首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drought during the pre‐flowering stage can increase yield of peanut. There is limited information on genotypic variation for tolerance to and recovery from pre‐flowering drought (PFD) and more importantly the physiological traits underlying genotypic variation. The objectives of this study were to determine the effects of moisture stress during the pre‐flowering phase on pod yield and to understand some of the physiological responses underlying genotypic variation in response to and recovery from PFD. A glasshouse and field experiments were conducted at Khon Kaen University, Thailand. The glasshouse experiment was a randomized complete block design consisting of two watering regimes, i.e. fully‐irrigated control and 1/3 available soil water from emergence to 40 days after emergence followed by adequate water supply, and 12 peanut genotypes. The field experiment was a split‐plot design with two watering regimes as main‐plots, and 12 peanut genotypes as sub‐plots. Measurements of N2 fixation, leaf area (LA) were made in both experiments. In addition, root growth was measured in the glasshouse experiment. Imposition of PFD followed by recovery resulted in an average increase in yield of 24 % (range from 10 % to 57 %) and 12 % (range from 2 % to 51 %) in the field and glasshouse experiments, respectively. Significant genotypic variation for N2 fixation, LA and root growth was also observed after recovery. The study revealed that recovery growth following release of PFD had a stronger influence on final yield than tolerance to water deficits during the PFD. A combination of N2 fixation, LA and root growth accounted for a major portion of the genotypic variation in yield (r = 0.68–0.93) suggesting that these traits could be used as selection criteria for identifying genotypes with rapid recovery from PFD. A combined analysis of glasshouse and field experiments showed that LA and N2 fixation during the recovery had low genotype × environment interaction indicating potential for using these traits for selecting genotypes in peanut improvement programs.  相似文献   

2.
Based on the carboxylation kinetics of the C3 and C4 photosynthetic pathway, it is anticipated that C3 crops may be favored over C4 weeds as atmospheric CO2 increases. In the current study, tomato (Lycopersicon esculentum), a C3 crop species, was grown at ambient (~400 μmol mol−1) and enhanced carbon dioxide (~800 μmol mol−1) with and without two common weeds, lambsquarters (Chenopodium album), a C3 weed, and redroot pigweed (Amaranthus retroflexus), a C4 weed, from seedling emergence until mutual shading of crop-weed leaves. Because growth temperature is also likely to change in concert with rising CO2, the experiment was repeated at day/night temperatures of 21/12 and 26/18 °C. For both day/night temperatures, elevated CO2 exacerbated weed competition from both the C3 and C4 weed species. A model based on relative leaf area following emergence was used to calculate potential crop losses from weeds. This analysis indicated that potential crop losses increased from 33 to 55% and from 32 to 61% at the 21/12 and 26/18 °C day/night temperatures, for ambient and elevated CO2, respectively. For the current study, reductions in biomass and projected yield of tomato appeared independent of the photosynthetic pathway of the competing weed species. This may be due to inherent variation and overlap in the growth response of C3 and C4 species, whether weeds or crops, to increasing CO2 concentration. Overall, these results suggest that as atmospheric CO2 and/or temperature increases, other biological interactions, in addition to photosynthetic pathway, deserve additional consideration in predicting competitive outcomes between weeds and crops.  相似文献   

3.
G. Oettler  G. Wahle   《Plant Breeding》2001,120(4):297-300
Fusarium head blight (FHB) is a widespread disease of small‐grain cereals and can cause substantial losses in grain yield. To assess quantitative genetic parameters as a basis for an efficient breeding programme for resistance, 100 triticale (×Triticosecale Wittm.) genotypes were tested in various environments and artificially inoculated at anthesis with an aggressive isolate of Fusarium culmorum. A visual rating (1–9 scale) was used to assess head blight infection. Five grain yield traits relative to an uninoculated control were also measured. The mean value of the average rating, calculated from four or five readings, was 4.4. It ranged from 3.0 to 5.9 and showed continuous variation. Infection caused a 48% reduction of mean kernel weight per spike, which was the result of 26% fewer kernels per spike and a 32% lower 1000‐kernel weight. The 50‐ml kernel weight was affected by only 20%. The range and genotypic variation was highest for relative kernel weight per spike. For all relative grain yield traits, the most important source of variation was the environment, followed by genotype‐environment interaction, with genotype generally coming last. In contrast, genotypic variation was the most important factor for the disease rating, which also had the highest heritability (h2= 0.89). Phenotypic correlations between the average head blight rating and relative grain yield traits were moderate (r = 0.42–0.57). In conclusion, an average disease rating provides a quantitative assessment of resistance and is suitable for screening large numbers of genotypes. Relative kernel weight per spike gives a ranking of the genotypes that is very similar to the visual score.  相似文献   

