首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
为了探究和比较两性+阳离子复配修饰膨润土对不同类型重金属离子[Cr(Ⅵ)和Cd~(2+)]的吸附效应及影响机制,采用阳离子型表面修饰剂十二烷基三甲基溴化铵(DTAB或DT)复配修饰两性表面修饰剂十二烷基二甲基甜菜碱(BS-12或BS)修饰膨润土,批处理法研究各复配修饰土样对Cr(Ⅵ)和Cd~(2+)的等温吸附的异同,并对比温度、pH值和离子强度对吸附的影响。结果表明:各复配修饰膨润土对Cr(Ⅵ)和Cd~(2+)的吸附等温线均符合Langmuir模型。供试土样对Cr(Ⅵ)的平衡吸附量呈现BS+150DT(150%CEC的DTAB复配修饰膨润土)BS+100DTBS+50DTBS+25DTBSCK(膨润土)的趋势,且最大吸附量(qm)为205.67 mmol·kg-1(BS+150DT)。土样对Cd~(2+)的平衡吸附量表现为BSCKBS+25DTBS+50DTBS+100DTBS+150DT,其qm值为232.38 mmol·kg-1(100BS)。10~40℃范围内,CK、BS修饰土对Cr(Ⅵ)吸附量为增温正效应,而BS+DT复配修饰土对Cr(Ⅵ)吸附呈现自发、焓减和熵增的特征;各供试土样对Cd~(2+)的吸附均表现为自发、焓增和熵增的特征。随着pH值的升高,各修饰土样对Cr(Ⅵ)的吸附量均逐渐降低,而对Cd~(2+)的吸附量逐渐增加。离子强度增加不利于供试土样对Cr(Ⅵ)和Cd~(2+)的吸附。BS+DT复配修饰膨润土表面的电荷类型、电荷数量是决定Cr(Ⅵ)和Cd~(2+)吸附差异的主要因素。  相似文献   

2.
在稻-鳝种养结合和非种养结合(水稻单一种植)模式下,设置不同氮肥减量梯度试验,研究稻田土壤对典型重金属镉吸附和解吸能力的差异。结果表明:稻-鳝种养具有降低稻田土壤p H、增加土壤全氮、有机质含量以及阳离子交换量(CEC)的作用;减氮处理组中,稻-鳝种养结合模式下的稻田土壤Cu、Zn、Pb、Cd及Cr含量有高于非种养结合模式的趋势,两种模式下的As和Hg差异不显著;稻田土壤对Cd~(2+)的吸附热力学曲线均可用Langmiur和Freundlich模型拟合,但Freundlich模型拟合效果更好,表明稻田土壤对Cd~(2+)的吸附更可能是一个不均一的多相界面,吸附的Cd~(2+)之间存在相互作用力; Langmuir模型得到的稻田土壤Cd~(2+)最大吸附量为986—1 081 mg/kg,种养结合模式下稻田土壤Cd~(2+)的最大吸附量高于非种养结合模式;稻田土壤对Cd~(2+)的解吸量与吸附量成显著正相关。稻-鳝种养结合模式可通过改变稻田土壤的有机质、CEC等理化性质,影响稻田土壤对Cd~(2+)的吸附过程,增大土壤Cd~(2+)的最大吸附量。  相似文献   

