (equivalent to 200 cuttlefish m−2). Measured amounts of live food were added three times a day and the wet body weight of each cuttlefish was measured once a week during the 42-day study. Cuttlefish in group B had higher growth rates and food consumption than cuttlefish in group A. The different stocking densities in group B affected the size of the cuttlefish whereas the stocking densities of the cuttlefish in group A treatments did not lead to different sizes between densities. Overall, the gross growth efficiency of the high-density treatments was lower than that of the low-density treatments, as was the weight of the cuttlefish in the high-density treatment. Although the wet weights of group A treatments were not significantly different (P > 0.05), the wet weights of the cuttlefish in the high-density, group B, treatment were lower than those in the low and medium density treatments. This decrease in individual size suggests that stocking densities of 100 to 200 cuttlefish m−2 may interfere with growth.  相似文献   

11.
Growth, survival and shell normality of hatchery reared juvenile Babylonia areolata were examined at four water exchange regimes of 0, 15, 30 and 60 day intervals in a recirculating seawater system over a 120 day experimental period. Higher body weight gains and shell length increments were observed in snails held at water exchange of 15 day intervals, especially when compared with those held at water exchange of 60 and 0 day intervals (P < 0.05). Water exchange affected the final survival of B. areolata. At the end of the experiment, final survival rates were 65.47 ± 0.66%, 87.48 ± 0.67%, 86.34 ± 0.92% and 78.50 ± 3.26% for snails held in the water exchange treatments of 0, 15, 30, and 60 day intervals, respectively, and those of shell abnormality were 97.65 ± 1.04%, 93.09 ± 2.34%, 97.08 ± 1.18% and 96.71 ± 1.84%, respectively. The present study concluded that water exchange regimes of the recirculating system influenced growth, survival, shell normality and water quality of the recirculating culture system for this species.  相似文献   

12.
为了评估全封闭循环水养殖系统中养殖密度对钝吻黄盖鲽生长的影响及水质变化情况,将体质量为(250.00±50.83)g的钝吻黄盖鲽分成8个试验组(放养密度分别为18、22、26、30、34、38、42、46 kg/m3),进行了3个月的饲养试验,检测不同养殖密度下鱼的成活率、体质量增长率及饲料系数,同时对试验期间氨氮、亚硝酸盐和溶解氧等各项水质指标的动态变化进行监测。试验结果显示,各试验组鱼的成活率均达到96%以上,但随着养殖密度的增加,钝吻黄盖鲽的成活率总体呈现降低的趋势;低密度组(18 kg/m3)的体质量增长率最高,为36.1%,高密度组(46 kg/m3)的体质量增长率最低,为24.8%,且体质量增长率随着养殖密度的增加而逐渐降低;随着养殖密度的增加,饲料系数呈逐渐升高的趋势;养殖期间各项水质指标均保持在适宜钝吻黄盖鲽生长的范围内。结果表明,在本试验的循环水养殖系统中,综合考量养殖生长指标及单位面积产量,钝吻黄盖鲽规模化生产的最适养殖密度为42~46 kg/m3。  相似文献   

13.
An experimental trial was conducted for 90 days to evaluate the growth performance, immunophysiological response of GIFT strain of Tilapia in biofloc‐based rearing system and to assess the relative percentage survival in 3 days after challenging with the virulent strain of Aeromonas hydrophila. Fingerlings with an average body weight 0.98 ± 0.06 g were stocked in triplicate at different stocking densities of 200 (SD1), 250 (SD2), 300 (SD3) and 350 (SD4) m?3 in biofloc‐based treatments and 150 (C) m?3 in control (clear water). Biofloc‐based units (SD1 and SD2) obtained significantly better (P < 0.05) growth performances at the end of the experimental period. Mean body weight of fish in biofloc‐based units showed a decreasing trend with increase in stocking density with 100% survival in all units including control. The stress parameters were significantly lower in biofloc‐based rearing units especially in treatments SD1 and SD2 as compared to the control. The fish from the biofloc‐based units (SD1 and SD2) possessed significantly (P < 0.05) higher immune status as compared to control and other biofloc treatments in terms of respiratory burst, serum lysozyme and myeloperoxidase activity. Relative survival percentages were significantly better in biofloc treatments with highest in SD1 and SD2 (83.33%) after challenge study. GIFT strain of Tilapia at higher stocking densities 200–250 nos m?3 can be taken as optimum stocking density whereas higher stocking densities up to 350 nos m?3 can be reared in the biofloc systems without compromising the growth and immunity.  相似文献   

