共查询到20条相似文献,搜索用时 15 毫秒
1.
Five ruminally and duodenally cannulated steers (491 +/- 21 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental nonprotein N (NPN) source and supplementation frequency (SF) on the dynamics of ruminal fermentation in steers consuming low-quality grass straw (4% CP). Treatments (TRT) included an unsupplemented control (CON) and a urea or biuret supplement that were placed directly into the rumen at 0700 daily (D) or every other day (2D). The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement; therefore, the urea and biuret treatments received the same amount of supplemental N over a 2-d period. Daily TRT were supplemented with CP at 0.04% of BW/d, whereas the 2D TRT were supplemented at 0.08% of BW every other day. Forage was provided at 120% of the previous 5-d average intake in two equal portions at 0715 and 1900. Ruminal fluid was collected 0, 3, 6, 9, 12, and 24 h after supplementation on a day of and a day before supplementation for all TRT. Ruminal NH3-N increased (P < 0.04) with CP supplementation on the day all supplements were provided and on the day on which only daily supplements were provided compared with the CON. However, an NPN source x SF interaction (P = 0.03) on the day all supplements were provided indicated that NH3-N increased at a greater rate for urea as SF decreased compared with biuret. Ruminal NH3-N on the day only daily supplements were provided was greater (P = 0.02) for D compared with 2D. On the day all supplements were provided, D increased (P = 0.05) ruminal indigestible acid detergent fiber passage rate and ruminal fluid volume compared with 2D. These results suggest that urea or biuret can be used effectively as a supplemental N source by steers consuming low-quality forage without adversely affecting ruminal fermentation, even when provided every other day. 相似文献
2.
Bruno I Cappellozza David W Bohnert Maria M Reis Kendall C Swanson Stephanie J Falck Reinaldo F Cooke 《Journal of animal science》2021,99(6)
This experiment evaluated the influence of protein supplementation frequency (SF) and amount offered on intake, nutrient digestibility, and ruminal fermentation by rumen-fistulated beef steers consuming low-quality [2.9% crude protein (CP); dry matter (DM) basis], cool-season forage. Seven Angus × Hereford steers (300 ± 27 kg) fitted with ruminal cannulas were randomly assigned to 1 of 7 treatments in an incomplete 7 × 4 Latin square. Treatments, in a 2 × 3 factorial design plus a non-supplemented control (CON), consisted of 2 levels of supplemental soybean meal, 100% (F) or 50% (H) of the estimated rumen-degradable protein requirement, provided daily (D), once every 5 d (5D), or once every 10 d (10D). Experimental periods were 30 d and dry matter intake (DMI) was measured from days 19 to 28. On days 21 (all supplements provided) and 30 (only daily supplements provided; day immediately prior to supplementation for 5D and 10D treatments) ruminal fluid was collected for ruminal pH, ammonia-N (NH3), volatile fatty acids (VFA), and determination of ruminal fermentation variables. Forage and total DM, organic matter (OM), and nitrogen (N) intake increased with supplementation (P ≤ 0.04). However, a linear effect of SF × amount of supplement interaction was observed for forage and total DM, OM, and N intake (P ≤ 0.04), with each variable decreasing as SF decreased, but the decrease being greater with F vs. H. Apparent total tract DM, OM, and neutral detergent fiber digestibility was not affected by supplementation or amount of supplement provided (P ≥ 0.10). In contrast, N digestibility increased with supplementation and for F vs. H (P < 0.01). Digestibility of DM, OM, and N increased linearly as SF decreased (P ≤ 0.03). When all supplements were provided, ruminal NH3, total VFA, and molar proportions of all individual VFA increased with supplementation (P ≤ 0.04), whereas acetate:propionate ratio decreased (P < 0.01). When only daily supplements were provided, none of the aforementioned fermentation parameters were affected (P ≥ 0.09). In summary, reducing the amount of supplemental CP provided to ruminants consuming low-quality forages, when supplementation intervals are >5 d, can be a management tool to maintain acceptable levels of DMI, nutrient digestibility, and ruminal fermentation while reducing supplementation cost. 相似文献
3.
