首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物可降解地膜对棉花产量及水分利用效率的影响   总被引:2,自引:0,他引:2  
为了探求华北平原棉花可降解地膜覆盖替代普通膜覆盖的可行性,解决白色污染问题,试验设置4种处理:6 μm PE普通地膜(PE)、8 μm生物可降解地膜(M1)、6 μm生物可降解地膜(M2)及不覆盖地膜(CK),分析比较各处理对棉花出苗率、叶面积指数(LAI)、农田耗水速率、产量及水分利用效率(WUE)的影响.结果表明,与处理CK相比,覆盖地膜显著提高了棉花出苗率,但3种覆膜处理间差异不具有统计学意义;在棉花生育前期,2种生物可降解地膜处理的LAI显著低于PE处理的.3种覆膜处理之间的籽棉产量和霜前花率的差异均不具有统计学意义.3种覆膜处理间WUE的差异不具有统计学意义,但均显著高于CK的.2种生物可降解地膜处理相较于PE,对棉花的出苗率、霜前花率、籽棉产量及WUE的差异均不具有统计学意义.相较于PE,使用6 μm生物可降解膜不会造成棉花耗水量升高,而8 μm可降解膜则显著增加了棉花的耗水量.因此6 μm生物降解膜取代PE膜较好.  相似文献   

2.
A field study was conducted from 2002 to 2007 to investigate the influence of row spacing of winter wheat (Triticum aestivum L.) on soil evaporation (E), evapotranspiration (ET), grain production and water use efficiency (WUE) in the North China Plain. The experiment had four row spacing treatments, 7.5 cm, 15 cm, 22.5 cm, and 30 cm, with plots randomly arranged in four replicates. Soil E was measured by micro-lysimeters in three seasons and ET was calculated from measurements of soil profile water depletion, irrigation, and rainfall. The results showed that E increased with row spacing. Compared with the 30-cm row spacing (average E = 112 mm), the reduction in seasonal E averaged 9 mm, 25 mm, and 26 mm for 22.5 cm, 15 cm, and 7.5 cm row spacings, respectively. Crop transpiration (T) increased as row spacing decreased. The seasonal rainfall interception and seasonal ET were relatively unchanged among the treatments. In three out of five seasons, the four different treatments showed similar grain yield, yield components and WUE. We conclude that for winter wheat production in the North China Plain, narrow row spacing reduced soil evaporation, but had minor improvements on grain production and WUE under irrigated conditions with adequate nutrient levels.  相似文献   

3.
This study focuses on the quantification of pesticide use efficiency for producers of transgenic cotton versus conventional cotton in order to test for the improvement promised by the genetically engineered crop. The environmental and cost efficiency of pesticide use is assessed by means of data envelopment analysis (DEA) and the external effects of pesticide are quantified by means of the pesticide leaching potential. To account for the fact that conditions other than the ‘treatment” (seed type) are not equal in farm surveys the study employs a second step Tobit regression. The data are from a survey of cotton growers in North Carolina, USA. Differences in environmental efficiency are found to be significant between herbicide tolerant and stacked gene (herbicide tolerant and insect resistant) cotton and between stacked gene and conventional cotton. In contrast, no statistically significant differences are found for efficiency of pest control cost. In the follow-up Tobit regression, differences in production environment and in farm, farmer and field characteristics are accounted for so that the contribution of seed type to efficiency can be observed. The regression results confirm the importance of stacked gene cotton for improving the environmental efficiency of pesticide use in cotton. In contrast, seed type was not significant in explaining differences in cost efficiency among North Carolina cotton growers. The new technology reduces pesticide application but these benefits are curbed by the high price of cotton seed (technology fee).  相似文献   

4.
A new method of irrigation was designed and tested for its water use efficiency (WUE). Maize plants were grown in pots with their roots divided and established into two or three separated containers of which irrigation and soil drying were controlled alternately. Results showed that when the two halves of the root system were alternatively exposed to a drying soil and a soil with its water content maintained above 55% or 65% of its field capacity, water consumption was reduced by 34.4–36.8% and the total biomass production was reduced by only 6–11%, when compared to the well-irrigated plants. Significant increase in WUE, root to shoot ratio and stomatal resistance for water diffusion were observed as a result of such treatment. Leaf transpiration was reduced substantially while the rate of photosynthesis and leaf water content were not significantly altered. The results were also compared to root-divided plants of which irrigation was fixed to one container only and showed that a better WUE, root development and distribution, shoot biomass production were achieved by the alternate drying and rewetting. We conclude that the controlled alternate irrigation (CAI) is an effective and water-saving irrigation method and may have the potential to be used in the field.  相似文献   