14.
The effects of time restricted feeding, possibility of bottomfeeding and stocking density on the growth of Arctic charr(Salvelinus alpinus L.) were examined in fish held at lowtemperature (<2 °C). Fish fed for a restricted time (1 h) hadsignificantly (p < 0.05) lower specific growth rate (0.15 vs0.32% per day) than those fed the same ration over an extendedtime period (12 h). Increasing stocking densities had a positive andsignificant effect (p < 0.05) on growth with SGR increasing from 0.27to 0.52% per day at 2–30 kg m-3. Fish withaccess to feed on the tank floor had a significantly higher (p <0.05) growth rate (0.3 vs 0.13% per day) than those without thepossibility to feed from the bottom. When fish were held underconditions without access to the bottom a doubling of the feed rationdid not result in a significant (p > 0.05) increase in growth rate(0.13 vs 0.12%percnt; per day).  相似文献   

15.
Effect of salinity on carrying capacity of a recirculation system for Nile tilapia, Oreochromis niloticus L.; production was assessed. Survival, growth and feed conversion ratio of adult Nile tilapia fed 30% crude protein diet for 88 days were measured at three different salinity levels (8, 15 and 25 g L?1) and two stocking densities (20 and 40 m?3) in three independent recirculating systems. Highest survival (98%) and a linear growth in net biomass (P<0.01) was observed in both densities at 8 g L?1 and in 20 m?3 treatment at 15 g L?1. Highest net biomass growth was observed in the 40 m?3 stocking density treatment at 8 g L?1 salinity level (P<0.05). Overall biomass growth was significantly affected by salinity indicating a decrease in Nile tilapia carrying capacity with increased salinity. About 11 000 kg ha?1 crop?1 of Nile tilapia can be obtained in recirculating systems at 8 g L?1 salinity, significantly higher than the net production at 15 g L?1 (5200 kg ha?1 crop?1) and 22 g L?1 (4425 kg ha?1 crop?1).  相似文献   

16.
Recent advances in intensive rearing of astacid juvenile crayfish have greatly improved the results. This challenges the current application possibilities of the studies performed previously, and new research on density is required. A 100-day experiment was carried out under controlled conditions to evaluate density effects on survival and growth rates of juvenile crayfish in optimal conditions of feeding. Juvenile stage 2 Pacifastacus leniusculus were stocked in fibreglass tanks (1 m2, 200 l water) at 20 ± 1°C and fed a dry diet for salmonids supplemented with restricted amounts of Artemia nauplii. Stocking densities were 100, 300, 600 and 1,000 crayfish m−2. Mean survival rate was reduced significantly with increased stocking density, ranging from 86.33% (100 m−2) to 39.13% (1,000 m−2). All checks showed that at the lowest initial density (100 m−2) animals grew significantly faster those at higher densities, recording a final carapace length of 15.28 mm and weight of 1.08 g. Among the treatments of 300, 600 and 1,000 m−2 no differences were found either in carapace length or in weight throughout the experimental period, with a final mean growth of 14 mm carapace length and 0.72 g weight. The final proportion of animals with chelae autotomy rose significantly with increasing stocking density, ranging from 14.44% (100 m−2) to 41.45% (1,000 m−2). This study shows that diet is a decisive factor for stocking successfully high densities under controlled conditions and provides useful information to set adequate densities in accordance with the production objectives.  相似文献   

17.
Tilapia wild spawning is a nuisance in warm freshwater aquaculture growout ponds. To cope with this problem two experiments were carried out with predatory fish that do not reproduce in fresh water. One experiment tested the capacity of hybrid bass (Morone saxatilis × M. chrysops) and red-drum (Sciaenops ocellatus) as predators of wild spawning of hybrid tilapia (Oreochromis niloticus × O.aureus), and the other compared predation effectiveness of red-drum of different sizes and stocking densities.Both hybrid bass and red-drum effectively reduced tilapia wild spawning and improved by 15–20% tilapia performance and food conversion ratio. These effects were obtained stocking small red-drum (20 g) or large red-drum (60–80 g) or bass (135 g) at stocking densities of 500–1000 predators/ha, together with 15000 tilapia/ha of 65–75 g. Hybrid bass stocked at 750/ha and large red-drum stocked at 500/ha presented over 90% survival. Red-drum at higher stocking density and/or lower stocking weight presented reduced survival (40–60%). Red-drum of all examined stocking weights presented better growth rates when stocked at 500/ha than at higher densities.  相似文献   