Five steers (491 +/- 21 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental non-protein N (NPN) source and supplementation frequency (SF) on nutrient intake and site of digestion in steers consuming low-quality grass straw (4% CP). Treatments (TRT) included an unsupplemented control and a urea- or biuret-containing supplement placed directly into the rumen daily (D) or every other day (2D) at 0700. The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement. Daily TRT were supplemented CP at 0.04% of BW/d, whereas the 2D TRT were supplemented at 0.08% of BW every other day. Therefore, all supplemented TRT received the same quantity of supplemental CP over a 2-d period. Forage OM intake was not affected (P > 0.05) by NPN supplementation, NPN source, or SF; however, total OM and N intake were increased (P < 0.01) with CP supplementation. Duodenal flow of N was greater (P = 0.04) with CP supplementation compared with the control. In addition, duodenal bacterial N flow was increased with CP supplementation (P = 0.04) and for biuret compared with urea (P < 0.01). Bacterial efficiency (g bacterial N/kg OM truly digested in the rumen) was greater (P = 0.05) for biuret than for urea. Apparent total-tract N digestibility was increased with NPN supplementation (P < 0.01) but not affected by NPN source or SF. These results suggest that urea or biuret can be used effectively as a supplemental N source by steers consuming low-quality forage. 相似文献
4.
Schauer CS Bohnert DW Ganskopp DC Richards CJ Falck SJ 《Journal of animal science》2005,83(7):1715-1725
The objectives of this research were to determine the influence of protein supplementation frequency on cow performance, grazing time, distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, harvest efficiency, percentage of supplementation events frequented, and CV for supplement intake for cows grazing low-quality forage. One hundred twenty pregnant (60 +/- 45 d) Angus x Hereford cows (467 +/- 4 kg BW) were used in a 3 x 3 Latin square design for one 84-d period in each of three consecutive years. Cows were stratified by age, BCS, and BW and assigned randomly to one of three 810-ha pastures. Treatments included an unsupplemented control (CON) and supplementation every day (D; 0.91 kg, DM basis) or once every 6 d (6D; 5.46 kg, DM basis) with cottonseed meal (CSM; 43% CP, DM basis). Four cows from each treatment (each year) were fitted with global positioning system collars to estimate grazing time, distance traveled, maximum distance from water, cow distribution, and percentage of supplementation events frequented. Collared cows were dosed with intraruminal n-alkane controlled-release devices on d 28 for estimation of DMI, DM digestibility, and harvest efficiency. Additionally, Cr2O3 was incorporated into CSM on d 36 at 3% of DM for use as a digesta flow marker to estimate the CV for supplement intake. Cow BW and BCS change were greater (P < or = 0.03) for supplemented treatments compared with CON. No BW or BCS differences (P > or = 0.14) were noted between D and 6D. Grazing time was greater (P = 0.04) for CON compared with supplemented treatments, with no difference (P = 0.26) due to supplementation frequency. Distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, and harvest efficiency were not affected (P > or = 0.16) by protein supplementation or supplementation frequency. The percentage of supplementation events frequented and the CV for supplement intake were not affected (P > or = 0.58) by supplementation frequency. Results suggest that providing protein daily or once every 6 d to cows grazing low-quality forage increases BW and BCS gain, while decreasing grazing time. Additionally, protein supplementation and supplementation frequency may have little to no effect on cow distribution, DMI, and harvest efficiency in the northern Great Basin. 相似文献
5.
Wickersham TA Titgemeyer EC Cochran RC Wickersham EE Gnad DP 《Journal of animal science》2008,86(11):3079-3088
We evaluated the effect of increasing amounts of rumen-degradable intake protein (DIP) on urea kinetics in steers consuming prairie hay. Ruminally and duodenally fistulated steers (278 kg of BW) were used in a 4 x 4 Latin square and provided ad libitum access to low-quality prairie hay (4.9% CP). The DIP was provided as casein dosed ruminally once daily in amounts of 0, 59, 118, and 177 mg of N/kg of BW daily. Periods were 13 d long, with 7 d for adaptation and 6 d for collection. Steers were in metabolism crates for total collection of urine and feces. Jugular infusion of (15)N(15)N-urea, followed by determination of urinary enrichment of (15)N(15)N-urea and (14)N(15)N-urea was used to determine urea kinetics. Forage and N intake increased (linear, P < 0.001) with increasing DIP. Retention of N was negative (-2.7 g/d) for steers receiving no DIP and increased linearly (P < 0.001; 11.7, 23.0, and 35.2 g/d for 59, 118, and 177 mg of N/kg of BW daily) with DIP. Urea synthesis was 19.9, 24.8, 42.9, and 50.9 g of urea-N/d for 0, 59, 118, and 177 mg of N/kg of BW daily (linear, P = 0.004). Entry of urea into the gut was 98.9, 98.8, 98.6, and 95.9% of production for 0, 59, 118, and 177 mg of N/kg of BW daily, respectively (quadratic, P = 0.003). The amount of urea-N entering the gastrointestinal tract was greatest for 177 mg of N/kg of BW daily (48.6 g of urea-N/d) and decreased (linear, P = 0.005) to 42.4, 24.5, and 19.8 g of urea-N/d for 118, 59, and 0 mg of N/kg of BW daily. Microbial incorporation of recycled urea-N increased linearly (P = 0.02) from 12.3 g of N/d for 0 mg of N/kg of BW daily to 28.9 g of N/d for 177 mg of N/kg of BW daily. Provision of DIP produced the desired and previously observed increase in forage intake while also increasing N retention. The large percentage of urea synthesis that was recycled to the gut (95.9% even when steers received the greatest amount of DIP) points to the remarkable ability of cattle to conserve N when fed a low-protein diet. 相似文献
6.
