首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
采用质量分数55%硫酸水解碱处理芦苇浆制备纳米纤维素,研究反应时间、反应温度和碱处理时间对纳米纤维素得率及其平均粒径变化的影响。单因素试验最优制备条件为碱处理时间1.0 h,反应温度60℃,反应时间2.0 h,纳米纤维素得率为54.50%,平均粒径为156.9 nm;通过傅里叶红外和X射线衍射分析,结果表明碱处理芦苇浆制备纳米纤维素为纤维素Ⅱ型。在单因素试验基础上进行正交优化试验,对纳米纤维素得率而言,正交优化最佳工艺条件为碱处理时间1.0 h,反应温度60℃,反应时间3.0 h,此条件下纳米纤维素得率最高,为55.64%,平均粒径为166.3 nm。  相似文献   

2.
通过硫酸水解微晶纤维素制备纳米纤维素,分析硫酸浓度、反应温度和水解时间对纳米纤维素得率的影响,采用正交实验优化了实验参数。用场发射环境扫描电镜(ESEM-FEG)和透射电镜(HR-TEM)表征了微晶纤维素与纳米纤维素的形貌,并对其尺寸分布进行了分析。结果表明,当硫酸浓度为56%,反应温度40℃,水解时间90min时,纳米纤维素得率最高,达55.40%;电镜观察纳米纤维素呈棒状,其尺寸较微晶纤维素明显减小,直径2-24nm,长度为50-450nm。  相似文献   

3.
酸水解制备纳米纤维素工艺条件的响应面优化   总被引:6,自引:1,他引:5  
采用硫酸水解法制备了纳米纤维素,并运用响应面分析法原理,对影响纳米纤维素得率的3个主要影响因素即硫酸质量分数、温度和时间进行优化.利用Design - Expert软件的Box -Benhnken (BBD)模式建立试验数学模型,并对各因素及其相互之间的交互作用进行了分析.结果表明,回归得到的二次多项式模型极显著,模型...  相似文献   

4.
探讨处理温度、处理时间和盐酸浓度对高温高压制备微晶纤维素的影响,结果表明:从微晶纤维素得率角度,高温高压制备微晶纤维素的最佳工艺为:盐酸质量分数为2.5%、处理时间为180 min、水解温度为130℃;从表面膨胀体积角度,高温高压制备微晶纤维素的最佳工艺为:盐酸质量分数为1.0%、处理时间为120 min、水解温度为150℃。  相似文献   

5.
高温高压制备微晶纤维素工艺与传统的制备工艺的反应机理相近,随着处理液pH值、时间、温度、压力等反应相关因素的调整,其反应进程发生重大变化,并且产生与传统工艺截然不同的结果。实验结果表明,制备过程因素影响关系为:酸浓度<处理时间<水解温度;从得率对比情况看,高温高压制备微晶纤维素的工艺水解反应时间过长,则纤维素反应物明显减少,其得率明显偏低,合理控制处理时间是保证有效得率的重要环节。从不同工艺条件下微晶纤维素得率角度,高温高压制备微晶纤维素的最佳工艺为:盐酸浓度取2.5%、处理时间为180 min、水解温度为130℃;但以表面膨胀体积为参照系时,高温高压制备微晶纤维素的最佳工艺为:此时盐酸浓度应取1.0%、处理时间为120 min、水解温度为150℃。  相似文献   

6.
玉米秸秆稀酸预处理的研究   总被引:4,自引:1,他引:3  
研究了玉米秸秆稀酸预处理条件对木糖得率和纤维素酶水解性能的影响.在单因素试验的基础上,用正交试验法对稀酸预处理条件进行优化.在固液比1∶10、硫酸质量分数0.75%、温度150℃条件下处理30min,木糖得率最大为85.64%.100g玉米秸秆经稀酸预处理和纤维素酶水解后,可得到最大总糖量49.74g.分析结果表明,木糖得率最大影响因素为酸浓,酶解得率最大影响因素是温度.温度对综合指标的影响极显著,酸浓影响显著,时间影响不显著.预处理破坏了玉米秸秆的纤维素结构.  相似文献   

7.
甲酸水解纤维素制取纤维低聚糖的研究   总被引:3,自引:0,他引:3  
研究了盐酸催化下甲酸水解生物质纤维制取纤维低聚糖的过程,探讨了时间与温度对水解的影响,并对工艺条件进行优化.实验表明,随着反应时间增加,棉花结晶度随之减少并不断水解;水解的最佳工艺条件为:1g棉花、24g含4%(质量分数)盐酸的甲酸溶液在65℃下水解8h,总还原糖得率25.06%,葡萄糖得率16.71%,纤维低聚糖得率8.35%.  相似文献   

8.
杨木屑低浓度硫酸中温预处理提取木糖及其发酵   总被引:1,自引:0,他引:1  
低酸中温预处理可选择性地水解溶出杨木屑中的木糖.正交试验结果显示,影响木糖提取得率的强度顺序为反应温度、固液比、反应时间和硫酸质量分数,影响抑制物产量的主要因素为反应温度和固液比,硫酸质量分数和反应时间的影响较弱.在预处理过程中生成的主要抑制物为乙酸,其次为甲酸和糠醛.基于技术经济分析,可采用100℃、2.0%硫酸、固...  相似文献   

9.
倍花浸提液水解制备没食子酸的工艺   总被引:3,自引:0,他引:3  
采用碱水解法,以倍花为生产原料制备没食子酸,研究了温度、碱度和反应时间对没食子酸制备的影响.结果表明:不同温度、不同碱度和不同反应时间对没食子酸得率均有一定影响,经正交实验及极差分析可知,倍花碱水解最佳工艺条件为:n(单宁酸)∶n(氢氧化钠)为1∶38,水解时间为100 min,温度为106℃.优化后的工艺条件,可使没食子酸得率达到48.3%.  相似文献   

10.
研究了绿液预处理对麦秆酶水解的影响.比较了不同绿液预处理条件下麦秆的浆得率、成分组成与纤维素酶解率,结果表明,预处理条件越剧烈,原料损失越大,而木质素脱除率越高,且在相同酶水解条件下,纤维素酶解率却越高,其中适宜的条件是预处理温度150℃,总碱量8%(Na2O计,对绝干原料)和硫化度40%,浆得率62.0%,葡聚糖、木聚糖和木质素质量分数50.0%、18.9%和16.2%,葡萄糖和木糖得率分别为74.2%和73.5%.考察了质量浓度和酶用量对绿液预处理麦秆酶水解的影响,优化了商品纤维素酶酶系结构和Tween-80的添加量,表明绿液预处理麦秆纤维素酶水解的适宜条件为质量浓度100 g/L,纤维素酶用量15 FPU/g(以纤维素计,下同),β-葡萄糖苷酶9 IU/g,木聚糖酶30 IU/g,Tween-800.05 g/g.在以上条件下,酶水解72 h,葡萄糖得率和木糖得率分别达到了82.5%和77.8%,是优化前的2.6和1.6倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号