3.
为探讨银中杨、玉簪落叶所制备生物质炭对水体Pb~(2+)、Cd~(2+)和Cr~(6+)吸附规律的差异及影响因素,采用限氧裂解法将银中杨及玉簪落叶制成生物质炭,并以此为吸附载体研究其在不同初始离子质量浓度、pH值、Na+浓度及接触时间等因素影响下对Pb~(2+)、Cd~(2+)和Cr~(6+)的吸附。结果表明:随着初始Pb~(2+)、Cd~(2+)和Cr~(6+)质量浓度的增加(0~800 mg·L~(-1)),落叶生物质炭对相应重金属离子的吸附量也增加。将初始质量浓度设置在0~200 mg·L~(-1),生物质炭对3种金属离子的吸附量由大到小表现为Pb~(2+)、Cd~(2+)、Cr~(6+),然而,将初始离子质量浓度提升至300~800 mg·L~(-1),吸附量由大到小表现为Pb~(2+)、Cr~(6+)、Cd~(2+);溶液pH值由2增至8,可使Pb~(2+)和Cd~(2+)在生物质炭表面的吸附率得到迅速提升,然而,生物质炭对Cr~(6+)的吸附率在整个pH值变化范围则呈渐趋降低的趋势;随着Na+浓度增加(0~0.6 mol·L~(-1)),落叶生物质炭对3种金属离子所表现的吸附规律各不相同,其中,对Pb~(2+)的吸附量先下降而后渐趋升高,对Cd~(2+)的吸附量逐渐下降,而对Cr~(6+)的吸附量则表现为先增加而后下降。Na+离子浓度由0 mol·L~(-1)提升至0.6 mol·L~(-1)可使生物质炭对Pb~(2+)和Cd~(2+)的吸附量分别降低16.8%和97.1%,相反,对Cr~(6+)吸附量却有所促进,使其增加55.6%;生物质炭对初始质量浓度为400 mg·L~(-1)的Pb~(2+)、Cd~(2+)和Cr~(6+)吸附的数量随接触时间延长(0~1 440min)而逐渐增加,相同条件下由大到小表现为Pb~(2+)、Cr~(6+)、Cd~(2+);生物质炭对Pb~(2+)、Cd~(2+)的吸附主要以电性吸附为主,而专性吸附则为生物质炭吸附Cr~(6+)的主要机制。  相似文献   

4.
低分子量有机酸对茶园土壤团聚体吸附Cu2+的影响   总被引:2,自引:1,他引:1  
为探讨低分子量有机酸对茶园土壤团聚体吸附Cu~(2+)的影响,探明蒙山茶园土壤中铜的环境化学行为,以蒙山茶园土壤为对象,通过超声波分散法、沉降-虹吸法等提取土壤团聚体,采用批实验法研究了低分子量有机酸(柠檬酸、苹果酸、草酸)对土壤团聚体吸附Cu~(2+)的影响。结果表明:茶园土壤原土及各粒径土壤团聚体对Cu~(2+)的吸附量均随着Cu~(2+)浓度的增加而增加,而随低分子量有机酸加入浓度的增加呈现先增加后降低的趋势,受到土壤团聚体比表面积、游离氧化铁、阳离子交换量以及有机质等的影响,吸附量大小顺序为(0.002 mm)粒径组0.053~0.002 mm粒径组原土2~0.25 mm粒径组0.25~0.053 mm粒径组;应用Langmuir、Freundlich、Temkin三种方程对其等温吸附过程的拟合均达到了显著水平(P0.05),其中Langmuir方程的拟合效果最佳;低分子量有机酸对土壤吸附Cu~(2+)的影响先表现为促进作用,随着加入量的增加转为抑制作用,柠檬酸、苹果酸浓度在0~1 mmol·L~(-1),草酸浓度在0~0.1 mmol·L~(-1)能促进土壤团聚体对Cu~(2+)的吸附,而柠檬酸、苹果酸浓度1 mmol·L~(-1),草酸浓度0.1 mmol·L~(-1)时却抑制其吸附,柠檬酸、苹果酸为0.5 mmol·L~(-1)时吸附量达到最大。综上可知,低分子量有机酸对土壤团聚体吸附Cu~(2+)的影响受有机酸种类、浓度及土壤团聚体大小的综合作用。  相似文献   

5.
牛粪和核桃壳生物炭对水溶液中Cd2+和Zn2+的吸附研究   总被引:4,自引:4,他引:0  
为有效去除水溶液中Cd~(2+)和Zn~(2+),以牛粪和核桃壳为原料,在不同热解温度下制取生物炭,采用等温吸附法和动力吸附法研究生物炭对水溶液中Cd~(2+)和Zn~(2+)的吸附效果和动力学特性,通过生物炭吸附前后的XRD和FTIR表征对比,探究其吸附机理。结果表明:生物质原材料的种类和热裂解温度是影响生物炭吸附效果的两大因素,牛粪生物炭比核桃壳生物炭吸附效果好,700℃制备的生物炭比300℃制备的生物炭吸附效果好;生物炭对Cd~(2+)和Zn~(2+)的吸附符合Langmuir方程;700℃制备的牛粪生物炭(DM700)对Cd~(2+)和Zn~(2+)的吸附性能最佳,饱和吸附量分别为117.5 mg·g~(-1)和59.4 mg·g~(-1),其吸附过程由快速吸附和慢速吸附两个阶段组成,符合准二级动力学方程;吸附机理主要是生物炭中的羟基和羧基与Cd~(2+)、Zn~(2+)间发生离子交换和络合反应,Cd~(2+)、Zn~(2+)被吸附后进一步生成CdCO_3和Zn_3(PO_4)_2沉淀。这说明,DM700具备作为水溶液中Cd~(2+)、Zn~(2+)吸附剂的潜力,本研究为生物炭去除水中重金属和土壤重金属污染的修复提供了理论依据与应用参考。  相似文献   