18.
The first step for rearing the newly produced hybrid of Asp, Leuciscus aspius ♀, × Caspian Kutum, Rutilus frisii ♂ (so‐called “Aspikutum”) is to understand essential production requirements such as stocking density. For this purpose, fish (60.4 g) were held at five stocking densities of 2, 4, 6, 8, and 10 kg/m3 in circular concrete tanks (603 L) for a period of 56 d. The culture system was maintained at natural temperature and photoperiod. Fish were fed thrice a day using a commercial diet. At the end of the trial, growth indices, including final mean weight, weight gain, and specific growth rate, were significantly higher at the density of 10 kg/m3 compared with 2 kg/m3 (P< 0.05). Feed intake was significantly greater at 10 kg/m3 compared with 2 kg/m3 (P< 0.05); however, feed efficiency, protein efficiency ratio, protein productive value, and hepatosomatic index remained unchanged among the stocking densities (P> 0.05). Increased stocking density caused significant increase in body protein and fat contents (P< 0.05). Condition factor in higher densities (8 and 10 kg/m3) was significantly higher compared with 2 kg/m3 (P< 0.05). The results indicated that rearing this hybrid in the studied weight range at high density of 10 kg/m3 or more is possible without negative impacts on growth performance and body composition.  相似文献   

19.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

20.
A study to determine the effects of four stocking densities on growth and feed utilization of wild‐caught black sea bass Centropristis striata was conducted in a pilot‐scale recirculating tank system. The outdoor system consisted of 12 insulated fiberglass tanks (dia. = 1.85 m; vol. = 2.17 m3) supported by biological filters, UV sterilizers, and heat pumps. Subadults (N= 525; ×± SD = 249 ± 16.8 g) were stocked at densities of 4.6 fish/m3 (1.18 kg/m3), 16 fish/ m3 (3.91 kg/m3), 25.3 fish/m3 (6.83 kg/m3), and 36 fish/m3 (7.95 kg1m3), with three replicate tanks per treatment. Fish were grown under 35 ppt salinity, 21‐25 C, and under ambient photoperiod conditions. A commercial flounder diet containing 50% protein and 12% lipid was hand‐fed twice daily to satiation for 201 d. Mean (range) total ammonia‐nitrogen, 0.61 (0‐2.1) mg/L, nitrite‐nitrogen, 0.77 (0.04‐3.6) mg/L, and nitrate‐nitrogen 40.1 (0‐306) mg/L were significantly higher (P < 0.0001) in the 25.3 and 36 fish/m3 treatments than in the 4.6 and 16 fish/m3 treatments [0.19 (0.05‐0.5), 0.1 (0.24‐0.63), and 11.9 (1.3‐82.2) mg/L, respectively]. However, there were no significant differences (P > 0.05) in growth (RGR = 196.8‐243.1%; DWG = 2.55‐2.83 g/d; and SGR = 0.55‐0.61%/d), coefficient of variation of body weight (CwtV., = 0.24‐0.25), condition factor (K = 2.2‐2.4), feed consumption (FC = 1.45‐1.65%/d), and feed conversion ratio (FCR = 1.45‐1.52) among stocking densities. Final biomass densities on day 201 reached 3.48, 12.0, 21.1, and 27.2 kg/m3 at stocking densities of 4.6, 16, 25.3, and 36 fish/m3, respectively. Survival (83.8‐99.1%) did not differ among treatments. Apparent net protein retention (ANPR) was significantly higher (P < 0.005) for fish stocked at the lower densities of 4.6 and 16 fish/m3 (22.5‐23.7%) than for those stocked at 25.3 and 36 fish/m3 (21‐20.1%). There were no significant differences (P > 0.05) in apparent net energy retention (ANER = 55.9‐59.1 %) among stocking densities. Final whole body protein (15.3‐16.3%) and lipid (23.1‐26.4%) levels did not differ significantly (P > 0.05) among treatments. The results demonstrated that growth, survival, and feed utilization were not impaired under stocking densities ranging from 4.6‐36 fish/m3 (3.48‐27.2 kg/m3), despite a slight reduction in water quality at the higher densities. In addition, growth variation and final whole body protein and lipid levels were not influenced by these densities. The results suggest that black sea bass are tolerant of crowding and moderate variations in water quality during intensive culture in recirculating tank systems and that higher stocking densities are possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号