4.
Genotype × environment interactions for tea yields   总被引:1,自引:0,他引:1  
Several methods were used to evaluate phenotypic stability in 20 tea (Camellia sinensis) genotypes, many of which are cultivated widely in East Africa. The genotypes were evaluated for annual yields at two sites over a six year period. Data obtained were used to compare methods of analysis of G × E interactions and yield stability in tea. A standard multi-factor analysis of variance test revealed that all first order interactions (genotypes × sites; genotypes × years; sites × years) as well as second order interactions (sites × genotype × years) were significant. Regression analysis was used to assess genotype response to environments. Regression coefficients (bi) obtained ranged from 0.78 to 1.25. Deviations from regression (S2d) were significant (p < 0.05) from 0.0 for all the test genotypes. Analysis for sensitivity to environment change (SE2 i) revealed that the test genotypes differed in their level of sensitivity. The hierarchical cluster analysis method was used to assemble the test genotypes into groups with similar regression coefficients (bi) and mean yield, which proved useful for the identification of high yielding genotypes for breeding purposes as well as for commercial exploitation. Rank correlation between yield and some stability parameters were significant. Mean yield was significantly correlated to bi (r = 0.80***) and SE2 i(0.74***) which is an indication that selection for increased yield in tea would change yield stability by increasing bi and SE2 i leading to development of genotypes that are specifically adapted to environments with optimal growing conditions. Genotypes differed in response to years and sites. As stand age increased, genotype yields generally increased though annual yield fluctuations were more pronounced in some genotypes than others. This response was not consistent across the sites for all genotypes indicating the need to test clones at multiple sites over longer periods of time. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
A. Marocco    L. Cattivell    G. Dtloou    C. Lorenzoni  A. M. Sianca 《Plant Breeding》1992,108(3):250-255
The effect of recurrent selection procedure for improving grain yield in autogamous cereals was evaluated in a six-rowed winter barley population. Gain from selection was estimated by field testing 90 random S2 lines from each of the C0, C1 and C2 populations. Response to selection for grain yield was 0.78 t/ha from C0 to C1 and 1.09 t/ha from C1 to C2. Broad-sense heritability and genotypic variance for grain yield remained high in all cycles which suggests further gain from additional selection cycles. Yield increase was due to a higher number of seeds/m2. Significant differences among mean values were observed for heading date (189 days in C0 and 182 days in C2), whereas no variation was seen for plant height and 1000-kernel weight. The proposed recurrent selection procedure appears effective to improve the population and to extract superior genotypes for varietal development.  相似文献   

