首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To increase crop yield per unit of scarce water requires both better cultivars and better agronomy. The challenge is to manage the crop or improve its genetic makeup to: capture more of the water supply for use in transpiration; exchange transpired water for CO2 more effectively in producing biomass; and convert more of the biomass into grain or other harvestable product. In the field, the upper limit of water productivity of well-managed disease-free water-limited cereal crops is typically 20 kg ha−1 mm−1 (grain yield per water used). If the productivity is markedly less than this, it is likely that major stresses other than water are at work, such as weeds, diseases, poor nutrition, or inhospitable soil. If so, the greatest advances will come from dealing with these first. When water is the predominant limitation, there is scope for improving overall water productivity by better matching the development of the crop to the pattern of water supply, thereby reducing evaporative and other losses and fostering a good balance of water-use before and after flowering, which is needed to give a large harvest index. There is also scope for developing genotypes that are able to maintain adequate floret fertility despite any transient severe water deficits during floral development. Marker-assisted selection has helped in controlling some root diseases that limit water uptake, and in maintaining fertility in water-stressed maize. Apart from herbicide-resistance in crops, which helps reduce competition for water by weeds, there are no genetic transformations in the immediate offing that are likely to improve water productivity greatly.  相似文献   

2.
Increasing water productivity in crop production—A synthesis   总被引:1,自引:0,他引:1  
Scarcity of water resources and growing competition for water in many sectors reduce its availability for irrigation. Effective management of water for crop production in water scarce areas requires efficient approaches. Increasing crop water productivity (WP) and drought tolerance by genetic improvement and physiological regulation may be the means to achieve efficient and effective use of water. But only high water productivity values carry little or no interest if they are not associated with high or acceptable yields. Such association of high (or moderate) productivity values with high (or moderate) yields has important implications on the effective use of water. In this paper we discussed the factors affecting water productivity, and the possible techniques to improve water productivity. A single approach would not be able to tackle the forthcoming challenge of producing more food and fiber with limited or even reduced available water. Combining biological water-saving measures with engineering solutions (water saving irrigation method, deficit irrigation, proper deficit sequencing, modernization of irrigation system, etc.), and agronomic and soil manipulation (seed priming, seedling age manipulation, direct- or wet-seeded rice, proper crop choice, integrating agriculture and aquaculture, increasing soil fertility, addition of organic matter, tillage and soil mulching, etc.) may solve the problem to a certain extent. New scientific information is needed to improve the economic gains of WP because the future improvements in WP seem to be limited by economic rather than a lack of technological means.  相似文献   

3.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

4.
Crop water stress index relationships with crop productivity   总被引:1,自引:0,他引:1  
Summary Field experiments between 1983 and 1987 were used to study the effect of crop development on crop water stress index (CWSI) parameters and the relationship of CWSI with the yield of cotton and grain sorghum. The absolute slopes of nonstressed baselines (NSBL) generally increased until canopy cover reached 70% (Table 1). NSBL derived from data collected when canopy temperature exceeded 27.4 °C had greater absolute slopes and higher R 2-values than NSBL that included all diurnal measurements (Table 1). Average CWSI values of cotton and grain sorghum grown under varying soil water regimes were negatively correlated with yield. Grain sorghum yield was more sensitive to CWSI values than was cotton lint yield (Figs. 1 and 2). Multiyear data analysis indicated that yields from cotton that experienced a completely stressed condition during part of each day during the boll setting period would be 40% of those from completely nonstressed cotton (Fig. 3). Negative values of CWSI computed for cotton growing under non-water stressed conditions were associated with uncertainties in calculations of aerodynamic resistance (r aand in estimating canopy resistance at potential evapotranspiration (r cp).  相似文献   

