首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizosphere organisms affect plant development and soil stability. This study was conducted to determine the effects of a vesicular-arbuscular mycorrhizal (VAM) fungus [Glomus mosseae (Nicol. &>; Gerd.) Gerd. and Trappe] and a rhizobacterium (Bacillus sp.) on nitrate-fertilized or nodulated pea (Pisum sativum L.) plants and on the status of water-stable soil aggregates. The plants were grown in pots in a yellow clay-loam soil, and inoculated with the VAM fungus and the rhizobacterium, with one of the two, or with neither. The Bacillus sp. and G. mosseae did not affect shoot dry mass in nodulated plants. Under N fertilization, the VAM fungus enhanced plant growth, while the rhizobacterium inhibited shoot growth, VAM root colonization, and nodule formation, but enhanced the root:shoot and the seed:shoot ratios. The inhibition of shoot growth and of root colonization appeared to be related. The water stability and pH of the VAM soils were higher than those of the non-VAM soils. The rhizobacterium enhanced the water-stable aggregate status in the non-VAM soils only. Under both N-nutrition regimes, the soils had the greatest proportion of the water-stable aggregates when inoculated with both rhizo-organisms and the lowest when colonized by neither. The two rhizo-organisms affected both plants and soil, and these effects were modified by the source of N input through N2 fixation or fertilization. Received: 5 April 1995  相似文献   

2.
Soil in short-term crop rotation systems (STCR) is still in the initial development stage of farmland soil, whereas after long-term crop rotation treatment (LTCR), soil properties are significantly different. This study compares STCR (4 years) and LTCR (30 years) rice-rice-fallow, rice-rice-rape rotation practices under the same soil type background and management system. To reveal ecosystem mechanisms within soils and their effects on rice yield following LTCR, we analyzed the physical, chemical, and microbiological properties of soils with different rotations and rotation times. Relative to STCR, LTCR significantly reduced soil water-stable aggregate (WSA) content in the <?0.053-mm range, while >?2 mm WSA content significantly increased. Soil organic matter increased in fields under LTCR, mainly in >?2 mm, 2–0.25 mm, and <?0.053 mm soil WSA in 0–10 cm soil layer. LTCR was associated with significantly increased total soil organic matter, at the same time being associated with increasing the amount of active organic matter in the 0–20 cm soil layer. The two crop rotation regimes significantly differed in soil aggregate composition as well as in soil N and P, microbial biomass, and community composition. Relative to STCR, LTCR field soils had significantly higher soil organic matter, active organic matter content, soil enzyme activities, and overall microbial biomass, while soil WSA and microbial community composition was significantly different. Our results demonstrate that LTCR could significantly improve soil quality and rice yield and suggest that length of rotation time and rice-rice-rape rotation are critical factors for the development of green agriculture.  相似文献   

3.
The effect of the dual inoculation with arbuscular mycorrhizal (AM) and saprophytic fungi and a combination of wheat straw and sewage sludge residues were studied by determining their effect on dry weight of tomato and on chemical and biochemical properties of soil. Incubation of organic residue (sewage sludge combined with wheat straw) with saprophytic fungi and plant inoculation with mycorrhizal fungi was essential to study plant growth promotion. Soil application of organic residues increased the dry weight of tomato inoculated with Rhizophagus irregularis. The greatest shoot dry mass was obtained when the organic residues were incubated with Trichoderma harzianum and applied to AM plants. However, the greatest percentage of root length colonized with AM in the presence of the organic residues was obtained with inoculation with Coriolopsis rigida. The relative chlorophyll was greatest in mycorrhizal plants regardless of the presence of either saprophytic fungus. The presence of the saprophytic fungi increased soil pH as the incubation time increased. Soil nitrogen and phosphorus contents and acid phosphatase were stimulated by the addition of organic residues, and contents of N and P. Total N and P content in soil increased when the organic residue was incubated with saprobe fungi, but this effect decreased as the incubation period of the residue with saprobe fungi increased. The same trend was observed for soil β‐glucosidase and fluorescein diacetate activities. The application of organic residues in the presence of AM and saprophytic fungi seems to be an interesting option as a biofertilizer to improve plant growth and biochemical parameters of soils.  相似文献   

4.

