首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 93 毫秒
1.
 为深入研究芥菜开花信号整合子的两个核心调节因子SHORT VEGETATIVE PHASE(SVP)与FLOWERING LOCUS C(FLC)相互作用的分子机理,通过PCR扩增,从芥菜材料‘QJ’中分别克隆含EcoRⅠ/BamHⅠ双酶切位点的SVP和FLC编码区全长,并利用酵母双杂交体系,将FLC与GAL4报告基因DNA 激活域融合(pGADT7FLC),SVP与GAL4报告基因DNA 结合域融合(pGBKT7SVP)。两种重组质粒分别转化酵母Y187和Y2HGold后未出现自激活和毒性现象。融合的二倍体酵母(pGADT7FLC × pGBKT7SVP)能在选择性固体培养基QDO/X/A(SD/-Ade/-His/-Leu/-Trp/X-α-Gal/AbA)上生长,并且菌落呈蓝色。将诱饵质粒(pGBKT7SVP)与猎物质粒(pGADT7FLC)载体互换(pGADT7SVP、pGBKT7FLC),再次转化酵母后仍能融合成二倍体酵母(pGADT7SVP × pGBKT7FLC),并同时激活报告基因AUR1-C、HIS3、ADE2、MEL1,由此表明SVP与FLC蛋白能够相互结合。  相似文献   

2.
为了深入研究芥菜开花整合子SOC1基因的表达调控机制,利用染色体步移法从芥菜‘QJ’中克隆了SOC1编码区上游782 bp的启动子,并构建SOC1基因启动子的酵母表达载体pAbAi-SOC1,与蛋白表达载体pGADT7-FLC、pGADT7-SVP共转化酵母Y1HGold菌株。酵母单杂交表明:芥菜FLC和SVP蛋白均能与SOC1的启动子相互作用。进一步分析发现:SOC1启动子含3个CArG-box表达调控基序。分别亚克隆这3个基因片段(SOC1-1、SOC1-2和SOC1-3),并再次构建酵母重组质粒pAbAi-SOC1-1、pAbAi-SOC1-2和pAbAi-SOC1-3,与pGADT7-FLC、pGADT7-SVP分别融合到Y1HGold菌株。融合菌株均能在相应SD/-Leu/AbA培养基上生长,说明SOC1-1、SOC1-2和SOC1-3都能被芥菜FLC、SVP蛋白识别并结合。再次构建SOC1-1、SOC1-2、SOC1-3的CArG-box删除突变体及A-T互换突变体,则均不能与FLC、SVP蛋白互作。由此说明:SOC1-1、SOC1-2和SOC1-3的3个CArG-box基序确实能特异性识别FLC、SVP,发生DNA-蛋白相互作用。这为利用启动子调控SOC1基因的转录表达等深入研究奠定了理论基础。  相似文献   

3.
为阐明芥菜(Brassica juncea Coss.)开花激活因子AGL24的表达特性及其在开花途径中与调节因子SOC1、SVP和FLC蛋白的互作机制,从‘青叶芥’中克隆了680 bp的AGL24基因,它编码221个氨基酸。序列分析表明:芥菜AGL24含有M、I、K和C域,分别有59、11、102和47个氨基酸,与油菜AGL24亲缘关系较近。荧光定量PCR分析发现:在低温春化途径和长日照光周期途径中,AGL24在叶片和茎尖中均有表达,营养生长期表达量较低,而生殖生长期表达量迅速增加;AGL24在光周期途径中的表达峰值要早于低温春化途径。酵母双杂交试验表明:全长AGL24与开花信号整合子SOC1蛋白能够互作,激活酵母报告基因AUR1-C、HIS3、ADE2和MEL1,在QDO/X-α-Gal/AbA平板培养基上长出蓝斑。另外,分别去掉M域后的截短体AGL24与SOC1也能相互作用。β–半乳糖苷酶活性检测发现:截短体杂交组合AGL24 × SOC1的互作强度显著高于全长杂交组合AGL24 × SOC1。然而全长AGL24或截短体AGL24 均不能与光周期途径核心抑制子SVP互作,也不与低温春化途径核心抑制因子FLC相互作用,说明AGL24并不是SVP或FLC的直接靶蛋白。  相似文献   

4.
植物经过长期的发育进化,形成了一套复杂而精细的基因调控网络,以确保植株能在最佳
时间开花。开花时间是由一系列特定的基因在特定的时空环境下表达及相互作用所决定的。植物开花调
控的分子机理是最近研究的热点之一。本文综述了开花整合子SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS1(SOC1)的功能,以及与其他相关调控信号之间的作用关系:SOC1 作为一个MADS 转录因子,
它能够整合来自四条开花调控途径(光周期途径,自主途径,春化途径,赤霉素途径)的开花信号,促进
开花。它的上游基因CO、FT、SPL 以及赤霉素信号可以上调SOC1 的表达,但SVP、FLC 却下调SOC1
的表达;SOC1 和AGL24 之间能形成正反馈回路,同时SOC1 和AGL24 蛋白还可以相互作用激活下游基
因LFY 的表达,调节下游花器官特征基因,实现花期调控。  相似文献   