5.
Excessive amounts of irrigation water and fertilizers are often utilized for early potato cultivation in the Mediterranean basin. Given that water is expensive and limited in the semi-arid areas and that fertilizers above a threshold level often prove inefficacious for production purposes but still risk nitrate and phosphorous pollution of groundwater, it is crucial to provide an adequate irrigation and fertilization management. With the aim of achieving an appropriate combination of irrigation water and nutrient application in cultivation management of a potato crop in a Mediterranean environment, a 2-year experiment was conducted in Sicily (South Italy). The combined effects of 3 levels of irrigation (irrigation only at plant emergence, 50% and 100% of the maximum evapotranspiration - ETM) and 3 levels of mineral fertilization (low: 50, 25 and 75 kg ha−1, medium: 100, 50 and 150 kg ha−1 and high: 300, 100 and 450 kg ha−1 of N, P2O5 and K2O) were studied on the tuber yield and yield components, on both water irrigation and fertilizer productivity and on the plant source/sink (canopy/tubers dry weight) ratio. The results show a marked interaction between level of irrigation and level of fertilization on tuber yield, on Irrigation Water Productivity and on fertilizer productivity of the potato crop. We found that the treatments based on 50% ETM and a medium level of fertilization represent a valid compromise in early potato cultivation management. Compared to the high combination levels of irrigation and fertilization, this treatment entails a negligible reduction in tuber yield to save 90 mm ha−1 year−1 of irrigation water and 200, 50 and 300 kg ha−1 year−1 of N, P2O5 and K2O, respectively, with notable economic savings for farmers compared to the spendings that are usually made.  相似文献   

6.
In most parts of Iran, water scarcity has been intensifying and posing a threat to the sustainability of agricultural production. Wheat is the dominant crop and the largest irrigation water user in Iran; hence, understanding of the crop yield-water relations in wheat across the country is essential for a sustainable production. Based on a previously calibrated hydrologic model, we modeled irrigated and rainfed wheat yield (Y) and consumptive water use (ET) with uncertainty analysis at a subbasin level in Iran. Simulated Y and ET were used to calculate crop water productivity (CWP). The model was then used to analyze the impact of several stated policies to improve the agricultural system in Iran. These included: increasing the quantity of cereal production through more efficient use of land and water resources, improving activities related to soil moisture conservation and retention, and optimizing fertilizer application. Our analysis of the ratio of water use to internal renewable water resources revealed that 23 out of 30 provinces were using more than 40% of their water resources for agriculture. Twelve provinces reached a ratio of 100% and even greater, indicating severe water scarcity and groundwater resource depletion. An analysis of Y-CWP relationship showed that one unit increase in rainfed wheat yield resulted in a lesser additional water requirement than irrigated wheat, leading to a larger improvement in CWP. The inference is that a better water management in rainfed wheat, where yield is currently small, will lead to a larger marginal return in the consumed water. An assessment of improvement in soil available water capacity (AWC) showed that 18 out of 30 provinces are more certain to save water while increasing AWC through proper soil management practices. As wheat self-sufficiency is a desired national objective, we estimated the water requirement of the year 2020 (keeping all factors except population constant) to fulfill the wheat demand. The results showed that 88% of the additional wheat production would need to be produced in the water scarce provinces. Therefore, a strategic planning in the national agricultural production and food trade to ensure sustainable water use is needed. This study lays the basis for a systematic analysis of the potentials for improving regional and national water use efficiency. The methodology used in this research, could be applied to other water scarce countries for policy impact analysis and the adoption of a sustainable agricultural strategy.  相似文献   