6.
L. Zeng  M.C. Shannon  C.M. Grieve 《Euphytica》2002,127(2):235-245
The lack of an effective evaluation method for salt tolerance in the screening process is one of the reasons for limited success in conventional salt tolerance breeding. This study was designed to identify useful agronomic parameters for evaluation of salt tolerance and to evaluate genotypes by multiple agronomic parameters for salt tolerance at different growth stages. Twelve genotypes were grown in a greenhouse in sand and irrigated with nutrient solutions of control and treatments amended with NaCl and CaCl2 (5:1 molar concentration) at 4.4 and 8.2 dS m-1 electrical conductivity. Wide genotypic differences in relative salt tolerance based on seedling growth were identified. The duration of reproductive growth between panicle initiation and anthesis was either reduced or increased by salinity, but the response was not strictly correlated with relative salt tolerance in seed yield among genotypes. Wide genotypic differences in relative salt tolerance based on spikelet and tiller numbers were identified. Few genotypic differences were identified for fertility and kernel weight. Spikelet and tiller numbers contributed most of the variation to seed yield among parameters investigated. When genotypes were ranked for salt tolerance based on the means of multiple parameters, dramatic changes of salt tolerance at early and seed maturity stages were observed in two genotypes, GZ5291-7-1-2 and GZ178. IR63731-1-1-4-3-2 was identified with a favourable combination of salt tolerance at early seedling and seed maturity stages. Cluster group ranking of genotypes based on multiple agronomic characters can be applied in salt tolerance breeding to evaluate salt tolerance and may have great advantage over conventional methods. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Atmospheric CO2 concentrations ([CO2]) are predicted to increase from current levels of about 400 ppm to reach 550 ppm by 2050. The direct benefits of elevated [CO2] (e[CO2]) to plant growth appear to be greater under low rainfall conditions, but there are few field (Free Air CO2 Enrichment or FACE) experimental set-ups that directly address semi-arid conditions. The objectives of this study were to investigate the following research questions: 1) What are the effects of e[CO2] on the growth and grain yield of lentil (Lens culinaris) grown under semi-arid conditions under FACE? 2) Does e[CO2] decrease grain nitrogen in lentil? and 3) Is there genotypic variability in the response to e[CO2] in lentil cultivars? Elevated [CO2] increased yields by approximately 0.5 t ha−1 (relative increase ranging from 18 to 138%) by increasing both biomass accumulation (by 32%) and the harvest index (by up to 60%). However, the relative response of grain yield to e[CO2] was not consistently greater under dry conditions and might depend on water availability post-flowering. Grain nitrogen concentration was significantly reduced by e[CO2] under the conditions of this experiment. No differences were found between the cultivars selected in the response to elevated [CO2] for grain yield or any other parameters observed despite well expressed genotypic variability in many traits of interest. Biomass accumulation from flowering to maturity was considerably increased by elevated [CO2] (a 50% increase) which suggests that the indeterminate growth habit of lentils provides vegetative sinks in addition to reproductive sinks during the grain-filling period.  相似文献   

8.
M. Mera    L. Beltran    H. Miranda    J. L. Rouanet 《Plant Breeding》2006,125(2):161-166
Thinner pod walls might contribute to increased yield potential and adaptation of lupins. Fourteen autumn‐sown genotypes of Lupinus albus L. were evaluated over 2 years at four sites in southern Chile. Pod wall proportion (PWP), pod wall specific weight (WSW) and five other pod‐related characters were measured to estimate their genetic variation, heritability across years and sites, and genotypic and phenotypic correlations among the characters. Ranges for PWP and pod WSW were 22.9−43.1% and 16.4−37.4 mg/cm2, respectively. PWP in cultivated L. albus was similar to that reported in L. angustifolius; however, specific weight was substantially lower. Highly significant genotypic effects were found for both characters. Broad sense heritabilities were high for PWP (0.63) and moderate for pod WSW (0.46). These characters were significantly correlated, more so genotypically (rg = 0.67) than phenotypically (rph = 0.36). Selection for low PWP should lead to lower pod wall thickness or density, both of which contribute to pod WSW. Nevertheless, selection for pod WSW could achieve further reductions, particularly if practised among low PWP materials.  相似文献   

9.
Temporal and seasonal water deficit is one of the major factors limiting crop yield on the Canadian prairie. Selection for low carbon isotope discrimination (Δ13C) or high water‐use efficiency (WUE) can lead to improved yield in some environments. To understand better the physiology and WUE of barley under drought conditions on the Canadian prairie, 12 barley (Hordeum vulgare L.) genotypes with contrasting levels of leaf Δ13C were investigated for performance stability across locations and years in Alberta, Canada. Four of those genotypes (‘CDC Cowboy’, ‘Niobe’, ‘170011’ and ‘Kasota’) were also grown in the greenhouse under well‐watered and water‐deficit conditions to examine genotypic variations in leaf Δ13C, WUE, gas exchange parameters and specific leaf area (SLA). The water‐deficit treatment was imposed at the jointing stage for 10 days followed by re‐watering to pre‐deficit level. Genotypic ranking in leaf Δ13C was highly consistent, with ‘170011’, ‘CDC Cowboy’ and ‘W89001002003’ being the lowest and ‘Kasota’‘160049’ and ‘H93174006’ being the highest leaf Δ13C. Under field and greenhouse (well‐watered) conditions, leaf Δ13C was significantly correlated with stomatal conductance (gs). Water deficit significantly increased WUE, with ‘CDC Cowboy’– a low leaf Δ13C genotype with significantly higher WUE and lower percentage decline in assimilation rate (A) and gs than the other three genotypes (‘Niobe’, ‘170011’ and ‘Kasota’). We conclude that leaf Δ13C is a stable trait in the genotypes evaluated. Low leaf Δ13C of ‘CDC Cowboy’ was achieved by maintaining a high A and a low gs, with comparable biomass and grain yield to genotypes showing a high gs under field conditions; hence, selection for a low leaf Δ13C genotype such as ‘CDC Cowboy’ maybe important for maintaining productivity and yield stability under water‐limited conditions on the Canadian prairie.  相似文献   