5.
 为阐明芥菜开花路径核心调节子SVP与FLC相互作用的结构域,从酵母重组质粒pGADT7SVP、pGBKT7FLC分别亚克隆了5个SVP截短体(SVP1 ~ 5)和5个FLC截短体(FLC1 ~ 5)。SVP1 ~ 5与FLC1 ~5编码蛋白的结构域均分别为MI、MIK、K、IKC和KC。利用酵母双杂交体系,分别构建酵母猎物质粒pGADT7SVP1 ~ 5与诱饵质粒pGBKT7FLC1 ~ 5,并转化对应的酵母Y187、Y2HGold菌。酵母转化子Y187[pGADT7SVP2 ~ 5]能与Y2HGold[pGBKT7FLC]融合,并可在选择性固体培养基QDO/X/A上长出蓝色菌落,表明FLC能与截短体蛋白SVP2 ~ 5异源结合,SVP的K域(SVP3)可独立作用于FLC蛋白。此外,Y187[pGADT7SVP]× Y2HGold[pGBKT7FLC2 ~ 5]也能同时激活报告基因AUR1-C、HIS3、ADE2、MEL1,表明FLC的K域(FLC3)也可独立作用于SVP。进一步研究发现:Y187[pGADT7SVP3]× Y2HGold[pGBKT7FLC3]正向杂交以及Y187[pGADT7FLC3]× Y2HGold[pGBKT7SVP3]载体互换后杂交均可相互作用,表明SVP的K域(SVP第96 ~ 173位氨基酸区域)与FLC的K域(FLC第114 ~ 167位氨基酸区域)能够异源结合,是介导SVP与FLC蛋白互作的关键结构域。  相似文献   

6.
 为探明芥菜开花负调因子SVP、FLC 自身聚合的分子机制及其蛋白作用模式,利用酵母双 杂交体系,分别对SVP、FLC 蛋白自身聚合及其作用强度进行研究。结果表明:酵母菌Y187 转化子 Y187-pGADT7SVP 和Y187-pGADT7SVP2 ~ 5 均能与酵母菌Y2HGold 转化子Y2HGold-pGBKT7SVP 融合, 并可在选择性固体培养基QDO/X/A 上长出蓝色菌落,而Y187-pGADT7SVP1 × Y2HGold-pGBKT7SVP 不 能在QDO/X/A 生长。说明SVP 蛋白能自身聚合,且与截短体SVP2 ~ 5 同源结合,SVP 蛋白自身聚合需 要核心作用域K 域参与。尽管MI 域不能单独介导SVP 自身聚合,但它的存在却能使SVP 自身聚合作用 增强,C 域有可能会削弱该作用。同时,Y2HGold-pGBKT7FLC 和Y2HGold-pGBKT7FLC2 ~ 5 也能与 Y187-pGADT7FLC 融合,同时激活报告基因AUR1-C、HIS3、ADE2、MEL1,FLC 能与截短体FLC2 ~ 5 同源互作。K 域是FLC 蛋白自身聚合必须的,I 域会增强这一作用。SVP 和FLC 的核心作用域K 域均由 K1、K2 和K3 亚域组成,形成3 个经典的α 螺旋,K 域有9 个高度保守的氨基酸位点及蛋白互作的结构 模体(亮氨酸拉链)。  相似文献   

7.
SHORT VEGETATIVE PHASE(SVP)基因属于MADS 盒基因,它编码的蛋白转录因子对开
花具有抑制作用。SVP 主要在营养生长阶段表达,受自主途径等多个开花路径调控,并可以调节开花途径
整合子FLOWERING LOCUS T(FT),SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1(SOC1)
的表达,从而调控抽薹开花时间。本文综述了SVP 基因调控抽薹开花的作用机制,并结合SVP 基因的研
究现状展望了未来的研究方向。  相似文献   

8.
开花调控是植物生长发育中很重要的过程。拟南芥分子遗传学分析表明,MADS-box 转录因
子FLC、RNA 结合蛋白(FCA、FPA 和FLK)和mRNA 3′ 端加工因子(FY)都参与了这一过程。开花因
子通过抑制FLC 表达来促使植物开花;RNA 结合蛋白通过转录后调控来调节FLC 的表达以调控拟南芥开
花。此外,microRNAs 也参与这一过程。本文通过综述上述几个相关因子的调控过程,来阐述RNA 加工
因子参与的拟南芥开花调控机理。  相似文献   