5.
Water use efficiency and crop coefficients of dry season oilseed crops   总被引:1,自引:0,他引:1  
Eastern India receives higher average annual rainfall (1000–2000 mm) but 80% of it occurs within the June–September (rainy season), whereas the winter season (November–March) is dry. Due to a shortage of soil moisture, most rainfed areas of the region remain fallow during the winter season and cultivation (mainly rice) is confined to the rainy season only (June–September). To explore the possibility of double cropping in the rainfed rice areas, three oilseed crops, viz., linseed (Linum usitatissimum L.), safflower (Carthamous tinctorious L.), mustard (Brassica juncea L.), were grown in a representative rainfed area of eastern India, i.e. Dhenkanal, Orissa, during the dry/winter season by applying irrigation water at phonological stages. Study revealed that with three supplemental irrigations, the highest WUE was achieved by safflower followed by linseed with the mean values being 3.04 and 2.59 kg ha−1 mm−1, respectively. Whereas, with one irrigation, the highest water use efficiency (WUE) was achieved for safflower (1.23 kg ha−1 mm−1) followed by linseed (0.93 kg ha−1 mm−1). Of the three crops studied, safflower withdrew maximum water followed by mustard and crops were shown to use 90–105 mm more water than linseed. With three irrigations, average maximum rooting depths were 1.66, 1.17 and 0.67 m for safflower, mustard and linseed, respectively, which were 13.5, 10.6 and 11.4% higher than for single irrigated crops because of more wet sub soils and decrease of soil strength. The crop growth parameters like leaf area, dry biomass were also recorded with different levels of irrigation. The research work amply revealed the potential of growing these low water requiring oilseed crops in rice fallow during dry/winter season utilizing limited irrigation from harvested rainwater of rainy season. Crop coefficients (Kc) of three winter season oilseed crops were derived using field water balance approach. Study showed that LAI was significantly correlated with Kc values with the R2 values of 0.91, 0.89 and 0.94 in linseed, safflower and mustard, respectively. When LAI exceeded 3.0, the Kc value was 1 in safflower and mustard whereas in linseed corresponding LAI was 2.5. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

6.
Summary Cotton (Gossypium hirsutum L.), although known to be one of the most salt tolerant crops, shows a significant reduction in plant size and yield when grown on highly saline soils. A field plot study was therefore conducted to determine the feasibility of increasing yield on highly saline soils by increasing population density by decreasing the distance between rows. Three row widths and four salinity levels were imposed on a nonsaline Pachappa fine sandy loam (mixed, thermic, Mollic Haploxerall). Canopy closure, plant height, earliness, and several yield components were measured. A significant yield increase was obtained at all salinity levels by decreasing the distance between rows from 102 to 86 or 71 cm.  相似文献   

7.
为了揭示棉花生长发育对咸水灌溉的响应特征,采用小区对比试验,研究了不同矿化度咸水灌溉对棉花出苗、株高、叶面积、果枝数、地上部干质量等形态指标以及产量构成、耗水量和水分利用率的影响.结果表明,棉花出苗率和成苗率随着灌溉水矿化度的增大而减小,但3 g/L灌水处理与对照间的差异不具有统计学意义,而5,7 g/L处理与对照间差异极具统计学意义.在移栽补全苗情况下,咸水灌溉对棉花形态生长指标产生了一定的抑制效应,灌溉水矿化度愈大,抑制作用愈大;对株高、叶面积和地上部干质量的影响在蕾期最明显,花铃期之后开始逐渐减弱;对果枝数和棉铃生长的影响程度随着棉花生育进程的推进而降低.处理间棉花的耗水量差异不具有统计学意义,籽棉产量和水分利用率的大小顺序,按灌水处理依次为3,1,5,7 g/L,其中7 g/L处理与对照间的差异具有统计学意义.与灌水前初始值相比,试验结束后1,3 g/L灌水处理的0~40 cm土层盐分未增加,5,7 g/L灌水处理则形成了积盐.研究结果可为咸水安全利用提供重要参考.  相似文献   