Puddling during sawah rice cultivation destabilizes the soil structure. The re-formation of soil water-stable aggregates (WSA) following puddling and amendments, and their associated organic carbon (SOC) and total N were studied at Akaeze and Ikwo in south-eastern Nigeria. The amendments, which were randomized in triplicate, include control, NPK fertilizer, poultry dropping, rice husk powder and rice husk ashes (RHA). Soil samples from 0 to 15 cm depth were taken from the field after 2 years of cultivation. Most of the SOC were found in the very fine aggregates. There was no consistent trend in the treatment effects. However, the NPK-amended soils showed the lowest values of WSA > 2 mm in both locations, whereas the poultry dropping-amended soils showed the least and the highest mean-weight diameter (MWD) values at Akaeze and Ikwo, respectively. The SOC of the whole soil in Akaeze correlated positively with MWD (r = 0.92*). Irrespective of location, SOC in soils and WSA > 2.00 mm correlated positively with MWD (r = 0.56*; 0.65*, respectively) while SOC in WSA 0.50–0.25 mm accounted for low MWD values. More carbon was sequestered at Akaeze than at Ikwo, with the RHA-amended soils being the highest at both locations.  相似文献   

5.
Plant nutrition conditions are limited in naturally acidic soil due to harmful hydrogen and aluminium ions. More favourable conditions for plant nutrition (soil liming) will affect root qualitative and quantitative parameters and influence ecosystem stability. Four legume–grass swards were cultivated. The swards were a combination of one species of legume and two species of grasses: Trifolium pratense L., Trifolium repens L., Trifolium hybridum L., Medicago sativa L. (each of 50%) with Phleum pratense L. (35%) and Poa pratensis L. (15%). The aim of this study is to evaluate the root morphological and soil biological indicators of legume–grass swards under the first two years of development in soils with different pH levels.

Sward ecosystem development depends on the pH of the soil, sward species composition and soil biota. During the first year of sward development, soil pH had a significant influence on the morphology of root system. Sward‘s root mass and total root length was 2.4 and 2.2 times bigger in naturally acidic soil. This resulted in a change of biological parameters.

In the second year of sward development, soil pH had no significant influence on sward‘s root mass. However, under the impact of different soil pH, various sward‘s root systems were formed and the root C:N ratio had changed. It is observed that, regardless of the sward species composition and the year of development, at higher root C:N ratio soil microbial biomass was higher and CO2 emissions were lower in swards in naturally acidic soils.

Regardless of soil pH, different types of clover–grass swards promoted organic carbon immobilization in microbial biomass and, at the same time, stabilized the sward ecosystem in the top soil layer (soil respiration in 0–10 and 10–20?cm layers was lower) more effectively than the alfalfa–grass sward.  相似文献   

6.
Organism succession during ecosystem development has been researched for aboveground plant communities, however, the associated patterns of change in below-ground microbial communities are less described. In 2008, a study was initiated along a developmental sand-dune soil chronosequence bordering northern Lake Michigan near Wilderness Park (WP). It was hypothesized that soil bacterial communities would follow a pattern of change that is associated with soil, plant, and ecosystem development. This study included 5 replicate sites along 9 soils (n = 45) ranging in age from ∼105 to 4010 years since deposition. Soil bacterial community composition and diversity were studied using bacterial tag-encoded FLX amplicon pyrosequencing of the 16S rRNA gene. Bray–Curtis ordination indicated that bacterial community assembly changed along the developmental soil and plant gradient. The changes were not affected by seasonal differences, despite likely differences in plant root C (e.g. exudates), temperature, and water availability in soil. Soil base cations (Ca, Mg) and pH declined, showing log-linear correlations with soil age (r ∼ 0.83, 0.84 and 0.81; P < 0.01). Bacterial diversity (Simpson's 1/D) declined rapidly during the initial stages of soil development (∼105–450 y) and thereafter (>450 y) did not change. Turnover of plant taxa was also more rapid early during ecosystem development and correlated with bacterial community structural change (P < 0.000001; r = 0.56). It is hypothesized that plants help to drive pedogenic change during early (<450 y) soil development (e.g. pH decline, cation leaching) which drive selection of soil bacterial communities. In mature soils (∼450–4000 y), resilient and stable soil bacterial community structures developed, mimicking steady-state climax communities that were observed during latter stages of primary plant succession. These relationships point to possible feedbacks between plant and bacterial communities during ecosystem development.  相似文献   