10.
This study investigated trade-offs between parameters determining water use efficiency of wheat under elevated CO2 in contrasting growing seasons and a semi-arid environment. We also evaluated whether previously reported negative relationships between nutrient content and transpiration efficiency among wheat genotypes will be maintained under elevated CO2 conditions. Two cultivars of wheat (Triticum aestivum L.), Scout and Yitpi, purportedly differing in water use efficiency related traits (e.g. transpiration efficiency) but with common genetic backgrounds were studied in a high yielding, high rainfall (2013), and in a low yielding, very dry growing season (2014) under Free-Air CO2 Enrichment (FACE, CO2 concentration of approximately 550 μmol mol−1) and ambient (approximately 390 μmol mol−1) CO2. Gas exchange measurements were collected diurnally between stem elongation and anthesis. Aboveground biomass and nutrient content (sum of Ca, K, S, P, Cu, Fe, Zn, Mn and Mg) were determined at anthesis. Yield, yield components and harvest index were measured at physiological maturity. Cultivar Scout showed transiently greater transpiration efficiency (measured by gas exchange) over cultivar Yitpi under both ambient and elevated CO2 conditions, mainly expressed in the high yielding but not in the low yielding season. Nutrient content was on average 13% greater for the lower transpiration efficiency cultivar Yitpi than the cultivar with higher transpiration efficiency (Scout) in the high yielding season across both CO2 concentrations. Elevated CO2 stimulated grain yield to a greater extent in the high yielding season than in the low yielding season where increased aboveground biomass earlier in the season did not translate into fertile tillers in cultivar Yitpi. Yield increased 27 and 33% in the high yielding and 0 and 19% in the low yielding season for cultivars Yitpi and Scout, respectively. Intraspecific variation in CO2 responsiveness related mechanisms of grain yield were observed. These results suggest CO2-driven trade-offs between traits governing water use efficiency are related to both growing season and intraspecific variations, and under very dry finishes, the trade-offs may even reverse. The negative relationship between nutrient content and transpiration efficiency among wheat genotypes will be maintained under elevated CO2 conditions.  相似文献   

11.
Elevated ultraviolet‐B (UV‐B; between 290 and 320 nm) radiation, because of depletion of the stratospheric ozone layer, is one of the major environmental factors influencing plant metabolic processes and yield. The southern US rice cultivars contribute greatly towards US rice production, but the effects of elevated UV‐B radiation on these cultivars are not well known. The objective of this study was to determine the effects of elevated UV‐B radiation on leaf photosynthetic rate (Pn), membrane stability, pollen viability, phenolic concentration and yield of eight commercially popular southern US rice cultivars (five inbred cultivars and three hybrids). Plants were grown in a temperature‐controlled greenhouse in Beaumont, TX, USA, and were exposed to UV‐B radiation of 0, 8 or 16 kJ m?2 day?1 for 90 days. For most of the cultivars, plants grown under 8 or 16 kJ UV‐B radiation showed significant decreases in Pn, membrane stability, pollen viability, and yield compared with the plants grown under an UV‐B‐free environment, whereas there was a significant increase in leaf phenolic concentration under 16 kJ UV‐B radiation. The hybrid ‘Clearfield XL729’ performed best among the selected southern US rice cultivars under 16 kJ UV‐B radiation.  相似文献   