Ten ruminally cannulated heifers (BW = 416 kg; SD = 24) were used to test the effect of the form and frequency of supplemental energy on forage DMI and digestibility. Five treatments were arranged in a replicated, 5 x 4 Latin rectangle (n = 8), and included no supplement (control), dry-rolled corn (DRC) fed daily, DRC fed on alternate days (DRC-A), dried distillers grains plus solubles (DDGS) fed daily, and DDGS fed on alternate days (DDGS-A). Supplements fed daily were fed at 0.40% of BW, whereas alternate day-fed supplements were fed at 0.80% of BW every other day. Chopped grass hay (8.2% CP) was fed to allow ad libitum DMI, and the intake pattern was measured. Control heifers had greater (P < 0.01) hay DMI than supplemented heifers (1.88 vs. 1.66% of BW daily, respectively), although total DMI was lower (P < 0.01) for control. Hay DMI did not differ (P = 0.45) between DRC and DDGS, and tended to be lower (P = 0.08) by heifers on DDGS-A and DRC-A than by heifers supplemented daily. Hay intake was lower (P < 0.01) on supplementation days for DDGS-A and DRC-A than on nonsupplemented days. Heifers in alternate-day treatments had fewer (P < 0.01) and larger (P < 0.01) meals and spent less (P < 0.01) time eating than those supplemented daily. Average rumen pH was greater (P = 0.05) for control than supplemented heifers (6.30 vs. 6.19). Control heifers had greater (P = 0.04) rates and extents of NDF disappearance than supplemented heifers. Rate of hay NDF disappearance was lower (P = 0.02) for DRC than for DDGS. Supplementation decreased hay DMI and changed digestion kinetics. Supplementation frequency affected amount and pattern of DMI. Rate of hay NDF disappearance was greater for DDGS than DRC. 相似文献
7.
Two experiments were conducted to determine the influence of supplemental nonprotein N (NPN) provided daily (D) or every other day (2D) on ruminant performance and N efficiency. Treatments included an unsupplemented control (CON) and a urea (28.7% CP) or biuret (28.6% CP) supplement provided D or 2D at 0700. In Exp. 1, five wethers (39 +/- 1 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental NPN source and supplementation frequency (SF) on the efficiency of N use in lambs consuming low-quality grass straw (4% CP). The amount of CP supplied by each supplement was approximately 0.10% of BW/d (averaged over a 2-d period). In Exp. 2, 80 Angus x Hereford cows (540 +/- 8 kg BW) in the last third of gestation were used to determine the effect of NPN source and SF on cow performance. The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement. The supplemented treatments received the same amount of supplemental N over a 2-d period; therefore, the 2D treatments received double the quantity of supplemental N on their respective supplementation day than the D treatments. In Exp. 1, total DM, OM, and N intake; DM, OM, and N digestibility; N balance; and digested N retained were greater (P < 0.03) for supplemented than for CON wethers, with no difference (P > 0.05) between NPN sources or SF. Plasma urea-N (PUN) was increased with N supplementation compared with CON (P < 0.01), and urea treatments had greater PUN than biuret (P < 0.01). In addition, PUN was greater (P = 0.02) for D than for 2D treatments. In Exp. 2, pre- and postcalving (within 14 d and 24 h after calving, respectively) cow weight and body condition score change were more positive (P < 0.05) for supplemented groups than for CON. These results suggest that supplements containing urea or biuret as the primary source of supplemental N can be effectively used by lambs and cows consuming low-quality forage, even when provided every other day. 相似文献
8.