7.
In the North China Plain (NCP), while irrigation using groundwater has maintained a high-level crop productivity of the wheat-maize double cropping systems, it has resulted in rapid depletion of groundwater table. For more efficient and sustainable utilization of the limited water resources, improved understanding of how crop productivity and water balance components respond to climate variations and irrigation is essential. This paper investigates such responses using a modelling approach. The farming systems model APSIM (Agricultural Production Systems Simulator) was first calibrated and validated using 3 years of experimental data. The validated model was then applied to simulate crop yield and field water balance of the wheat-maize rotation in the NCP. Simulated dryland crop yield ranged from 0 to 4.5 t ha−1 for wheat and 0 to 5.0 t ha−1 for maize. Increasing irrigation amount led to increased crop yield, but irrigation required to obtain maximum water productivity (WP) was much less than that required to obtain maximum crop yield. To meet crop water demand, a wide range of irrigation water supply would be needed due to the inter-annual climate variations. The range was simulated to be 140-420 mm for wheat, and 0-170 mm for maize. Such levels of irrigation applications could potentially lead to about 1.5 m year−1 decline in groundwater table when other sources of groundwater recharge were not considered. To achieve maximum WP, one, two and three irrigations (i.e., 70, 150 and 200 mm season−1) were recommended for wheat in wet, medium and dry seasons, respectively. For maize, one irrigation and two irrigations (i.e., 60 and 110 mm season−1) were recommended in medium and dry seasons, while no irrigation was needed in wet season.  相似文献   

8.
针对当前我国大田马铃薯水肥一体化灌溉系统混肥和检测不精确、没有具体针对马铃薯作物、智能化程度低等问题,设计研发了一款基于PLC、物联网控制的精确控制水肥一体化系统。由于大田马铃薯生长环境差、不稳定因素多,该系统使用PLC控制。相比较单片机的控制方式,PLC具有可靠性高、抗干扰能力强、编程简单方便、恶劣工作环境适应性强和施工方便等很多优点。由于传统大田水肥机利用增压泵将文丘里吸肥器吸取的肥料直接注入主管道利用水流冲刷自然混肥,无法保证混肥的精准性,EC、pH传感器也无法精准测量,导致田间作物肥料浓度无法保证一致,作物质量及产量相对较低。相比传统水肥机,增加混肥腔混肥能够明显降低水肥浓度误差。EC、pH传感器实时读取当前的水肥浓度及酸碱度,与预设值做PID运算,再将PID输出通过线性转换转换为脉冲输出时间,通过PLC输出控制文丘里电磁阀的通断吸肥时间,实现水肥浓度的精确调整,配合恒压变频柜使水压在设定值范围内波动,实现水肥精确、稳定输出。  相似文献   

9.
Irrigation is widely criticised as a profligate and wasteful user of water, especially in watershort areas. Improvements to irrigation management are proposed as a way of increasing agricultural production and reducing the demand for water. The terminology for this debate is often flawed, failing to clarify the actual disposition of water used in irrigation into evaporation, transpiration, and return flows that may, depending on local conditions, be recoverable. Once the various flows are properly identified, the existing literature suggests that the scope for saving consumptive use of water through advanced irrigation technologies is often limited. Further, the interactions between evaporation and transpiration, and transpiration and crop yield are, once reasonable levels of agricultural practices are in place, largely linear—so that increases in yield are directly and linearly correlated with increases in the consumption of water. Opportunities to improve the performance of irrigation systems undoubtedly exist, but are increasingly difficult to achieve, and rarely of the magnitude suggested in popular debate.  相似文献   

10.
In the dry areas, water, not land, is the most limiting resource for improved agricultural production. Maximizing water productivity, and not yield per unit of land, is therefore a better strategy for dry farming systems. Under such conditions, more efficient water management techniques must be adopted. Supplemental irrigation (SI) is a highly efficient practice with great potential for increasing agricultural production and improving livelihoods in the dry rainfed areas. In the drier environments, most of the rainwater is lost by evaporation; therefore the rainwater productivity is extremely low. Water harvesting can improve agriculture by directing and concentrating rainwater through runoff to the plants and other beneficial uses. It was found that over 50% of lost water can be recovered at a very little cost. However, socioeconomic and environmental benefits of this practice are far more important than increasing agricultural water productivity. This paper highlights the major research findings regarding improving water productivity in the dry rainfed region of West Asia and North Africa. It shows that substantial and sustainable improvements in water productivity can only be achieved through integrated farm resources management. On-farm water-productive techniques if coupled with improved irrigation management options, better crop selection and appropriate cultural practices, improved genetic make-up, and timely socioeconomic interventions will help to achieve this objective. Conventional water management guidelines should be revised to ensure maximum water productivity instead of land productivity.  相似文献   