6.
通过海泡石(SEP)和酸化海泡石(ASEP)表面酸碱反应与吸附平衡实验,研究了天然和酸化海泡石表面化学特性及其对重金属的吸附机理.结果表明,海泡石经过酸化处理后碱性下降,表面部分阳离子被质子取代,表面酸度增加,形成更多的表面吸附位,有利于对重金属离子的吸附作用.随着溶液pH由酸性向碱性的变化,重金属离子在海泡石表面的吸附机理表现为同品置换与表面配位模式并存;当溶液pH呈弱碱性时,Pb和Cu均发生表面沉淀,其中Pb表现最为明显.采用等温吸附方法,研究了海泡石和酸化海泡石对Pb~(2+)、Cd~(2+)和Cu~(2+)离子的吸附特性,结果表明,海泡石和酸化海泡石对Pb~(2+)、Cd~(2+)和Cu~(2+)离子均有较好的吸附作用.海泡石对Pb~(2+)、Cd~(2+)和Cu~(2+)离子的饱和吸附量分别为32.06、11.48和22.10 mg·g~(-1),酸化海泡石对Pb~(2+)、Cd~(2+)和Cu~(2+)离子的饱和吸附量分别为35.28、13.62和24.36 mg·g~(-1).以物质的量计算,天然海泡石和酸化海泡石对三种重金属离子的吸附能力顺序为Cu>Pb>Cd.Cd~(2+)和Cu~(2+)在海泡石和酸化海泡石表面的吸附等温线符合Langmuir方程,Pb~(2+)离子的吸附由于随溶液pH的升高而产生表面沉淀,导致其吸附等温线偏离Langmuir方程.该项研究可为海泡石在土壤重金属污染修复中的应用提供一定的理论基础.  相似文献   

7.
为了比较两性-阳离子和两性-阴离子复配修饰可变电荷土壤对Cd~(2+)吸附的差异,采用阳离子型表面修饰剂十二烷基三甲基溴化铵(DT)和阴离子型表面修饰剂十二烷基磺酸钠(SDS)分别对十二烷基二甲基甜菜碱(BS)两性修饰红壤进行复配修饰,以批处理法研究各供试土样的等温吸附及热力学特征,并对比了修饰比例、温度、pH和离子强度对吸附的影响。结果表明:阳、阴离子对两性修饰红壤的复配修饰具有相反的效应,BS+DT复配修饰红壤对Cd~(2+)吸附量随DT修饰比例的增加而减小,BS+SDS复配修饰红壤对Cd~(2+)的吸附量随SDS修饰比例的增加而增加。供试土样对Cd~(2+)饱和吸附量呈现出BS+SDSBSCK(红壤)BS+DT的规律,Sips模型能够较好地描述Cd~(2+)在各供试土样上的吸附机制。各供试土样对Cd~(2+)的吸附均呈现出吸热、熵增、自发的特征,低离子强度和高pH有利于Cd~(2+)的吸附。可变电荷土壤表面负电荷数量较少是造成阳、阴离子复配修饰对Cd~(2+)吸附差异的关键因素。  相似文献   