Two studies were conducted to determine the influence of CP degradability and supplementation frequency (SF) on ruminant performance and N efficiency. Treatments included an unsupplemented control (CON) and degradable intake protein (DIP; 82% of CP) or undegradable intake protein (UIP; 60% of CP) provided daily, every 3 d, or every 6 d. Seven wethers (36+/-1 kg BW) were used in the digestibility study with DIP and UIP treatments formulated to meet CP requirements. Eighty-four Angus x Hereford cows (512+/-42 kg BW) in the last third of gestation were used for the performance study. The DIP treatments were calculated to provide 100% of the DIP requirement and UIP treatments were provided on an isonitrogenous basis compared with DIP. Basal diets consisted of low-quality (5% CP) meadow hay. Forage DMI and N intake by lambs decreased (P < 0.05) linearly as SF decreased. Additionally, DMI, OM intake, N retention, N digestibility, and digested N retained were greater (P < 0.01) for supplemented wethers than for controls with no difference due to crude protein degradability. Nitrogen balance, DMI, and OM intake decreased linearly (P < 0.05) as SF decreased. Plasma urea (PU; mM) was measured over a 6-d period and supplemented lambs had increased (P < 0.01) PU compared with CON. Plasma urea linearly decreased (P < 0.01) as SF decreased. Pre- and postcalving (within 14 d and 24 h of calving, respectively) cow weight and body condition score change were more positive (P < 0.05) for supplemented groups than for controls. Results suggest CP supplements consisting of 20 to 60% UIP can be effectively used by ruminants consuming low-quality forage without adversely affecting N efficiency and animal performance, even when provided as infrequently as once every 6 d. 相似文献
9.
Wickersham TA Titgemeyer EC Cochran RC Wickersham EE Moore ES 《Journal of animal science》2008,86(11):3089-3099
We evaluated the effect of frequency and amount of rumen-degradable intake protein (DIP) on urea kinetics in steers consuming prairie hay. Five ruminally and duodenally fistulated steers (366 kg of BW) were used in a 5 x 5 Latin square and provided ad libitum access to low-quality prairie hay (4.7% CP). Casein was provided daily in amounts of 61 and 183 mg of N/kg of BW (61/d and 183/d) and every third day in amounts of 61, 183, and 549 mg of N/kg of BW per supplementation event (61/3d, 183/3d, and 549/3d). Periods were 18-d long with 9 d for adaptation and 9 d for collection. Steers were in metabolism crates for total collection of urine and feces. Jugular infusion of (15)N(15)N-urea followed by determination of urinary enrichment of (15)N(15)N-urea and (14)N(15)N-urea was used to determine urea kinetics. Treatment means were separated to evaluate the effects of increasing DIP supplementation and the effects of frequency at the low (61/d vs. 183/3d) and at the high (183/d vs. 549/3d) amounts of DIP provision. Forage OM and total digestible OM intakes were linearly (P < or = 0.05) increased by increasing DIP provision but were not affected by frequency of supplementation at either the low or high amounts. Production and gut entry of urea linearly (P < or = 0.006) increased with DIP provision and tended to be greater (P < or = 0.07) for 549/3d than 183/d but were not different between 61/d and 183/3d. Microbial N flow to the duodenum was linearly (P < 0.001) increased by increasing DIP provision. Additionally, 183/d resulted in greater (P = 0.05) microbial N flow than 549/3d. Incorporation of recycled urea-N into microbial N linearly (P = 0.04) increased with increasing DIP. Microbial incorporation of recycled urea-N was greater for 549/3d than 183/d, with 42 and 23% of microbial N coming from recycled urea-N, respectively. In contrast, there was no difference due to frequency in the incorporation of recycled urea-N by ruminal microbes at the low level of supplementation (i.e., 61/d vs. 183/3d). This study demonstrates that urea recycling plays a substantial role in the N supply to the rumen and to the animal, particularly in steers supplemented infrequently with high levels of protein. 相似文献
10.
Seven ruminally and duodenally cannulated steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on ruminal fermentation characteristics. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Ruminal NH3-N was increased on the day all supplements were provided with supplemental CP (P = 0.04) and for DIP compared with UIP (P < 0.01). Also, because ruminal NH3-N increased at a greater rate with DIP compared with UIP as SF decreased, a linear effect of SF x CP degradability interaction (P = 0.02) was observed. In addition, NH3-N was greater on the day only daily supplements were provided for supplemented treatments (P = 0.04), and decreased linearly (P < 0.01) as SF decreased. Concentration of total VFA increased linearly (P = 0.02) as SF decreased on the day all supplements were provided, whereas on the day only daily supplements were provided, total VFA were greater for UIP compared with DIP (P = 0.01), and decreased linearly (P < 0.01) as SF decreased. An interaction concerning the linear effect of SF and CP degradability (P = 0.02) was observed for ruminal liquid volume on the day all supplements were provided. This was the result of an increase in liquid volume with DIP as SF decreased compared with a minimal effect with UIP. In contrast, there was no influence of supplementation on liquid volume the day only daily supplements were provided. Ruminal liquid dilution rate was greater (P = 0.02) with CP supplementation on the day all supplements were provided. We did observe a quadratic effect of SF x CP degradability interaction (P = 0.01) for dilution rate because of a quadratic response with DIP (greatest value with the every-third-day treatment) compared with a decrease as SF decreased for UIP. On the day only daily supplements were provided, ruminal liquid dilution rate decreased linearly (P = 0.02) as SF decreased. These results suggest that DIP and UIP elicit different effects on ruminal fermentation when supplemented infrequently to ruminants consuming low-quality forage while not adversely affecting nutrient intake and digestibility. 相似文献
11.