11.
为探明小粒咖啡灌溉、施肥和遮荫高效管理模式,设置灌水(WL:0.8ETP,WM:1.0ETP和WH:1.2ETP,其中ETP为水面蒸发量)、施肥(FL∶N∶P2O5∶K2O=90.8∶90.8∶90.8 kg/hm2,FM∶N∶P2O5∶K2O=181.6∶181.6∶181.6 kg/hm2和FH∶N∶P2O5∶K2O=272.4∶272.4∶272.4 kg/hm2)和遮荫(NS:自然光照和S:30%遮荫度)三因素完全组合试验,研究不同灌溉、施肥和遮荫对小粒咖啡冠层结构、光合特性、水肥利用以及干物质累积的影响,同时拟合不同水肥光条件下光合指标日变化.结果表明,提高灌溉水平和遮荫度会显著降低冠层开度,增加叶面积指数、净光合速率和蒸腾速率.与NS相比,处理S光合特性日变化拟合曲线为“单峰”,同时对干物质累积量、灌溉水分利用效率和肥料偏生产力分别提高6.24%,11.21%和11.54%.提高灌溉水平能增加干物质累积量与肥料偏生产力,但降低了灌溉水分利用效率.与FL相比,FH提高干物质累积量和灌溉水分利用效率分别为20.59%,6.94%,FM分别提高23.00%和7.63%.由极差分析及综合评分法得出,WMFLS组合的小粒咖啡干物质累积量与水肥利用的综合效益最大.研究结果可为小粒咖啡高效生产提供实践参考.  相似文献   

12.
Production benefits of improved allocation of irrigation water are often difficult to measure. In situations of irrigated wet rice cultivation, bothex post estimates of such benefits andex ante estimates of the maximum potential benefits of further improvements in allocation of a given water supply are possible using a conceptual framework which (1) functionally relates weekly water supplies to weekly measures of average water shortage on individual paddy fields; (2) aggregates the weekly water shortage measures into a seasonal water shortage index; and (3) relates, via a production function, the seasonal water shortage index to yields. An empirical application of this framework estimates the potential increase in production from further improvements in water allocation in one Philippine irrigation system to be negligible.  相似文献   

13.
为了探明滨海盐碱地不同灌溉方式及氮肥施用量对水肥盐迁移过程及作物生长的影响,基于大田试验,研究不同灌溉方式及灌水量(F:漫灌,360 mm;D1:滴灌,360 mm;D2:滴灌,288 mm;D3:滴灌,216 mm)、氮肥处理(N1:280 kg/hm2;N2:196 kg/hm2;N3:112 kg/hm2)对盐碱地土壤水肥盐分布含量及对春玉米各生长指标的影响.结果表明,在滴灌模式下,同一灌水量,N1的剖面平均含水量最低,D1,D2出现洗盐点,存在适合作物生长的浅盐区;灌水后D1N1的硝态氮含量增加最显著且含量最高,滴灌处理对应的低氮处理无明显硝态氮积累点,相同灌水量下,漫灌的有效氮含量均高于滴灌,但其有效氮利用率低于滴灌处理;不同施氮对春玉米干物质的差异随灌水量增加而增加.各处理水分利用效率与肥料偏生产力之间产生明显差异,高水低氮肥料偏生产力明显提高,但其水分利用效率低下,D1N1产量最高;在考虑作物产量及水肥利用效率时,采用滴灌方式,则灌水量288~360 mm、施氮量196 kg/hm2为推荐水肥措施.  相似文献   

