首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyphosate-resistant (GR) crop technology has dramatically impacted agriculture. The adoption of GR systems in canola, maize, cotton, soybean and sugar beets has been widespread in the United States. However, weed scientists are concerned that growers' current herbicide programs and weed management tactics will affect their sustainability and effectiveness. Without proper management, the potential for weed populations to express a high degree of resistance to glyphosate will adversely impact the utility of glyphosate. In 2005, weed scientists from six universities initiated a long-term research study to assess the sustainability of GR technology. This paper introduces five other articles in this series. Over 150 fields of at least 10 ha were selected to participate in a long-term field-scale study, and each field was split in half. On one-half the grower continued using the current weed management program; on the other half the grower used academic-recommended herbicide resistance best management practices. Field data were collected in 2006-2008 to determine the impact of the two weed management programs on weed populations, diversity, seedbank, crop yields and economic returns. This long-term study will provide invaluable data for determining the sustainability and profitability of diversified weed management programs designed to lower the risk of evolving weed resistance to glyphosate.  相似文献   

2.
BACKGROUND: The introduction of glyphosate‐resistant (GR) crops in the late 1990s made weed control in maize, cotton and soybean simple. With the rapid adoption of GR crops, many growers began to rely solely on glyphosate for weed control. This eventually led to the evolution of GR weeds. Growers are often reluctant to adopt a weed resistance best management practice (BMP) because of the added cost of additional herbicides to weed control programs which would reduce short‐term revenue. This study was designed to evaluate when a grower that is risk neutral (profit maximizing) or risk averse should adopt a weed resistance BMP. RESULTS: Whether a grower is risk neutral or risk averse, the optimal decision would be to adopt a weed resistance BMP when the expected loss in revenue is greater than 30% and the probability of resistance evolution is 0.1 or greater. However, if the probability of developing resistance increases to 0.3, then the best decision would be to adopt a weed resistance BMP when the expected loss is 10% or greater. CONCLUSION: Given the scenarios analyzed, risk‐neutral or risk‐averse growers should implement a weed resistance BMP with confidence that they have made the right decision economically and avoided the risk of lost revenue from resistance. If the grower wants to continue to see the same level of return, adoption of BMP is required. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Glyphosate‐resistant (GR) crops have changed the way growers manage weeds and implement control strategies. Since the introduction of GR crops, growers in many instances have relied on glyphosate almost exclusively to control a broad spectrum of weeds. This overreliance on glyphosate has resulted in the evolution of glyphosate resistance in some weed species. Growers and scientists are concerned about the sustainability of GR crops and glyphosate. When a grower is making decisions about weed control strategies, economic costs and benefits of the program are primary criteria for selection and implementation. Studies across six states were initiated in 2006 to compare the economics of using a weed resistance best management practice (BMP) system with a grower's standard production system. RESULTS: Resistance BMP systems recommended by university scientists were more costly but provided similar yields and economic returns. Rotation of GR crops resulted in a higher net return (maize and soybean) compared with continuous GR crop (cotton or soybean) or rotating a GR crop with a non‐GR crop (maize). CONCLUSION: Growers can implement weed resistance BMP systems with the confidence that their net returns will be equivalent in the short run, and, in the long term, resistance BMP systems will prevent or delay the evolution of GR weeds in their fields, resulting in substantial savings. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Weed management in glyphosate‐resistant (GR) maize, cotton and soybean in the United States relies almost exclusively on glyphosate, which raises criticism for facilitating shifts in weed populations. In 2006, the benchmark study, a field‐scale investigation, was initiated in three different GR cropping systems to characterize academic recommendations for weed management and to determine the level to which these recommendations would reduce weed population shifts. RESULTS: A majority of growers used glyphosate as the only herbicide for weed management, as opposed to 98% of the academic recommendations implementing at least two herbicide active ingredients and modes of action. The additional herbicides were applied with glyphosate and as soil residual treatments. The greater herbicide diversity with academic recommendations reduced weed population densities before and after post‐emergence herbicide applications in 2006 and 2007, particularly in continuous GR crops. CONCLUSION: Diversifying herbicides reduces weed population densities and lowers the risk of weed population shifts and the associated potential for the evolution of glyphosate‐resistant weeds in continuous GR crops. Altered weed management practices (e.g. herbicides or tillage) enabled by rotating crops, whether GR or non‐GR, improves weed management and thus minimizes the effectiveness of only using chemical tactics to mitigate weed population shifts. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
BACKGROUND: A survey was conducted with nearly 1200 growers in US states (Illinois, Indiana, Iowa, Mississippi, Nebraska and North Carolina) in 2005 with the objective in part of determining the awareness of the potential for development of glyphosate resistance, the experience with glyphosate‐resistant (GR) weeds and the sources of information that growers had utilized for information on glyphosate resistance. Growers were asked a series of questions to determine the level of glyphosate resistance awareness and to list the sources of information used to learn about glyphosate resistance issues. RESULTS: The majority of the growers (88%) were aware of a weed's potential to evolve resistance to herbicide, while 44% were aware of state‐specific documented cases of GR weeds, and 15% reported having had personal experience with GR weeds. Among sources of information concerning glyphosate resistance issues, farm publications, dealers/retailers and university/extension were the most frequent responses (41, 17 and 14% respectively). Based on a 1‐10 effectiveness scale, growers ranked tillage the least effective practice (5.5) and using the correct label rates of herbicides at the proper timing for the size and type of weeds present the most effective practice (8.6) with respect to how effectively the practices mitigated the evolution of GR weeds. CONCLUSION: Results from this survey can be used by researchers, extension specialists and crop advisors further to bridge the information gap between growers and themselves and better to disseminate information concerning glyphosate resistance and glyphosate resistance management practices through more targeted information and information delivery methods. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
7.
Herbicide‐resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate‐resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate‐resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate‐resistant crops over broad areas facilitated the evolution of glyphosate‐resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate‐resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl‐CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate‐resistant crops had initially. In the more distant future, other herbicide‐resistant crops (including non‐transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide‐resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