Minimal quantities of ruminally degradable protein from supplements may improve supplement use efficiency of ruminants grazing dormant forages. In Exp. 1, N retention, ruminal NH(3), serum urea N, and NDF digestibility were evaluated for 12 ruminally cannulated cows (Bos spp.) in an incomplete Latin Square design with 3 periods of 42 d each. Cows were fed weeping lovegrass [Eragrostis curvula (Schrad.) Nees] hay (4.1% CP, 75% NDF, OM basis) at 1.3 % BW/d and offered 1 of 3 sources of CP [urea, cottonseed (Gossypium spp.) meal (CSM); or 50% blood meal and 50% feather meal combination (BFM)] fed to supply 0, 40, 80, or 160 g/d of CP. Beginning on d 22 of supplementation, ruminal contents and serum samples were collected at -2, 0, 3, 6, 9, 12, 18, 24, 30, 36, and 48 h relative to the morning offering of hay. On Day 24, feces and urine were collected for 72 h. In Exp. 2, 4 ruminally cannulated steers were used in a replicated 4 by 4 Latin Square to evaluate use of supplements differing in quantity and ruminal CP degradability. Steers were fed 6.8 kg/d chopped sudangrass [Sorghum bicolor (L.) Moench nothosubsp. drummondii (Steud.) de Wet ex Davidse] hay (3.7% CP, 74% NDF on OM basis) and supplemented with 56 g/d of a salt mineral mix (CON); CON + 28 g/d blood meal + 28 g/d feather meal (BFM); CON + 98 g/d CSM (LCS); or CON + 392 g/d CSM (HCS). Treatments provided 0, 40, 40, or 160 g/d of CP for CON, BFM, LCS, and HCS respectively. In Exp. 1, N use and total tract NDF digestibility were not affected by protein sources or amounts (P ≥ 0.18). Ruminal NH(3) concentrations exhibited a quadratic response over time for UREA (P < 0.05) and was greater with increasing inclusion of urea (P < 0.05); whereas BFM or CSM did not differ (P > 0.05) by amount or across time. In Exp. 2, supplementation had a tendency (P = 0.09) to increase DM disappearance. Supplementation also increased (P < 0.01) serum glucose concentrations; however, no difference (P ≥ 0.28) was found between supplements. Serum urea N and ruminal NH(3) concentrations were increased (P ≤ 0.01) in steers fed HCS. Feeding low quantities of a high-RUP supplement maintained rumen function without negatively affecting DM or NDF digestibility of a low-quality forage diet. 相似文献
12.
Seven cannulated (rumen and duodenal) Angus x Hereford steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on DMI and nutrient digestion. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Forage DMI was not affected by treatment. Total DM and N intake, duodenal N flow, and intestinal N disappearance increased (P < 0.01) with supplementation. Dry matter intake and duodenal N flow responded quadratically (P < 0.04; greatest values on the every-third-day treatments) as SF decreased. However, no differences in N intake or intestinal N disappearance were observed because of CP degradability or SF. Duodenal bacterial N flow and true bacterial N synthesis (g bacterial N/kg of OM truly digested in the rumen) were increased (P < 0.05) with supplementation. Also, duodenal bacterial N flow was greater (P < 0.05) for DIP compared with UIP. Duodenal nonbacterial N flow was increased (P = 0.02) with CP supplementation and for UIP compared with DIP (P < 0.01). Supplemental CP increased (P < 0.01) total tract DM and N digestibility with no difference due to CP degradability or SF. Results suggest CP supplements consisting of 20 to 60% UIP can be effectively used by steers consuming low-quality forage without adversely affecting DMI, nutrient digestibility, or bacterial CP synthesis, even when provided as infrequently as once every 6 d. 相似文献
13.