14.
On the conservative behavior of biomass water productivity   总被引:7,自引:0,他引:7  
The ever-increasing demand and competition for the finite water resource worldwide call for more efficient use of water in all sectors, including firstly agricultural food production. One important consideration is the existence of a limit to the amount of biomass a crop can produce per unit of water consumed. This article analyzes the theoretical background and the experimental evidence for the conservative behavior of the efficiency in water use by crops to produce biomass, i.e., biomass water productivity (WPb), under variable environmental conditions. Particularly, WPb is approximately constant for a given crop species after normalization for evaporative demand of the atmosphere and air carbon dioxide concentration. A stepwise scaling up approach, from leaf to canopy, is undertaken to underline the processes involved at the different hierarchical levels of biological organization that lead to the conservative behavior of WPb. Starting at the leaf level, the basic gas exchange equations are outlined to demonstrate that the normalized photosynthetic WPb at the leaf scale is proportional to the ambient CO2 concentration. New experimental evidence in support of that conclusion is presented for several C3 and a C4 crops. Additional factors are introduced to assess photosynthetic WPb at the canopy scale, including the extent of radiation capture and the role of respiration. The composition of biomass was then considered in the analysis of WPb over a season. The paper highlights the need to normalize WPb for differences in climate, specifically, in evaporative demand of the atmosphere to extrapolate WPb values between climatic zones, and in atmospheric CO2 concentration to account for changes in CO2 with time, when looking at the past and into the future. Two procedures for normalization for differences in evaporative demand are presented, and a procedure for normalization for changes in CO2 concentration is derived for the leaf scale and shown to be applicable to canopy scale. Some knowledge gaps and research needs are pointed out and the potential offered by the near constancy of normalized WPb in crop simulation modeling is emphasized.  相似文献   

15.
Water quality implications of raising crop water productivity   总被引:1,自引:0,他引:1  
Because of a growing and more affluent population, demand for agricultural products will increase rapidly over the coming decades, with serious implications for agricultural water demand. Symptoms of water scarcity are increasingly apparent, threatening ecosystem services and the sustainability of food production. Improved water productivity will reduce the additional water requirements in agriculture. However, there is a tradeoff between the quantity of water used in agriculture and the quality of return flow. Where yields are low due to limited nitrogen (N) and water supply, water productivity can be enhanced through higher fertilizer applications and improved water management. This limits the amount of additional water needed for increased food demand, thus leaving more water for environmental requirements. But it also increases the amount of nitrate (NO3–N) leaching, thus adversely affecting the water quality of return flows.This paper quantifies the tradeoff between enhanced water productivity and NO3–N leaching and shows the importance of the right management of water and N applications. Using the Decision Support System for Agro-technology Transfer (DSSAT) crop model, several scenarios combining different water and N application regimes are examined for maize (Zea mays L.) in Gainesville, FL, USA. Without adequate water, nitrogen use efficiency (NUE) remains low, resulting in substantial NO3–N leaching. Too much water leads to excessive NO3–N leaching and lower water productivity. The lack of N is a cause of low water productivity but too much of it leads to lower NUE and higher losses. The paper concludes that increased NO3–N leaching is an inevitable by-product of increased water productivity, but its adverse impacts can greatly be reduced by better management of water and N application. The paper briefly shows that leaching can be reduced and water productivity increased by split application of N-fertilizer. This implies that improved water and nutrient management at field- and scheme-level is a prerequisite to limit adverse impacts of agriculture on ecosystems, now and especially in the future.  相似文献   

16.
针对水肥一体化施肥机控制系统在交叉耦合、内外不确定条件下难以通过建立精确数学模型进行跟踪控制的问题,提出一种EC和pH改进自抗扰解耦控制策略。利用六次多项式曲线拟合对系统阶跃响应数据进行滤波处理,由面积法构建系统简化数学模型。选择静态解耦法实现系统解耦,对分解后的两个子系统分别设计自抗扰控制器并进行改进,给非线性状态误差反馈率添加类积分项,并引入模糊控制理论实现其参数在线自整定。仿真结果表明,系统EC和pH的调节时间分别为44 s和39 s,超调量分别为5.5%和0.3%,输出绝对误差分别小于0.1 mS/cm和0.2,该控制器能够实现系统高精度独立调节,相比于线性自抗扰和PID控制器,响应速度更快,抗干扰能力和鲁棒性更强。试验结果表明,该控制器调节误差与仿真结果吻合,并且能够使系统用水量、用肥量、用工量分别降低33.13%、35.75%、35.01%,作物产量提升15.16%,节水、节肥、节工和增产效果显著,具有很高的可行性。  相似文献   