8.
9.
10.
11.
There is interest in more diverse weed management tactics because of evolved herbicide resistance in important weeds in many US and Canadian crop systems. While herbicide resistance in weeds is not new, the issue has become critical because of the adoption of simple, convenient and inexpensive crop systems based on genetically engineered glyphosate‐tolerant crop cultivars. Importantly, genetic engineering has not been a factor in rice and wheat, two globally important food crops. There are many tactics that help to mitigate herbicide resistance in weeds and should be widely adopted. Evolved herbicide resistance in key weeds has influenced a limited number of growers to include a more diverse suite of tactics to supplement existing herbicidal tactics. Most growers still emphasize herbicides, often to the exclusion of alternative tactics. Application of integrated pest management for weeds is better characterized as integrated weed management, and more typically integrated herbicide management. However, adoption of diverse weed management tactics is limited. Modifying herbicide use will not solve herbicide resistance in weeds, and the relief provided by different herbicide use practices is generally short‐lived at best. More diversity of tactics for weed management must be incorporated in crop systems. © 2014 Society of Chemical Industry  相似文献   

12.
Weeds are a perennial problem in coconut plantations and cause significant losses in the nut yield. The occurrence of a wide range of weeds also causes difficulties in their eradication. The influence of five different weed management practises on the distribution and composition of the soil weed seed bank in coconut plantations in the low-country dry zone of Sri Lanka was evaluated. The treatments imposed included the application of glyphosate (N-[phosphonomethyl]-glycine), cover cropping with Pueraria phaseoloides , tractor harrowing, tractor slashing, and tractor plowing. All the treatments were applied twice per year, except for the cover cropping treatment. In terms of a reduction in the weed biomass, the application of glyphosate and cover cropping ( Pueraria ) were more efficient in reducing the ground weed population. These methods were very effective in reducing the weed seed density in the top soil layers. Plowing and harrowing significantly reduced the seed bank in the top soil layers and shifted significant numbers of weed seeds to deeper soil profiles. However, the total germinated weed seed count increased by 123.5, 691.4, 1133.1, and 1216.5% in the 10–15, 15–20, 20–25, and 25–30 cm soil depths, respectively, compared with the initial germinated weed seed count in the plowing treatment. Considering all the soil layers, the decline in the germinating weed seed count was very high in the treatment plots with cover cropping and the application of glyphosate; thus, these are considered to be the best practises to reduce the germinating weed seed count in the soil of coconut plantations.  相似文献   

13.
14.
Diclofop-resistant Lolium species (ryegrass) is a major weed problem in wheat production worldwide. This study was conducted to determine the resistance pattern of diclofop-resistant ryegrass accessions from the southern United States to mesosulfuron-methyl, a recently commercialized herbicide for ryegrass control in wheat; to determine the cross-resistance pattern of a Lolium multiflorum Lam. (Italian ryegrass) accession, 03-1, to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibitors; and to determine the resistance mechanism of Italian ryegrass to mesosulfuron-methyl. Seventeen ryegrass accessions from Arkansas and Louisiana, including standard resistant and susceptible accessions, were used in this experiment. Fourteen of the 17 accessions were more resistant (four- to > 308-fold) to diclofop than the standard susceptible biotype. One accession, 03-1, was resistant to mesosulfuron-methyl as well as to other ALS inhibitor herbicides such as chlorsulfuron, imazamox and sulfometuron. Accession 03-1, however, did not show multiple resistance to the ACCase inhibitor herbicides diclofop, fluazifop, clethodim, sethoxydim and pinoxaden, nor to glyphosate. The in vivo ALS activity of the 03-1 biotype was less affected by mesosulfuron-methyl than the susceptible biotype. This indicates that the resistance mechanism of Italian ryegrass to mesosulfuron-methyl is partly due to an alteration in the target enzyme, ALS. It is concluded that diclofop-resistant ryegrass in the southern United States can be generally controlled by mesosulfuron-methyl. However, mesosulfuron-methyl must be used with caution because not all ryegrass populations are susceptible to it. There is a need for more thorough profiling of ryegrass resistance to herbicides.  相似文献   