A data base was constructed to describe and estimate supplementation effects in nonlactating cattle consuming forage ad libitum. The data base included 66 publications on 126 forages (73 harvested and 53 grazed) and a total of 444 comparisons between a control, unsupplemented treatment and a supplemented treatment. Daily gains were reported for 301 comparisons and voluntary intake for 258. Direct measures of forage digestibility were reported for 202 comparisons, and total diet digestibility for 150. Supplements did not increase gain in all cases. Change in ADG due to supplement was not related closely to intake of supplemental TDN. Lowest increases in ADG were with native forages supplemented with molasses alone or with low intakes of molasses containing high levels of NPN. Greatest increases in gain were with improved forages, supplements with > 60% TDN, and supplemental CP intake > .05% of BW. Supplements decreased voluntary forage intake (VFI) when supplemental TDN intake was > .7% of BW, forage TDN:CP ratio was < 7 (adequate N), or VFI when fed alone was > 1.75% of BW. When supplements increased VFI, forage TDN: CP ratio was > 7 (N deficit), and VFI when fed alone was often low. There was little relationship between change in VFI and sources of supplemental CP and TDN. Supplements caused total diet TDN concentration to deviate from expected values by -10 to +5% of OM. When supplemental TDN intake was > .7% of BW, diet TDN concentration was always less than expected. There was little relationship between deviation from expected total diet TDN and type or composition of forages or supplements. Empirical multiple regression equations were developed to estimate effects of supplements on VFI and total diet TDN concentration. The most acceptable intake equation estimated VFI when fed with supplement (r2 = .84) That equation included VFI when fed alone, supplement intake, CP and TDN concentrations in forage and supplement, and classification codes describing forages and supplemental energy. The most acceptable equation for estimating total diet TDN concentration included only the expected total diet TDN concentration (r2 = .87). These equations may be used in nutritional models to account for associative effects. 相似文献
14.
Hereford x Angus cows (n = 36; initial wt = 568+/-59 kg) were used to evaluate effects of undegradable intake protein (UIP) supplementation on forage utilization and performance of beef cows fed low-quality hay. Treatments were control (unsupplemented) or one of three protein supplements. Supplements were fed at 1.3 kg DM/d and included UIP at low, medium, or high levels (53, 223, or 412 g UIP/kg supplement DM, respectively). Supplements were formulated to be isocaloric (1.77 Mcal NEm/kg) and to contain equal amounts of degradable intake protein (DIP; 211 g DIP/kg supplement DM). Intake of forage was measured daily during six 7-d collection periods, which approximated mo 7, 8, and 9 of gestation and mo 1, 2, and 3 of lactation. Prairie hay (5.8% CP) was offered daily for ad libitum consumption. Cows were weighed and condition-scored on d 7 of each period. Supplemented cows had greater (P = .01) total organic matter intake (g/kg BW) compared with control animals during gestation. Forage organic matter intake (g/kg BW) was greater (P< or =.02) for control cows than for supplemented cows during lactation. Digestion of OM and NDF was lower (P<.10) for control than for supplemented cows. Body weight of supplemented cows was greater (P = .01) than that of control cows on four of six weigh dates. Supplemental UIP did not affect (P> .10) cow body weight or condition score. Body condition scores of supplemented cows were higher (P = .02) during mo 9 of gestation and during mo 3 of lactation compared with controls. Reproductive performance was similar (P>.10) among treatment groups, and there were few differences in calf performance. These data were interpreted to suggest that supplemental protein can increase total tract OM and NDF digestion by beef cows and increase body weight. Increasing the level of UIP in the supplement had little effect on forage utilization or animal performance. 相似文献
15.
16.
Sampaio Claudia B. Detmann Edenio Paulino Mario F. Valadares Filho Sebastiao C. de Souza Marjorrie A. Lazzarini Isis Rodrigues Paulino Pedro V. de Queiroz Augusto C. 《Tropical animal health and production》2010,42(7):1471-1479
The effects of supplementation with nitrogenous compounds on intake, digestibility, and microbial protein synthesis in cattle
fed low-quality tropical forage were assessed. Five rumen fistulated crossbred Holstein × Gir heifers were used, with initial
average live weight of 180 ± 21 kg. Signal grass (Brachiaria decumbens) hay (48.6 g kg−1 of crude protein (CP), on a dry matter (DM) basis) was used as roughage. Five treatments were defined according to nitrogen
supplementation level (0, 20, 40, 60, and 80 g of CP kg−1 above the CP level of the hay). A mixture of urea, ammonium sulfate, and albumin at the ratios of 4.5:0.5:1.0, respectively,
was used as nitrogen source. The experiment consisted of five experimental periods, according to a 5 × 5 Latin square design.