9.
M–位点受体激酶(MLPK)是甘蓝自交不亲和反应的正向调控关键元件,其参与自交不亲和反应的分子机制尚不明确。为了分离与MLPK相互作用的蛋白,在分析了MLPK功能域的基础上采用PCR技术扩增了MLPK激酶结构域编码序列(记为MLPKK),通过体外定点突变技术构建了两种MLPK失活突变体(记为mlpk1和mlpk2),然后以pET43.1a为载体构建了原核表达质粒pET43.1a-MLPKK、pET43.1a-mlpk1和pET43.1a-mlpk2,并进行了原核表达和纯化。纯化的融合蛋白pET43.1a-MLPKK、pET43.1a-mlpk1和pET43.1a-mlpk2分别与高度自交不亲和甘蓝‘A4’柱头总蛋白提取液进行孵育,孵育后利用融合蛋白序列中的6× His标签与Ni+结合的特性,钓取MLPK的互作蛋白,建立了分离MLPK互作蛋白的新方法。孵育产物经SDS-PAGE电泳显示,与两个突变体蛋白泳道对比,在pET43.1a-MLPKK与柱头总蛋白提取液孵育产物的泳道中成功获得了候选的与MLPK互作的蛋白条带,这为后续互作蛋白质谱鉴定以及功能解析提供了技术支持。  相似文献   

10.
为阐明芥菜开花抑制因子SVP基因的表达特性及其与FLC蛋白互作的调节机制,从‘青叶芥’中克隆了SVP基因。定量PCR分析表明:低温春化途径和长日照光周期途径中SVP在叶片和茎尖均有表达。营养生长初期表达量较低(茎尖和叶片中平均相对表达量分别为0.56和0.35),生殖生长早期则显著增加(春化途径的茎尖和叶片分别为0.60和1.27,光周期途径的茎尖和叶片分别为0.49和1.42)。茎尖中SVP对低温春化的反应比光周期敏感;而叶片中SVP对光周期的反应比低温敏感。酵母双杂交和 β–半乳糖苷酶活性测定显示:SVP蛋白I域突变体SVPE90L以及K域突变体SVPK104C和SVPH106I均会削弱SVP/FLC2蛋白的互作,但不会导致相互作用消失。SVP蛋白K域突变体SVPR137L能完全破坏SVP/FLC2的互作,但SVPR137L仍然能与芥菜FLC1、FLC3、FLC4和FLC5相互作用,说明SVP/FLC2的蛋白互作受到SVP第137位氨基酸的特异性调控。序列比对发现:芥菜FLC4和FLC5氨基酸序列完全相同,它们与FLC3仅有1个变异位点;FLC2与FLC1、FLC3、FLC4-5之间分别有28、19、18个变异位点;FLC2与FLC1、FLC3、FLC4或FLC5均不相同的位点有11个。推测FLC2与FLC家族其他成员之间的变异位点很可能对SVPR137L/FLC2特异性调控有贡献。  相似文献   

11.
 为深入研究甘蓝Flowering Locus C(FLC)家族与SHORT VEGETATIVE PHASE(SVP)蛋 白互作的分子机理及其对开花的调控作用,从甘蓝‘ZQ-67’材料中克隆了5 个FLC 家族基因(记为 BoFLCy1 ~ BoFLCy5)。它们均编码MIKC 型蛋白,按进化关系其编码蛋白可分为两类:BoFLCy3 和BoFLCy5 为第Ⅰ类,仅在C 域有1 个位点变异;BoFLCy1、BoFLCy2 和BoFLCy4 为第Ⅱ类,仅在K、C 域分别有1、 2 个位点变异。酵母双杂交显示:甘蓝BoFLC 家族蛋白均可与BoSVP 蛋白互作;但BoFLCy4 蛋白最为敏 感,其N 端插入3 个氨基酸TET 会破坏该作用。β–半乳糖苷酶活性分析表明:BoFLCy1 ~ BoFLCy5 与 BoSVP 互作强度差异显著,强弱关系为:BoFLCy1 > BoFLCy2 > BoFLCy3 > BoFLCy5 > BoFLCy4,该家族蛋 白KC 域内的变异位点若为疏水氨基酸则有利于FLC/SVP 聚合。进一步分析突变BoFLCy4 蛋白IK 域内 的保守位点发现:蛋白作用强度可能不受I 域的这些保守性亲(疏)水氨基酸(第63、77 位)影响,而 会受到K 域保守氨基酸(第120、121、135、157 位)的亲(疏)水性调节。  相似文献   

12.
以结球甘蓝E1 为材料,提取花蕾总RNA,反转录cDNA。根据拟南芥SPT 基因设计引物,
采用同源克隆的方法从中克隆SPT 基因序列1 085 bp,开放阅读框1 062 bp。通过cDNA 推导得到的氨
基酸序列分析表明,BoSPT 编码353 个氨基酸残基,预测分子量为37.67 kD,pI 为6.83。经过EcoRⅠ和
KpnⅠ限制酶双酶切后,构建原核表达质粒pET43.1a-BoSPT 转化表达菌株E. coli Rosetta( DE3),通过
SDS-PAGE 检测该蛋白的表达。经Smart-embl 预测其具有bHLH 家族结构域,位于序列第173~221 位氨
基酸残基处。进化树表明结球甘蓝BoSPT 与拟南芥AtSPT 和筷子芥AlSPT 的亲缘关系较近。BoSPT 基因
的原核表达得到纯化的融合蛋白。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号