7.
Residue quality has been shown to influence soil water-stable aggregation (WSA) during crop residue decomposition, but there is still little information about its interactive effect with soil mineral N availability. The aim of this study was to determine the effect of soil mineral N on WSA during the decomposition of two high-C/N crop residues (wheat straw with C/N = 125.6 and miscanthus straw with C/N = 311.3). The two crop residues were combined with three mineral N addition rates (0, 60, and 120 mg N kg−1 dry soil). Respiration, soil mineral N content, and WSA (expressed as mean-weight diameter, MWD) were measured on several dates during a 56-d incubation. The effect of decomposing crop residues on WSA followed two phases. (i) Between 0 and 7 d, the increase in WSA was related to intrinsic residue quality with higher decomposability of the wheat straw resulting in higher WSA. (ii) Thereafter, and until the end of the experiment, mineral N addition rates had a predominant but negative influence on WSA. In this second phase, the average MWD of residue-treated soils was 0.92, 0.55, and 0.44 mm for the 0, 60 and 120 mg N kg−1 dry soil addition rates, respectively. Mineral N addition which did result in higher crop residue decomposition did not lead to higher WSA. WSA during crop residue decomposition is therefore not simply positively related to the induced microbial activity, and changes in microbial community composition with differential effects on WSA must be involved. The impact of high-C/N crop residues inputs on WSA, initially assumed to be low, could actually be strong and long-lasting in situations with low soil mineral N content.  相似文献   

8.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

9.

Purpose

Because the stability of soil aggregates is affected by many factors, we studied aggregates formed in forest and agricultural soils in different soil types (Cambisols, Luvisols, Chernozems). We evaluated: (1) the differences in water-stable aggregates (WSA) as related to soil type and land management and (2) the relationships between quantitative and qualitative parameters of soil organic matter (SOM), particle-size distribution and individual size classes of WSA.

Materials and methods

Soil samples were taken from three localities (Sobě?ice, Báb, Vieska nad ?itavou). Each study locality included both a forest and an agricultural soil-sampling area.

Results and discussion

We found that in forest soils, the proportion of water-stable macroaggregates (WSAma) relative to water-stable microaggregates (WSAmi) was greater than in agricultural soils. When all soils were assessed together, positive statistically significant correlations were observed between the size classes WSAma > 1 mm and organic carbon (Corg) content; however, the WSAmi content was negatively correlated with Corg content. Favorable humus quality positively influenced the stabilization of WSAma > 5 mm; however, we found it had a negative statistically significant effect on stabilization of WSAma 1–0.25 mm. In agricultural soils, the stabilization of WSAma was associated with humified, i.e., stable SOM. The WSAma content was highly positively influenced mainly by fulvic acids bound with clay and sesquioxides; therefore, we consider this humus fraction to be a key to macroaggregate stability in the studied agricultural soils. On the other side, all fractions of humic and fulvic acids participated on the formation of WSAma in forest soil, which is a major difference in organic stabilization agents of macroaggregates between studied forest and agricultural soils. Another considerable difference is that WSAmi in agricultural soils were stabilized primarily with humic acids and in forest soils by fulvic acids. Moreover, in forest soils, a higher content of labile carbon in WSA had a positive effect on formation of WSAmi.