The average CP contents in the diets were 51.9, 71.1, 86.0, 116.7, and 130.2 g kg−1, on a DM basis. A quadratic effect was detected (P < 0.10) of the CP levels in the diets on DM and neutral detergent fiber intake (kg/day), with maximum response at the levels
of 102.4 and 100.5 g CP kg−1 DM, respectively. The average daily concentration of rumen ammonia nitrogen showed increasing linear pattern (P < 0.01) as function of CP levels in the diet, with estimated value of 9.64 mg dL−1 equivalent to the maximum DM intake. Microbial nitrogen flow in the intestine was linearly and positively related (P < 0.01) with the CP levels in the diet. 相似文献
17.
Four multicannulated Holstein steers (initial BW 424 +/- 16 kg) were used in a 4 x 4 Latin square to determine the influence of protein supplementation on forage intake, site and extent of digestion, and nutrient flow in steers consuming dormant bluestem-range forage (2.3% CP). Treatments were 1) control, no supplement; 2) 1.8 kg of low-protein supplement, 12.8% CP (Low-CP); 3) 1.8 kg of moderate-protein supplement, 27.1% CP (Mod-CP); and 4) 2.7 kg of dehydrated alfalfa pellets, 17.5% CP (Dehy). The Dehy supplement was fed to provide the same amount of CP/d as Mod-CP, and all supplements provided similar amounts of ME/d. Forage DMI was increased (P less than .05) by feeding Mod-CP and Dehy. Ruminal OM digestibility was 39% greater (P less than .05) for the Mod-CP and Dehy supplementations than for the Low-CP supplementation and control. Ruminal CP digestibility was negative for all treatments, and control (-326%) was less (P less than .05) than supplemented treatments (average -27%). Total tract OM digestibility was greatest (P less than .10) for steers fed Mod-CP and least for control steers; Low-CP and Dehy steers were intermediate. Total tract NDF digestibility tended (P = .15) to be less with Low-CP than with Mod-CP and Dehy. Duodenal N flow was greater (P less than .05) with Mod-CP and Dehy than with Low-CP and control. In summary, supplementation with Mod-CP increased forage intake, digestion, and duodenal N flow compared with Low-CP or control; however, the response was similar when Mod-CP and Dehy supplements were fed to provide equivalent amounts of CP and ME daily. 相似文献
18.
Bruno I Cappellozza David W Bohnert Maria M Reis Megan L Van Emon Christopher S Schauer Stephanie J Falck Reinaldo F Cooke 《Journal of animal science》2021,99(6)
We evaluated the influence of amount and crude protein (CP) supplementation frequency (SF) on nitrogen (N) use by wethers and the performance of late-gestation beef cows. In exp. 1, seven Western whiteface wethers (31.8 ± 1.4 kg) were used in an incomplete 7 × 4 Latin square to evaluate intake and N use. Wethers received one of the seven treatments in a 2 × 3 factorial design containing two levels of supplemental soybean meal offered at a rate of 100% (F) or 50% (H; 50% of F) of the estimated CP requirement daily, once every 5, or once every 10 d, plus a non-supplemented control (CON). Low-quality cool-season forage (4.9 % CP; dry matter [DM] basis) was provided daily for ad libitum intake. Experimental periods lasted 30 d. In exp. 2, 84 Angus × Hereford cows (560 ± 35 kg) were stratified by age, body condition score (BCS), and expected calving date and allocated to 1 of the 21 feedlot pens (three pens per treatment). Pens were randomly assigned to receive the same treatments as in exp. 1 and cows had free access to low-quality cool-season forage (2.9% CP; DM basis). Cow body weight (BW) and BCS were measured every 14 d until calving and within 24 h after calving. In exp. 1, supplementation did not alter total DM and organic matter (OM) intake (P ≥ 0.26), but both parameters linearly decreased as SF decreased (P = 0.02). Supplementation increased DM, OM, and neutral detergent fiber (NDF) digestibility (P ≤ 0.02). Additionally, F feeding linearly increased DM, OM, and NDF digestibility as SF decreased (P ≤ 0.04). Digestibility of N, N balance, and digested N retained were greater with supplementation (P < 0.01), and N digestibility linearly increased as SF decreased (P = 0.01). Mean plasma urea-N concentration was not only greater (P < 0.01) for supplemented vs. CON wethers but also greater (P = 0.03) for F vs. H. In exp. 2, pre-calving BCS change was greater (P = 0.03) for supplemented cows. A linear effect of SF × supplementation rate for pre-calving BCS change was noted (P = 0.05), as F-supplemented cows lost more BCS compared with H as SF decreased. When considering supplementation intervals greater than 5 d, reducing the quantity of supplement provided, compared with daily supplementation, may be a feasible management strategy to maintain acceptable nutrient use and animal performance while reducing supplement and labor costs. 相似文献
19.