17.
《Agricultural Systems》2002,71(1-2):41-57
Smallholder crop–animal systems predominate in south Asia, and most of the projected future demands for ruminant meat and milk are expected to be met from the improved productivity of livestock in these mixed farming systems. Despite their importance in the sub-region, there is a paucity of information on research that incorporates animals interactively with cropping. Livestock research has tended to highlight component technologies, often treating diverse and complex mixed farming operations as a single system. Furthermore, little attention has been paid to social, economic or policy issues. Thus, many of the technological interventions have either failed to become adopted at farm level or their uptake has proved unsustainable. This paper reviews aspects of animal production in South Asia; the trends and forecasts for animal populations and products, constraints to productivity, research opportunities and some key examples of technologies that have failed to achieve their full potential on farm. A systems analysis of small-scale crop–livestock operations is advocated, as a precursor for targeting appropriate interventions at farm level to increase animal productivity and protect the natural resources base.  相似文献   

18.
采用312-D最优饱和设计方案进行田间对比试验。对盐渍化土壤水肥耦合效应下向日葵叶水势的影响因素及变化规律进行了研究。结果表明,盐渍化地区油料向日葵叶水势的主要影响因素除气象因素外。还包括土壤盐分、土壤水分和施肥量。叶水势与大气水势、叶温呈线性关系。土壤基质势越高,叶水势越高;土壤基质势越低叶水势也越低。施肥在一定程度上可以缓解水盐的胁迫,施肥量的增加使叶水势降低。  相似文献   

19.
在农业生产中,水分和肥料是不可或缺的两大基本要素。水肥耦合将水、肥有机结合,通过二者的协同效应实现作物高产优质目的。在分析水资源紧缺和肥料施用不合理的现状基础上,回顾了水肥耦合的发展历程、定义及水肥耦合灌溉模式,阐述了水肥耦合对茄子生长形态、光合特性、产量和品质等影响的研究进展。结果表明,水肥耦合是节约水肥资源,降低环境污染,实现茄子高效优质增产的有效措施。深入探究茄子水肥耦合机制,构建多因素水肥耦合模型,寻求最佳水肥配比实现精准化灌溉,可为指导茄子合理的水肥管理并使茄子达到高效优质生长提供参考。  相似文献   

20.
More efficient use of water in agricultural systems is widely needed. However, most irrigated systems are characterized by heterogeneous climate and soil conditions that interact strongly with irrigation management, making optimal irrigation decisions difficult to achieve. Here we investigated the impact of reduced irrigations on spring wheat yields in the Yaqui Valley of Mexico, a region experiencing increased water scarcity. Two years of field experiments containing three irrigation treatments each were used to evaluate the CERES-wheat crop model, with good agreement between observed and modeled yields. The model was then used in a sensitivity analysis whereby seven irrigation strategies were applied across a range of possible soil and climatic conditions. Results indicated that yield losses from reduced irrigations depend greatly on year, corresponding to large variations in rainfall between growing seasons. Estimates of the best timing strategy for a given number of irrigations were more robust with respect to climate variability. Soils also exhibited a strong interaction with irrigation, with the difference between initial soil moisture and wilting point deemed particularly important in this system. The optimal economic strategy was determined for each hypothetical soil based on the observed historical distribution of growing season climatic conditions. The results of this study demonstrate the need to consider soil and climate variability when interpreting experimental results, and the ability of the CERES model to serve this need by quantifying the relative importance of different heterogeneous factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号