12.
The biomass allocation pattern of plants to shoots and roots is a key in the cycle of elements such as carbon, water and nutrients with, for instance, the greatest allocations to roots fostering the transfer of atmospheric carbon to soils through photosynthesis. Several studies have investigated the root to shoot ratio (R:S) biomass of existing crops but variation within a crop species constitutes an important information gap for selecting genotypes aiming for increasing soil carbon stocks for climate change mitigation and food security. The objectives of this study were to evaluate agronomic performance and quantify biomass production and allocation between roots and shoots, in response to different soil water levels to select promising genotypes for breeding. Field and greenhouse experiments were carried out using 100 genotypes including wheat and Triticale under drought‐stressed and non‐stressed conditions. The experiments were set‐up using a 10 × 10 alpha lattice design with two replications under water stress and non‐stress conditions. The following phenotypic traits were collected: number of days to heading (DTH), number of productive tillers per plant (NPT), plant height (PH), days to maturity (DTM), spike length (SL), kernels per spike (KPS), thousand kernel weight (TKW), root biomass (RB), shoot biomass (SB), root to shoot ratio (R:S) and grain yield (GY). There was significant (p < 0.05) variation for grain yield and biomass production because of genotypic variation. The highest grain yield of 247.3 g/m2 was recorded in the genotype LM52 and the least was in genotype Sossognon with 30 g/m2. Shoot biomass ranged from 830 g/m2 (genotype Arenza) to 437 g/m2 (LM57), whilst root biomass ranged between 603 g/m2 for Triticale and 140 g/m2 for LM15 across testing sites and water regimes. Triticale also recorded the highest R:S of 1.2, whilst the least was 0.30 for wheat genotype LM18. Overall, drought stress reduced total biomass production by 35% and R:S by 14%. Genotypic variation existed for all measured traits useful for improving drought tolerance, whilst the calculated R:S values can improve accuracy in estimating C sequestration potential of wheat. Wheat genotypes LM26, LM47, BW140, LM70, LM48, BW152, LM75, BW162, LM71 and BW141 were selected for further development based on their high total biomass production, grain yield potential and genetic diversity under drought stress.  相似文献   

13.
The objective of the present paper is to determine the response of the physiological parameters related to biomass production and plant water relations in a standard Sri Lankan rice (Oryza sativa) variety (BG‐300) to elevated CO2 (i.e. 570 µmol/mol). During two seasons, rice crops were grown under three different experimental treatments; namely, at 570 µmol/mol (i.e. ‘elevated’) and 370 µmol/mol (‘ambient’) CO2 within open top chambers, and at ambient CO2 under open field conditions. Leaf net photosynthetic rate in the elevated treatment increased by 22–75 % in comparison to the ambient. However, the ratio between intercellular and ambient CO2 concentrations remained constant across different CO2 treatments and seasons. CO2 enrichment decreased individual leaf stomatal conductance and transpiration rate per unit leaf area, and increased both leaf and canopy temperatures. However, the overall canopy stomatal conductance and daily total canopy transpiration rate of the elevated treatment were approximately the same as those achieved under ambient conditions. This was because of the significantly greater leaf area index and greater leaf–air vapour pressure deficit under CO2 enrichment. The leaf chlorophyll content increased significantly under elevated CO2; however, the efficiency (i.e. photochemical yield) of light energy capture by Photosystem II (i.e. Fv/Fm) in chlorophyll a did not show a significant and consistent variation with CO2 enrichment.  相似文献   

14.
Summary Aluminum toxicity due to the cation Al+3 is a major factor limiting yields in acid soils. Wide genetic variability to aluminum tolerance is found in oat genotypes. The objectives of this study were to determine the number of genes controlling aluminum tolerance in oats and to verify if any detrimental effects were present of the aluminum tolerance genes on grain yield and grain quality in Al+3free soils. Aluminum tolerance was estimated as the average regrowth of the main root after exposure to toxic levels of Al+3 in a hydroponic solution under controlled conditions. The number of genes controlling that trait was estimated from the distribution of the average root regrowth frequencies in a population of 333 recombinant inbred lines (RIL's) in generations F5:6 and F5:7. The effects on grain yield and grain quality were assessed in a subpopulation of 162 RIL's chosen based on their aluminum tolerance response. Aluminum tolerance in the evaluated population was controlled by one dominant major gene with the tolerant genotypes carying Al a Al a and the sensitive ones al a al a alleles. No detrimental effects of the Al a allele on grain yield or grain quality were detected.Part of the Master of Science dissertation of the first author  相似文献   