Conclusions

The observed changes in individual size classes of WSA and interactions between SOM, particle-size distribution, and WSA have a negative impact on soil fertility and thereby endanger agricultural sustainability.
  相似文献   

10.
Abstract

Few reports highlight the effect of organic matter in improving the properties of saline soils. A laboratory study was conducted to determine the effect of adding farm yard manure (manure), Egyptian clover hay (clover hay), and wheat straw, at 1 and 3% of soil weight on water stability of soil aggregates (WSA), water‐holding capacity (WHC), pH, and electrical conductivity of soil extract (ECe) of a normal, saline, and saline sodic soil. After 90 and 180 days, WSA and WHC increased, while pH and ECe decreased. Soil properties improved most by adding 3% manure to all the soils. Wheat grown in these soils indicated significant differences for various growth and yield variables, especially the root growth, number and area of green leaves, and grain yield. Organic matter added to these soils increased WSA and WHC and decreased pH and Ece. The WHC had no correlation with pH, but was negatively correlated with Ece. Increased WSA caused the leaching of excess ions and reduced their toxicity, while enhanced WHC increased the availability of water to the roots and promoted growth. It is concluded that manure ameliorated salt affected soils and promoted wheat growth better than clover hay and wheat straw.  相似文献   

11.
采用分根装置研究了丛枝菌根真菌侵染白三叶草(Trifolium repens)后对中性紫色土12 mm土壤水稳性团聚体(WSA1-2mm)含量的影响,并运用通径分析对其主要影响因子进行了量化比较。结果表明,接种Glomus intraradices、G. mosseae和G. etunicatum的菌根室土壤有机质、球囊霉素相关土壤蛋白(GRSP)含量均有增加的趋势; 接种3种菌种都显著增加了菌根室土壤WSA1-2mm含量。通径分析结果表明,菌丝密度对WSA1-2mm含量有较大的直接效应(直接通径系数 0.678),而GRSP对WSA1-2mm的影响系数较小,既有直接效应又有间接效应,但以直接效应为主。菌丝和GRSP对12mm 土壤水稳性团聚体作用大小的差异可能源于二者作用机制的不同。  相似文献   

12.
In this study, soil and plant samples were collected from a strip of soil comprising four successional stages from the eastern desert plateau to the Nile Valley, Egypt. On one hand, some essential elements [i.e., potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S)] and water contents decreased on transition from the desert soil to the Nile Valley. Soil nitrite content was the highest in Nile Valley soil and decreased toward desert soil. pH values of the soils did not strongly differ and were moderately alkaline. Root colonization with arbuscular‐mycorrhizae (AM) fungi of 33 plant species (11 cultivated and 22 wild) collected from the study area was highest in eastern desert plateau and decreased toward the Nile Valley. Mycorrhizai spore counts reflected the root colonization data. The decrease in mycorrhizai colonization was explained on the basis of difference in soil porosity, soil water contents, and toxicity of nitrite. Contents of K, Ca or Mg in some species were increased by increasing the colonization percentage of roots by AM fungi. Increasing the infection percentage of roots decreased or maintained the ratio of Na K+Ca+Mg (in meq) in the shoots of investigated plants. The contents of chlorophyll, soluble sugars, and protein significantly increased as a result of increasing colonization value. Also, mycorrhizal root colonization improved the water status of most plant species. These results suggest that increasing infection by AM fungi in the newly reclaimed soil may enable the plants to maintains its internal water status and mineral balance through decreasing the ratio of distressing ions to the nutrient ones.  相似文献   