8.
膨润土和沸石对重金属镉的吸附性研究   总被引:1,自引:0,他引:1  
通过等温吸附试验,研究了粘土矿物膨润土和沸石对Cd~(2+)的吸附状况,并与土壤对Cd~(2+)的吸附状况进行了对比。结果表明:随溶液中Cd~(2+)浓度的增大,膨润土、沸石和土壤对Cd~(2+)的吸附量增大,对Cd~(2+)的吸附率随Cd~(2+)浓度的增大而降低,其中膨润土的降低的较慢,沸石次之,土壤的降低最快。膨润土、沸石和土壤对Cd~(2+)的吸附等温曲线符合Langmuir方程,三者对Cd~(2+)的最大吸附量膨润土>沸石>土壤。粘土矿物膨润土和沸石对Cd~(2+)有很好的吸附作用,可用于重金属污染土壤的治理。  相似文献   

9.
加拿大一枝黄花生物炭对Cd2+的吸附特性及机理   总被引:1,自引:0,他引:1  
以外来入侵种加拿大一枝黄花为原料,探究不同成分在不同热解温度下制得的生物炭的基本性质及其对水中Cd~(2+)的吸附能力、最优吸附工艺条件和吸附机制,以提高其资源化利用效率。结果表明:以茎叶混合作为原料在450℃下热解制得的加拿大一枝黄花生物炭(SCBC450)对Cd~(2+)吸附能力最优。正交结果显示,3种所选因素对生物炭吸附Cd~(2+)的影响程度依次为吸附质起始浓度pH温度;当pH=6、温度35℃、吸附质起始浓度50 mg·L~(-1)时,Cd~(2+)的吸附效率最高,可达(95.6±0.38)%。SCBC450对Cd~(2+)的吸附过程符合二级动力学模型,以化学吸附为主,且符合Langmuir等温吸附模型,最大理论吸附量达107.03 mg·g~(-1)。通过对生物炭吸附前后的XPS、FTIR和SEM-EDS分析可知,其对Cd~(2+)的吸附机制包括离子交换、络合反应、沉淀作用和物理吸附。因此,加拿大一枝黄花生物炭对Cd~(2+)的吸附具有极大的应用潜力。  相似文献   

10.
凹凸棒石吸附性能优异,作为土壤重金属污染调理剂研发的基础材料,应用前景十分广泛。本研究通过盆栽试验对比热活化改性、无机改性、有机改性材料添加对春小麦植株重金属离子吸收的影响,结果表明:热活化改性凹凸棒土添加显著地降低了盆栽小麦植株体内Cu~(2+)、Cd~(2+)、Pb~(2+)、Zn~(2+)四种重金属离子的含量,且随着热活化温度和添加量的升高,降低的幅度也越大。当热活化温度为400℃时,相比凹凸棒土原矿土Cd~(2+)吸附性能提升11.46%,对Pb~(2+)吸附性能提升0.54%,对Zn~(2+)吸附性能提升2.48%,对Cu~(2+)吸附性能略有下降;热活化温度为500℃时,相比凹凸棒土原矿土对Cu~(2+)吸附性能上升26.88%,Cd~(2+)吸附性能提升74.18%,对Pb~(2+)吸附性能提升11.18%,对Zn~(2+)吸附性能提升60.47%;热活化温度为600℃时,相比凹凸棒土原矿土对Cu~(2+)吸附性能上升36.86%,Cd~(2+)吸附性能提升177.52%,对Pb~(2+)吸附性能提升18.57%,对Zn~(2+)吸附性能提升67.97%。当无机改性试剂为氢氧化钠时,相比凹凸棒土原矿土对Cu~(2+)吸附性能提升37.56%,对Cd~(2+)吸附性能提升141.89%,对Pb~(2+)吸附性能提升16.15%,对Zn~(2+)吸附性能提升37.40%。当有机试剂为C1时,相比凹凸棒土原矿土对Cu~(2+)吸附性能提升1%,对Cd~(2+)吸附性能提升31.05%,对Pb~(2+)吸附性能提升0.34%,对Zn~(2+)吸附性能下降54.72%。当有机改性试剂为C2、C3、C4时,均减小了凹凸棒土对重金属的吸附性能。因此在凹凸棒土重金属调理的研发过程中,应该避免使用有机改性工艺。  相似文献   