15.
This paper describes the consequences of the ban on neonicotinoid seed treatments on pest management in oilseed rape. Since the ban was implemented in December 2013, there have been serious crop losses in 2014, 2015 and 2016 owing to cabbage stem flea beetles, Psylliodes chrysocephala, and aphids, Myzus persicae, which have developed resistance to the alternative pyrethroid sprays that were employed to control them. This has resulted in increased crop losses, decreased yields and a substantial decrease in the area grown, leading to fewer flowering crops available in the spring, especially in the eastern region of the United Kingdom. This is likely to have an adverse effect on bees locally. © 2016 Society of Chemical Industry  相似文献   

16.
We examined the toxic effects of glyphosate to adult female Lepthyphantes tenuis (Araneae, Linyphiidae), a common spider of agricultural habitats. The overspray technique was used to investigate the effect of the herbicide on forty individuals in each of six glyphosate treatments (2160, 1440, 1080, 720, 360 and 180 g ha?1) and a distilled water control. Spiders collected from the wild were individually placed in exposure chambers and checked every 24 h over a 72‐h experimental period. Mortality of L tenuis remained at less than 10% in all treatments at 24 and 48 h after spray application, and only increased marginally (to 13%) after 72 h. These results support other limited data which suggest that glyphosate is ‘harmless’ to non‐target arthropods. More extended laboratory testing to investigate any side‐effects of glyphosate on the life history of L tenuis and other non‐beneficial invertebrates is required. © 2001 Society of Chemical Industry  相似文献   

17.
We have examined the indirect effect of the herbicide glyphosate on the spider Lepthyphantes tenuis in field margins. Glyphosate was applied to a randomised block design field experiment comprising 360, 720 and 1440 g glyphosate AE ha?1 treatments and an unsprayed control. Spiders were sampled in each month from June to October 1998. Spider abundance was significantly lower in all the treatments than in the unsprayed control. Abundance was also significantly lower in the 720 and 1440 g treatments than in the 360 g treatment. No significant difference could be detected between the 720 and 1440 g treatments. Poisson regression models showed that patterns of decline in L tenuis were related to increasing dead vegetation and decreasing vegetation height. Glyphosate applications only had a within‐season indirect habitat effect on L tenuis as field margins sprayed 16 months after an application of 360 g glyphosate ha?1 showed no detrimental effect. © 2001 Society of Chemical Industry  相似文献   

18.
The vapour pressure of thermally stable substances can be determined easily at ambient pressure using the evaporation rate method. It is possible to measure the evaporation by thermogravimetry in the temperature range from 30°C to 800°C. Vapour pressures as low as 10?10 Pa (10?12 mbar) can be determined with excellent reproducibility.  相似文献   

19.
It has long been known that calcium ion antagonizes glyphosate, but it was not clear whether the stoichiometry of their interaction is 1:1 or 1:2. Two independent methods were used to determine which stoichiometry was the most probable. First, dose–response curves of barley ( Hordeum vulgare L.) plants treated with glyphosate were determined in the presence of 0, 1.25, 2.5, 5 and 10 mM CaCl2. The doses of 'free' glyphosate (=not inactivated by calcium ion) were computed using the assumptions of 1:1 and 1:2 stoechiometries. The response curves were redrawn as a function of 'free' glyphosate. Analysis showed that the 1:2 hypothesis could be rejected, whereas the 1:1 hypothesis was highly probable. Second, kinetics of glyphosate penetration into barley leaves were determined in the presence of 0, 2.5 and 10 mM CaCl2. The concentrations of 'free' glyphosate were computed as above. The kinetics of glyphosate penetration at these concentrations were established and were compared to the kinetics of glyphosate penetration in the presence of CaCl2. Again, the 1:2 hypothesis was rejected, whereas the 1:1 hypothesis was more probable. These results strongly suggest that the stoichiometry of the Ca2+:glyphosate association is 1:1 in deposit residuals on the leaf surface.  相似文献   

20.
Yang G  Jiang X  Yang H 《Pest management science》2002,58(10):1063-1067
Phytoalexins are low-molecular-weight chemicals that immune systems of plants produce and accumulate in response to infections, especially those of fungal origin. Although their content is not high in plants, yet they have shown unique fungicidal activity and played an important role in the defence system of plants. In searching for novel environmentally benign fungicides with high activity, the structures of flavanone derivatives, one of the most important phytoalexins groups, have been modified via bioisosteric substitution and a series of 2-heteroaryl-4-chromanones were designed and synthesized. They showed good fungicidal activities against rice blast disease, Pyricularia grisea (Sacc). Their IC50 values were tested in vitro and the relationship between structure and fungicidal activity was analyzed quantitatively using a Hansch-Fujita approach. The results showed that hydrophobicity was very important for fungicidal activity and there is apparently an optimum hydrophobic property for the molecules at a log Pow value of about 2.7. In addition, the results indicated that electronic effects played an important role in binding with the receptor and that the C=O group was probably a electron-accepting site. The quantitative structure-retention correlative equation of the title compounds was also established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号