13.
长期有机无机肥配施对土壤水稳性团聚体酶活性的影响   总被引:3,自引:0,他引:3  
The activities of invertase, protease, urease, acid phosphomonoesterase, dehydrogenase, and catalase in different fractions of waterstable aggregates (WSA) were examined in long-term (26 years) fertilised soils. The long-term application of organic manure (OM) with chemical fertiliser (CF) significantly increased macroaggregate and decreased microaggregate percentages, enhanced the mean weight diameter, and significantly increased soil total carbon (TC) and total nitrogen (TN) contents of WSA in different size fractions. Combined fertilisation with OM and CF also increased invertase, protease, urease, acid phosphomonoesterase, dehydrogenase, and catalase activities of WSA in different size fractions. Enzyme activities were higher in macroaggregates than in microaggregates. The distribution of enzyme activities generally followed the distribution of TC and TN in WSA. The geometric mean of the enzyme activities in different WSA of OM-treated soils was significantly higher than that in soils treated with 100% CF or no fertiliser. The results indicated that the long-term combined application of OM with CF increased the aggregate stability and enzyme activity of different WSA sizes, and consequently, improved soil physical structure and increased soil microbial activity.  相似文献   

14.
Soil pH influences the chemistry, dynamics and biological availability of phosphorus (P), but few studies have isolated the effect of pH from other soil properties. We studied phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg?1). Soil organic phosphorus represented a consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. However, organic phosphorus concentrations increased by about 20% in the most acidic soils (pH < 4.0), through an accumulation of inositol hexakisphosphate, DNA and phosphonates. The increase in organic phosphorus in the most acidic soils was not related to organic carbon, because organic carbon concentrations declined at pH < 4.0. Thus, the organic carbon to organic phosphorus ratio declined from about 70 in neutral soils to about 50 in strongly acidic soils. In contrast to organic phosphorus, inorganic phosphorus was affected strongly by soil pH, because readily‐exchangeable phosphate extracted with anion‐exchange membranes and a more stable inorganic phosphorus pool extracted in NaOH–EDTA both increased markedly as soil pH declined. Inorganic orthophosphate concentrations were correlated negatively with amorphous manganese and positively with amorphous aluminium oxides, suggesting that soil pH influences orthophosphate stabilization via metal oxides. We conclude that pH has a relatively minor influence on the amount of organic phosphorus in soil, although some forms of organic phosphorus accumulate preferentially under strongly acidic conditions.  相似文献   

15.
针对江西红壤地区不同利用方式引起的土壤质量和肥力的相应变化,研究了不同肥力水平、不同利用方式下红壤旱地水稳性团聚体含量及其养分分布规律。研究表明,荒地土壤中>5 mm水稳性团聚体含量显著高于其他利用方式,花生地和果园土壤则以0.25~0.053 mm的水稳性团聚体为主。各肥力水平下,菜地土壤中除>5 mm水稳性团聚体外,各粒级团聚体中有机碳、全氮和全磷含量均显著高于花生地、果园和荒地土壤。说明菜地土壤长期大量施肥,导致土壤碳、氮、磷养分含量均相对丰富。不同利用方式旱地红壤中,有机碳、全氮主要分布在>5 mm、5~2 mm和2~1 mm的较大粒径水稳性团聚体中。说明随着团聚体粒径增大,其有机碳含量增加,土壤全氮的消长趋势和有机碳一致。土壤全磷较均匀地分布在水稳性团聚体中,如高肥力菜地和荒地土壤各粒级团聚体中全磷含量间均无显著性差异。各利用方式旱地红壤中2~1 mm和1~0.5 mm的水稳性团聚体含量与土壤有机碳、全氮和全磷含量间均达到了极显著正相关。  相似文献   