11.
为探讨纳米Fe3O4负载联合硝酸改性椰壳炭对Pb2+、Cd2+单一及复合溶液的吸附特性,通过静态吸附实验,针对吸附剂的表面特性、投加量、溶液初始pH、吸附时间、重金属初始浓度等影响因素进行了探讨,应用等温吸附模型及吸附动力学模型对吸附特性进行了研究。结果表明,纳米Fe3O4负载酸改性炭比表面积较未改性椰壳炭增加了221.03 m2·g-1,表面含氧官能团如O-H、C=O、C-O-C增加,芳香性增强,等电点提高至5.68。从经济效率角度考虑5 g·L-1为合理吸附剂用量,pH为5.0时,吸附效果最好,吸附在4 h达到平衡。准二级动力学模型对吸附的拟合度更高,吸附主要是化学吸附,吸附由快速外扩散和颗粒内扩散共同作用,Pb2+、Cd2+的吸附分别更符合Langmuir和Freundlich等温吸附模型。纳米Fe3O4负载酸改性椰壳炭对Pb2+、Cd2+的最大吸附量(Qm)分别达42.54 mg·g-1和25.79 mg·g-1,为未改性椰壳炭的1.87倍和2.23倍,复合溶液中Pb2+、Cd2+Qm分别为单一溶液的65.16%和54.21%,这揭示了离子共存条件下的吸附竞争现象。研究表明,纳米Fe3O4负载联合硝酸改性提高了椰壳炭对Pb2+、Cd2+的吸附能力,且Pb2+的吸附性能及吸附竞争性优于Cd2+。  相似文献   

12.
本研究以水稻秸秆为原料制备生物炭(BC300),通过使用腐植酸和3-巯丙基三甲氧基硅烷(3-MPTS)丰富其表面官能团,得到腐植酸改性生物炭(HBC300)和巯基改性生物炭(SBC300)两种改性生物炭,分析改性生物炭对Cd2+的吸附能力,借助FT-IR、XPS和Boehm滴定等表征手段和密度泛函理论(DFT)计算探究改性生物炭的理化性质及官能团对吸附Cd2+的作用。结果表明:改性过程改变了生物炭的理化性质,HBC300表面增加了COOH和OH官能团,而SBC300表面COC、CO和SH官能团增多。通过丰富其生物炭表面官能团提升了生物炭对Cd2+吸附反应速率和吸附性能,表现出改性生物炭在水中去除Cd2+的潜力。其中,SBC300对Cd2+吸附效果最佳,其最大平衡吸附容量为49.5 mg·g-1,但吸附反应速率小于HBC300,符合准二级动力学方程和Langmuir等温吸附模型,此吸附过程为单分子层吸附并受化学吸附控制。表征数据及DFT计算拟合数据结果表明,生物炭表面修饰官能团加快了对Cd2+吸附反应速率,但COC和CO官能团限制了SBC300对Cd2+的吸附反应速率。  相似文献   

13.
为改善稻壳炭对Cd2+的吸附能力,分别选用壳聚糖、硝酸铁与高锰酸钾对稻壳生物炭进行改性,成功制备了壳聚糖改性稻壳炭(C-BC)和铁锰改性稻壳炭(FM-BC),表征了各稻壳炭的基础理化性质,包括比表面积分析(BET)、傅里叶变换红外光谱(FTIR)、X射线衍射表征(XRD),进行了动力学吸附实验和等温吸附实验,并在不同pH和投加量条件下,研究了改性生物炭对Cd2+的吸附量和去除率。结果表明:两种改性方式均减小了稻壳炭的比表面积和总孔隙体积; FM-BC含有Mn-O、Fe-O的特征官能团,此外改性前后稻壳炭的官能团类型基本不变;两种改性方式均使稻壳炭产生了对应的晶体结构变化。两种改性炭对Cd2+动力学吸附特征均符合准二级动力学模型,颗粒内扩散模型均分为3个阶段,对Cd2+等温吸附特征均符合Langmuir模型; C-BC和FM-BC的最大吸附量分别为25.51 mg·g-1和16.25 mg·g-1,是BC (14.97 mg·g-1)的1.7倍和1.08倍。随着溶液pH增加,C-BC和FMBC的吸附量和去除率逐渐增加,且始终高于BC;随着投加量的增加,C-BC和FM-BC的Cd2+去除率逐渐增加,而吸附量逐渐降低。两种改性方式均能够在一定程度上提高稻壳炭对Cd2+的吸附能力,均以单分子层化学吸附占主导,C-BC的最大吸附量明显高于FM-BC,适度调整溶液pH和投加量可改善改性稻壳炭的Cd2+吸附效果。  相似文献   