15.
Carbon isotope discrimination (Δ) has been proposed as a selection criterion for transpiration efficiency and grain yield in drought‐prone environments for several C3 species, including cereals. Δ analysis, however, has mainly been concerned with grain or culm tissues and little work has been devoted to other organs. The objective of this study was to describe Δ variation in different organs and to examine the relationships between Δ and grain yield across environments. Six durum wheat genotypes with contrasted grain Δ were cultivated under rainfed conditions during three successive years at Montpellier (South of France). Δ was measured on flag leaf, stalk, awns, chaff and rachis sampled at anthesis and maturity, and on mature grain. Higher genotypic variation and closer correlation with yield were noted for grain Δ compared to other plant parts. The genotype ranking across years was more consistent for grain Δ than for other organs. Consequently, the grain seems the most effective plant part for Δ analysis in durum wheat under Mediterranean conditions. The study of Δ variation in other organs may be useful, however, to evaluate the contribution of those organs to grain filling and final yield according to environmental conditions.  相似文献   

16.
West Africa has large areas of river floodplains, most of which are not currently used for farmland. Rice (Oryza spp.) is a promising crop for farming in floodplains because of its high adaptability to a wide range of water environments. On the other hand, there is great variation in soil fertility and water availability even in a small area within a floodplain. Hence, we evaluated 27 rice genotypes in four fields in three years in a floodplain of the Northern Region of Ghana to investigate genotype × environment (G × E) interactions for rice yield and to identify stable, high-yielding genotypes. The genotypes consisted of O. sativa, O. glaberrima and New Rice for Africa (NERICA), and many were selected for their reported submergence resistance because of the anticipated submergence damage in the floodplain. There were large variations in yield, which ranged from 0.14 to 5.35 t ha−1 depending on the location within a floodplain, genotype and year, and there were significant genotype, environment and G × E interaction effects on yield, accounting for 24.8%, 20.2%, and 28.2%, respectively, of the total variation. The results suggested that selection of suitable location with high soil fertility and low risk of submergence is necessary to achieve high yield in a floodplain. In addition, early sowing would be effective high-yielding crop management, which reduced the risk of submergence-induced damage just after sowing and secured sufficient growth duration to achieve high yield. Genotype IR42 showed the highest average yield among environments, but its yield stability was low. On the other hand, several genotypes including Amankwatia, a local aromatic cultivar adapted to irrigated and lowland environments, and IRBL9-W[RL], a blast-tolerant variety containing the Sub1 gene for submergence tolerance, showed high, stable yield. To put these results to practical use in other floodplain areas in West Africa, physiological mechanisms causing G × E interaction for rice yield should be further studied.  相似文献   

17.
Blast disease causes serious economic yield losses in pearl millet. Identification and introgression of genomic regions associated with blast resistance can help to develop resistant cultivars to minimize yield losses incurred from blast outbreaks. In this study, 384 advanced pearl millet genotypes were screened against six blast pathotype-isolates (major pearl millet growing agro-ecologies of India), namely, Pg 45, Pg 118, Pg 138, Pg 186, Pg 204 and Pg 232. Analysis of variance showed significant (P < .001) variation among genotypes for blast reaction (susceptible to resistance). ICMR 08111 and ICMR 10888 genotypes showed resistance to all six blast pathotypes. A genome-wide association study performed with 264,241 single nucleotide polymorphic markers could successfully identify 15 SNPs (P = 1.26 × 10−7 to 9.22 × 10−12) underlying the genomic regions governing blast-resistance across five different chromosomes. The SNPs reported had a significant association in at least two of the three models tested (GLM, MLM and Farm CPU). These SNPs can be used in pearl millet-resistant breeding programmes after their function has been validated across different genetic backgrounds.  相似文献   