16.
Summary The value of sewage sludge for improving the fertility and productivity of a degraded semi-arid grassland soil was tested by quantifying and describing the effects of surface application of sewage sludge on soil chemical properties and the soil microbial community. Three surface application rates (22.5, 45, and 90 Mg sludge ha–1) were tested over the course of two growing seasons. Most nutrient levels, including N, P, and K, increased linearly with increasing sludge application rates. Soil pH, however, declined linearly, from 7.8 to 7.4, with increasing sludge application rates. With the exception of Zn, heavy metals, including Cd, did not increase with the small decrease in pH or with increasing sludge application rates. Soil bacterial, fungal, and ammonium oxidizer populations increased linearly with increasing sludge application rates, and Streptomyces spp. populations remained relatively unchanged. The diversity of fungal groups declined initially with increasing sewage sludge rates but rebounded to near pretreatment levels under the low and intermediate application rates within 1 year. High fungal populations and low fungal diversity were related to the high nutrient contents provided by sludge amendment. Mucor spp. and Penicillium chrysogenum dominated the sludge-amended soils, and their densities in the treated soils in the first growing season were almost directly proportional to the sludge application rates. The improvement in soil fertility of a degraded semi-arid grassland due to sludge application was reflected in populations, diversity, and composition of the soil microbial community.The research reported here was conducted in cooperation with the USDI Bureau of Land Management which furnished funds and field study locations  相似文献   

17.
The dynamics of soil water-stable aggregation (WSA) following organic matter (OM) addition are controlled by microbial activity, which in turn is influenced by carbon substrate quality and mineral N availability. However, the role of microbial communities in determining WSA at different stages of OM decomposition remains largely unknown. This study aimed at evaluating the role of microbial communities in WSA during OM decomposition as affected by mineral N. In a 35-day incubation experiment, we studied the decomposition of two high-C/N crop residues (miscanthus, C/N = 311.3; and wheat, C/N = 125.6) applied at 4 g C kg−1 dry soil with or without mineral N addition (120 mg N kg−1 dry soil). Microbial characteristics were measured at day 0, 7, and 35 of the experiment, and related to previous results of WSA. Early increase in WSA (at 7 days) was related to an overall increase of the microbial biomass (MBC) with wheat residues showing higher values in MBC and WSA than miscanthus. In the intermediate stage of decomposition (from day 7 to 35), the dynamics of WSA were more associated with the dynamics of microbial polysaccharides and greatly influenced by mineral N addition. Mineral N addition resulted in a decrease or leveling off of WSA whereas it increased in its absence. We suggest that opportunistic bacterial populations stimulated by N addition may have consumed binding agents which decreased WSA or prevented its increase. To the contrary, microbial polysaccharide production was high when no mineral N was added which led to the higher WSA in the late stage of decomposition in this treatment. The late stage of decomposition was associated with a particular fungal community also influenced by the mineral N treatment. We suggest that WSA dynamics in the late stage of decomposition can be considered as a « narrow process³ where the structure of the microbial community plays a greater role than during the initial stages.  相似文献   

18.
Soil aggregation is a principal ecosystem process mediated by soil biota. Collembola and arbuscular mycorrhizal (AM) fungi are important groups in the soil, and can interact in various ways. Few studies have examined collembola effects on soil aggregation, while many have quantified AM effects. Here, we asked if collembola have any effect on soil aggregation, and if they alter AM fungi-mediated effects on soil aggregation.We carried out a factorial greenhouse study, manipulating the presence of both collembola and AM fungi, using two different plant species, Sorghum vulgare and Daucus carota. We measured root length and biomass, AMF (and non-AMF) soil hyphal length, root colonization, and collembolan populations, and quantified water stable soil aggregates (WSA) in four size classes.Soil exposed to growth of AMF hyphae and collembola individually had higher WSA than control treatments. Moreover, the interaction effects between AMF and collembola were significant, with non-additive increases in the combined application compared to the single treatments.Our findings show that collembola can play a crucial role in maintaining ecological sustainability through promoting soil aggregation, and point to the importance of considering organism interactions in understanding formation of soil structure.  相似文献   