14.
为探讨土壤环境条件对粘土矿物协同磺胺二甲基嘧啶(SM2)迁移的影响,选取高岭土胶体与SM2作为主要实验材料,通过土柱淋溶实验,研究了高岭土与SM2共同迁移的相互影响,不同离子强度下高岭土协同SM2迁移情况以及高离子强度下腐植酸对高岭土协同SM2迁移的影响。研究结果显示:当离子强度为0.1 mmol·L-1时,高岭土悬浊液加入0.25 mg·L-1SM2后,高岭土胶体的穿透曲线峰值从76%降为70%,表明SM2对高岭土迁移影响很小,略有抑制;SM2悬浊液加入高岭土后,SM2穿透曲线峰值从5.4%增大到50%,表明高岭土可以显著促进SM2的迁移;随着溶液离子强度增强,高岭土的穿透曲线峰值依次为70%(离子强度0.1 mmol·L-1)、27%(1 mmol·L-1)、3%(10 mmol·L-1),SM2的穿透峰值依次为50%(离子强度0.1 mmol·L-1)、48%(1 mmol·L-1)、17%(10 mmol·L-1),表明随着溶液离子强度增强,高岭土迁移量及高岭土协同SM2迁移量显著降低;当溶液离子强度为10 mmol·L-1时,加入8 mg·L-1腐植酸后,高岭土的穿透曲线峰值从3%增长至57%,SM2的穿透曲线峰值从17%增长至50%,表明当溶液离子强度较高时腐植酸可以促进高岭土协同SM2迁移。  相似文献   

15.
土壤pH、硝酸根离子浓度、土壤外源性Cu2+污染、土壤中草酸或柠檬酸浓度等环境因素可能会影响邻苯二甲酸二丁酯(DnBP)在土壤中的化学降解行为,为研究这些环境因素如何影响DnBP的降解,采集江西鹰潭红壤,加入DnBP老化30 d,在光照(300~400 nm)和暗环境下分别研究环境因素对DnBP在土壤泥浆中降解的影响。结果表明:当土壤中目标污染物DnBP浓度为100 mg?kg~(-1)时,在土壤pH为3.5、草酸浓度为50 mmol?L~(-1)的条件下,DnBP降解率为95%。草酸浓度过高或过低均不利于DnBP的降解。柠檬酸对DnBP降解的影响次于草酸。低pH的酸性环境下草酸有利于红壤中DnBP的光降解。以Cu2+污染为例的复合污染,无论在有或无草酸存在的条件下均对DnBP的降解无显著影响。在纯水溶液中,25 mmol?L~(-1)的NO3-有效地利用300~400 nm的紫外光降解DnBP,然而在土壤泥浆中NO3-的存在并不影响DnBP降解。研究表明,在表层红壤接受光照的情况下,有机污染物DnBP可以在红壤中发生光催化降解。  相似文献   