Köster HH Woods BC Cochran RC Vanzant ES Titgemeyer EC Grieger DM Olson KC Stokka G 《Journal of animal science》2002,80(6):1652-1662
Four experiments were conducted to evaluate the influence of changing the proportion of supplemental degradable intake protein (DIP) from urea on forage intake, digestion, and performance by beef cattle consuming either low-quality, tallgrass prairie forage (Exp. 1, 2, and 4) or forage sorghum hay (Exp. 3). Experiments 1, 2, and 3 were intended to have four levels of supplemental DIP from urea: 0, 20, 40, and 60%. However, refusal to consume the 60% supplement by cows grazing tallgrass prairie resulted in elimination of this treatment from Exp. 1 and 2. Levels of supplemental DIP from urea in Exp. 4 were 0, 15, 30, and 45%. Supplements contained approximately 30% CP, provided sufficient DIP to maximize digestible OM intake (DOMI) of low-quality forage diets, and were fed to cows during the prepartum period. In Exp. 1, 12 Angus x Hereford steers (average initial BW = 379) were assigned to the 0, 20, and 40% treatments. Forage OM intake, DOMI, OM, and NDF digestion were not affected by urea level. In Exp. 2, 90 pregnant, Angus x Hereford cows (average initial BW = 504 kg and body condition [BC] = 5.0) were assigned to the 0, 20, and 40% treatments. Treatment had little effect on cow BW and BC changes and calf birth weight, ADG, or weaning weight. However, pregnancy rate tended to be lowest (P = 0.13) for the greatest level of urea. In Exp. 3, 120 pregnant, crossbred beef cows (average initial BW = 498 kg and BC = 4.6) were assigned to the 0, 20, 40, and 60% treatments. Prepartum BC change tended (P = 0.08) to be quadratic (least increase for 60% treatment), although BW change was not statistically significant. Treatment effect on calf birth weight was inconsistent (cubic; P = 0.03), but calf ADG and weaning weight were not affected by treatment. Pregnancy rate was not affected by prepartum treatment. In Exp. 4, 132 pregnant, Angus x Hereford cows (average initial BW = 533 and BC = 5.3) were assigned to the 0, 15, 30, and 45% treatments. Prepartum BC loss was greatest (quadratic; P = 0.04) for the high-urea (45%) treatment, although BW loss during this period declined linearly (P < 0.01). Prepartum treatment did not affect pregnancy rate, calf birth weight, or ADG. In conclusion, when sufficient DIP was offered to prepartum cows to maximize low-quality forage DOMI, urea could replace between 20 and 40% of the DIP in a high-protein (30%) supplement without significantly altering supplement palatability or cow and calf performance. 相似文献
20.
Experiments were conducted to determine the effects of increasing supplement protein concentration on performance and forage intake of beef cows and forage utilization of steers consuming stockpiled bermudagrass forage. Bermudagrass pastures were fertilized with 56 kg of N/ha in late August. Grazing was initiated during early November and continued through the end of January each year. Treatments for the cow performance trials were: no supplement or daily equivalents of 0.2, 0.4, and 0.6 g of supplemental protein per kilogram of BW. Supplements were formulated to be isocaloric, fed at the equivalent of 0.91 kg/d, and prorated for 4 d/wk feeding. Varying the concentration of soybean hulls and soybean meal in the supplements created incremental increases in protein. During yr 1, supplemented cows lost less weight and condition compared to unsupplemented animals (P < 0.05). During yr 2, supplemented cows gained more weight (P = 0.06) and lost less condition (P < 0.05) compared to unsupplemented cows. Increasing supplement protein concentration had no affect on cumulative cow weight change or cumulative body condition score change. Forage intake tended to increase (P = 0.13, yr 1 and P = 0.07, yr 2) in supplemented cows. Supplement protein concentration did not alter forage intake. In a digestion trial, four crossbred steers were used in a Latin square design to determine the effects of supplement protein concentration on intake and digestibility of hay harvested from stockpiled bermudagrass pasture. Treatments were no supplement; or 0.23, 0.46, and 0.69 g of supplemental protein per kilogram of BW. Forage intake increased (P < 0.05) 16% and OM intake increased (P < 0.01) 30% in supplemented compared to unsupplemented steers. Diet OM digestibility increased (P = 0.08) 14.5% and total digestible OM intake increased (P < 0.05) 49% in supplemented compared to unsupplemented steers. Supplement protein concentration did not alter forage intake, total digestible OM intake, or apparent digestibility of OM or NDF. During the initial 30 d after first killing frost, beef cows did not respond to supplementation. However, later in the winter, supplementation improved utilization of stockpiled bermudagrass forage. 相似文献