19.
红壤酸化及石灰改良影响冬小麦根际土壤钾的有效性   总被引:8,自引:1,他引:7  
【目的】了解初始酸度对石灰改良红壤钾素有效性的效应,为酸化红壤改良提供依据和支撑。【方法】本试验以湖南祁阳典型的第四纪红土为基础,人为调节出土壤pH分别为4.0、4.5、4.8、5.2的土壤。每个酸度土壤的一半加石灰改良至pH 6.0 (石灰改良处理),另一半不变(酸化处理)。以该土壤进行了小麦盆栽试验。每个盆内放入一个尼龙网根袋,并添加供试红壤1.65 kg (根袋中加150 g)。小麦生长80天后收获,调查了小麦生物量和钾吸收量,测定比较了小麦根际和非根际土壤不同形态的钾含量变化。【结果】1)不同酸化土壤冬小麦生物量(地上部和根部)与初始pH显著正相关(P<0.05),也与钾吸收量显著正相关(P<0.05)。石灰改良处理冬小麦生物量均显著高于相应的酸化处理,也随初始pH升高而显著升高。2)不同酸化土壤冬小麦根际土壤速效钾随pH升高显著降低,非根际土壤的速效钾含量均显著高于相应的根际土壤(除pH 4.0外)。石灰改良处理根际土壤速效钾含量均显著低于相应的酸化处理,且非根际土壤显著高于对应根际土,非根际土壤速效钾含量随初始pH升高而显著下降。3)不同酸化土壤冬小麦根际土壤钾离子饱和度随pH升高而显著下降,非根际土壤钾离子饱和度则随pH升高呈增加趋势。石灰改良处理土壤各处理根际土钾离子饱和度均显著低于对应的非根际土,同时非根际土钾离子饱和度与酸化处理的变化趋势一致。4)不同酸化处理红壤冬小麦生物量与根际速效钾亏缺量呈极显著正相关(P<0.01),冬小麦根际土壤速效钾亏缺率和冬小麦吸钾量及根际钾离子饱和度亏缺率均呈极显著正相关(P<0.01);而石灰改良处理根际土壤速效钾亏缺率则与初始pH呈显著负相关(P<0.05)。【结论】在本试验的pH范围内,酸化条件下,根际土壤速效钾含量随pH降低而升高,而冬小麦吸钾量及生物量均随pH升高而升高。表明酸化红壤影响冬小麦钾养分吸收的主导因素是土壤的酸度。施石灰降低了土壤的酸度,提高酸化红壤作物产量和吸钾量。红壤施用石灰校正酸化应在pH降到5.0之前进行。酸化红壤石灰改良后,还应注意适量补充钾肥。  相似文献   

20.
Acidic soils are harsh environments for plants. One of the major problems is the potential toxicity of aluminium (Al) and hydrogen ions at a pH below 5; another is the shortage of nutrients usually accompanying soil acidity. The aim of this study was to elucidate the relationship between arbuscular mycorrhizal (AM) colonisation and soil acidity (measured by pH and Al concentration) in order to evaluate the possibility that AM fungi facilitate the existence of plants on acidic soils. We sampled tussocks of four grass species, Elymus caninus, Poa nemoralis, Deschampsia cespitosa and Deschampsia flexuosa, together with samples of the surrounding soil, in oak forests of varying soil pH in southern Sweden. We determined pH, easily reacting Al (Alr), extractable Al (AlBaCl2) and phosphate in the soil samples, analysed the shoots for Al and phosphorous and quantified the degree of AM and fine endophyte (FE) colonisation in the roots. E. caninus was found on the least acidic soils and had the highest AM colonisation of all the species studied, while D. flexuosa, which was found on the most acidic soils, had the lowest AM colonisation. P. nemoralis and D. cespitosa were intermediate with respect to pH and AM colonisation. The colonisation of AM fungi exceeded FE colonisation for E. caninus and P. nemoralis, while the opposite was true for the two Deschampsia species. Our results indicated a negative relationship between Alr and the degree of AM colonisation at the within-species level. The low colonisation of AM fungi on acidic soils may to some extent be explained by a sensitivity of AM fungi to Alr: this parameter showed a stronger negative association with AM colonisation than did pH and AlBaCl2. We hypothesize that Al toxicity is a critical factor for plant nutrition in forest soils through the impact on symbiotic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号