16.
外源有机酸对土壤pH值、酶活性和Cd迁移转化的影响   总被引:4,自引:1,他引:3  
为了筛选植物修复土壤Cd污染适宜的外源有机酸,采用盆栽试验,在温室内以油菜为试验材料,在模拟重度Cd污染的土壤(原土Cd含量为0.838 mg·kg~(-1),人工喷洒CdCl_2水溶液,制备成Cd含量为4.838 mg·kg~(-1)的试验土)中加入5种有机酸:乙酸、草酸、柠檬酸、苹果酸和酒石酸,设置6个浓度:1、2、3、4、5、6 mmol·kg~(-1),以不加有机酸为对照(CK),测定了油菜收获时的土壤pH值、酶活性和油菜干物质量以及Cd累积量,并分析了土壤理化指标与土壤Cd形态之间的关系。结果表明:1、3、4、5、6 mmol·kg~(-1)乙酸处理,4、5、6 mmol·kg~(-1)柠檬酸处理,3 mmol·kg~(-1)苹果酸处理,3、6 mmol·kg~(-1)酒石酸处理可显著增大土壤pH值(P0.05),草酸处理pH值与CK差异不显著;但施加有机酸对土壤酶活性的影响不明显。1、4、6 mmol·kg~(-1)乙酸处理显著提高了油菜地上部干物质量,1、6 mmol·kg~(-1)乙酸处理根干物质量较CK增加了1倍以上,差异显著(P0.05),4、6 mmol·kg~(-1)苹果酸处理根干物质量较CK显著增加了77.13%和88.30%(P0.05),其余处理与CK差异不显著。1 mmol·kg~(-1)乙酸处理地上部Cd累积量较CK增加了51.52%,2mmol·kg~(-1)草酸处理根系Cd累积量较CK增加了1.58倍,1 mmol·kg~(-1)柠檬酸处理地上部+根系Cd吸收总量高于CK,差异均显著(P0.05);增加苹果酸量有利于提高根系Cd吸收总量,1、2 mmol·kg~(-1)酒石酸处理也提高了根系Cd累积量,但与CK差异均不显著(P0.05)。施加乙酸时,土壤pH值与铁锰氧化物结合态Cd和土壤总Cd显著负相关,施加柠檬酸时,土壤pH值与碳酸盐结合态Cd和试验结束时土壤中的总Cd量显著正相关,施加苹果酸时土壤pH值与可交换态Cd显著正相关,其余处理土壤pH值与Cd形态相关性不显著。在碱性土上种植油菜,施加5种有机酸均会增大收获时土壤的pH值,且不同有机酸施加量对土壤Cd形态的影响不同。5种有机酸中乙酸最有利于提高油菜干物质量和油菜Cd累积量。  相似文献   

17.
猕猴桃木生物质炭对溶液中Cd2+、Pb2+的吸附及应用研究   总被引:2,自引:1,他引:1  
为探讨生物质炭对废水中重金属的吸附性能,以猕猴桃修剪枝为原料制备生物质炭,通过静态吸附法研究了其对复合溶液中Cd2+、Pb2+的吸附,探究了溶液初始浓度、吸附时间、pH值及生物质炭投加量对溶液中Cd2+、Pb2+吸附效果的影响,同时采用扫描电镜(SEM)和傅里叶红外光谱(FTIR)对吸附前后的生物质炭结构进行了表征,并讨论了其对养殖废水和垃圾渗滤液中Cd2+和Pb2+的吸附能力。结果表明:猕猴桃木生物质炭具有多孔结构和多种表面官能团。Cd2+、Pb2+的最优吸附条件是pH为4~6,120 min吸附达到平衡,最佳投加量分别为4.0、3.0 g·L-1,最大吸附量分别为9.35、65.9 mg·g-1。生物质炭对Cd2+、Pb2+的吸附过程用准二级动力学方程能较好地描述;在25℃条件下,生物质炭对Cd2+的吸附用Langmuir方程能更好地描述,其理论最大吸附量达13.1 mg·g-1,而生物质炭对Pb2+的吸附过程用Freundlich方程能更好地描述。猕猴桃木生物质炭可作为处理轻度重金属复合污染废水的吸附剂。  相似文献   

18.
纳米Ag在四种不同性质土壤上的吸附行为研究   总被引:4,自引:2,他引:2  
纳米Ag的大量生产和使用增加了其进入土壤环境的风险, 其在土壤中的环境行为受纳米Ag胶体稳定性和土壤理化性质的影响。为探究纳米Ag颗粒在土壤上的吸附行为, 选取四种不同理化性质的土壤, 考察了土壤pH、有机质和二价阳离子Ca2+对纳米Ag在土壤上吸附的影响。结果表明, 纳米Ag在酸性土壤的吸附量高于中性土壤, 当土壤酸碱性相似时土壤有机质含量越高纳米Ag在其表面的吸附量越高, 纳米Ag在四种土壤上的吸附等温线都能较好地利用Freundlich方程进行拟合;Ca2+的存在均增加了纳米Ag在四种土壤上的吸附量, Ca2+浓度在0.1~10 mmol·L-1范围内, 纳米Ag在中性土壤上的吸附量随Ca2+浓度的增加而增加, 而在酸性土壤上则随着Ca2+浓度的增加, 出现先增加后减小的趋势。这一结果有助于了解纳米银在不同性质土壤上的吸附行为, 为评价纳米Ag在环境中的毒性和生态风险提供了有用信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号