18.
Evaluation of salt tolerance in rice genotypes by physiological characters   总被引:5,自引:0,他引:5  
The use of physiological characters as selection criteria in salt tolerance breeding requires the identification of the contribution each individual character makes to salt tolerance. Rice genotypes were evaluated for salt tolerance in terms of grain yield and physiological characters. Plants of twelve genotypes were grown in sand tanks in a greenhouse and irrigated with Yoshida nutrient solution. Sodium chloride and calcium chloride (5:1 molar ratio) were added at two concentrations to give moderate (4.5 dS m-1) and high (8.3 dS m-1) salinity treatments. One set of plants was harvested at 635 °Cċd (accumulative thermal time) after planting to determine LAI and mineral ion concentrations. Another set of plants was allowed to grow to maturity. High genotypic diversity for LAI and shoot ion contents was observed. LAI contributed the most to the variation of the grain yield under salt stress. Significant correlations between LAI and yield components in both salt-tolerant and-sensitive genotypes further confirmed the significant contribution of LAI to grain yield. K-Na selectivity increased with increasing salinity. Conversely, Na-Ca selectivity decreased with increasing salinity. Significant correlations were identified between grain yield and both Na-Ca and K-Na selectivity. Highly significant (p<0.001) correlations were identified between Na-Ca selectivity and the rankings among genotypes for grain yield. Thus, Na-Ca selectivity could be one salt tolerance component and an useful selection criterion in screening for salt tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Carbon isotope discrimination (Δ) has been proposed as a method for evaluating water use efficiency (WUE) in C3 plants and as a precise technique for screening plants with higer tolerance under water deficit conditions. In this research, 18 alfalfa genotypes from different geographical origins were evaluated under irrigated and rain-fed conditions in organically managed fields in Austria. Significant differences were found amongst harvests for Δ-shoot under both conditions while genotype by harvest interaction was only significant under irrigated condition. Drought stress under rain-fed condition reduced the overall mean of water use efficiency and carbon isotope discrimination responses(up to 34%), but the ratios of reduction differed for characters and genotypes. Narrow ranges were found for all traits especially for WUE-TBY (total biomass yield) (0.78 kg m−3) and Δ-shoot (0.53‰) based on genotype means over locations and years, although variation and ranges were higher under irrigated condition. Regarding the variable and low correlations, simultaneous assessment of genotypes for Δ-shoot and biomass production can ensure the selection of superior genotypes and minimize potential biomass reductions that may result from using Δ-shoot as the only selection criterion to improve WUE. Sitel was the most water use efficient genotype(2.79 and 4.48 kg m−3 based on shoot dry matter and total biomass,respectively) across two condition (widely adapted genotype) followed by Mohajeran, Fix232 and Verko under irrigated condition (as specific adapted genotypes) and Vlasta, Sanditi, Ghara-aghaj under rain-fed condition.  相似文献   

20.
Data have been collected on the abundance of obligately aerobic, bacteriochlorophyll-a-containing bacteria in a marine microbial mat on the West Frisian Island of Texel, The Netherlands. Plate counts on media rich in organic matter revealed average numbers of 31105·cm−3 sediment in the top 10 mm of the mat; the number of purple non-sulphur bacteria was of the same magnitude. Due to the relatively small dimensions of obligately aerobic anoxygenic phototrophic bacteria and purple non-sulphur bacteria, compared to those of purple sulphur bacteria, the contributions of either of the two former groups to the biomass of Bchl-a-containing organisms was approximately 3%. The specific Bchl-a-content of the isolated obligately aerobic phototrophs was very low (0.8 to 1.0 μg·mg−1 protein) compared to that of purple non-sulphur bacteria (16 to 20 μg·mg−1 protein), and purple sulphur bacteria (27 to 30 μg·mg−1). As a consequence, the relative contribution to the total Bchl a concentration of the two former groups (0.1% and 2.1%, respectively) was negligible, compared to that of the purple sulphur bacteria (97.8%).Salinities <50 had little effect on growth rate and yield of isolates; at salinities between 50 and 100 the doubling time increased progressively with a concomitant decrease in yield; no growth occurred at salinities > 140.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号