8.
Water use efficiency of irrigated wheat in the Tarai region of India   总被引:1,自引:0,他引:1  
Experiments were conducted during the winter seasons of 1983–1984 and 1984–1985 to identify suitable irrigation regimes s for wheat grown after rice in soils with naturally fluctuating shallow water table (SWT) at a depth of 0.4 to 0.9 m and medium water table (MWT) at a depth of 0.8 to 1.3 m. Based on physiological stages, the crop was subjected to six irrigation regimes viz., rainfed (I0); irrigation only at crown root initiation (I1); at only crown root initiation and milk (I2); at crown root initiation, maximum tillering and milk (I3); at crown root initiation, maximum tillering, flowering and milk (I4); and at crown root initiation, maximum tillering, flowering milk and dough (I5). Tube-well water with an EC <0.4 dsm–1 was used for irrigation. Based on 166 mm effective precipitation during the cropping season, 1983–1984 was designated as a wet year and 1984–1985 with 51 mm as a dry year. The change in profile soil water content W (depletion) in the wet year was less (23%) under SWT and 10% under MWT as compared to the dry year. The ground water contribution (GWC) to evapotranspiration (ET) was 58% under SWT and 42% under MWT conditions in both the years. The GWC in the wet year was 20% under SWT and 23% under MWT. Of the total net water use (NWU), about 85% was ET and 15% drainage losses. The NWU was highest (641 and 586 mm) in I5 under SWT and MWT conditions, respectively, but not the yield (5069 kg ha–1). Compared to I5, NWU in I2 treatment decreased by 10% in the wet and 25% in the dry year. A similar trend was observed in the I3 treatment under MWT condition. However, there was no statistically significant difference between yields of the I1 to I5 treatments of either water table depth during the wet year. This was also true during the dry year for the I2 to I5 treatments. Under SWT, in I2, the grain yield was 5130 kg ha–1 and under I3 regime, 5200 kg ha–1. Under MWT in I3, the yield was 5188 kg ha–1 and under I4 regime, 5218 kg ha–1. Thus it appears that in the Tarai region where the water table remains shallow (<0.9 m) and medium (<1.3 m) for most of the wheat growing season applications of more than 120 and 180 mm irrigation under SWT and MWT conditions, respectively were not necessary. Irrigation given only at crown root initiation and milk stages under shallow water table conditions, and at crown root initiation, maximum tillering and milk stages under medium water table conditions, appears to be as effective as frequent irrigations.  相似文献   

9.
With increasing concern about declining water resources, there is increasing thrust in improving water management in farming systems to improve water use efficiency. The present investigation was undertaken to determine the optimum timing for the first and last irrigation of cotton on the basis of meteorological approach for scheduling irrigations. The experiment was conducted in a split plot design with three timings of first irrigation as main-plots and three timing of last irrigation as sub-plots. Delay of first irrigation from 28 days after sowing (DAS) to 42 DAS, irrespective of last irrigation, resulted in an increase of 8, 14 and 17% in seed cotton yield during first, second and third year, respectively. The corresponding increases due to delay in the last irrigation from 130 to 170 DAS were 14, 32 and 8%, respectively. On the basis of 3 years average, application of first and last irrigation at optimum time (after 42 and 170 days after sowing) resulted in an increase of 36% in seed cotton yield without involving any additional cost. Water expense efficiency (WEE) increased by 54%.  相似文献   

10.
Crop water use efficiency of irrigated cotton was hypothesized to be improved by a combination of minimum tillage and sowing a wheat (Triticum aestivum L.) rotation crop. This hypothesis was evaluated in a Vertisol near Narrabri, Australia from 1997 to 2003. The experimental treatments were: continuous cotton sown after conventional or minimum tillage and minimum-tilled cotton–wheat. Soil water content was measured with a neutron moisture meter, and runoff with trapezoidal flumes. Application efficiency of irrigation water was estimated as the amount of infiltrated water/total amount applied. Plant available water was estimated using the maximum and minimum soil water storage during the growing season. Evapotranspiration was estimated with the water balance method using measured and simulated soil water data. Seasonal evapotranspiration was partitioned into that coming from rainfall, irrigation and stored soil water. Crop water use efficiency was calculated as cotton lint yield per hectare/seasonal evapotranspiration. Rotation of cotton with wheat and minimum tillage improved water use efficiency in some years and application efficiency in all years. Average seasonal evapotranspiration was higher with minimum tillage than with conventional tillage. In years when cotton was sown in all plots, average cotton crop water use efficiencies were 0.23, 0.23 and 0.22 kg (lint)/m3 for minimum-tilled cotton–wheat and continuous cotton, and conventionally tilled continuous cotton, respectively. In-season rainfall efficiency, transpiration and soil evaporation were unaffected by cropping system.  相似文献   

11.
Plant growth and development are influenced by weather conditions that also affect water use (WU) and water use efficiency (WUE) and ultimately, yield. The overall goal of this study was to determine the impact of weather and soil moisture conditions on WU and WUE of sweet corn (Zea mays L. var rugosa). An experiment consisting on three planting dates was conducted in 2006 at The University of Georgia, USA. A sweet corn genotype sh2 was planted on March 27 under irrigated and rainfed conditions and on April 10 and 25 under irrigated conditions only. Soil moisture was monitored using PR2 probes. Rainfall and irrigation were recorded with rain gauges installed in the experimental area while other weather variables were recorded with an automatic weather station located nearby. A water balance was used to obtain the crop's daily evapotranspiration (ETc). WUE was calculated as the ratio of fresh and dry matter ear yield and cumulative ETc. The potential soil moisture deficit (Dp) approach was used to determine the crop's moisture stress. Results were analyzed using a single degree freedom contrast, linear regression, and the least significant difference. WU and WUE of sweet corn were both markedly affected by the intra-seasonal weather variability and Dp. For both variables, significant (p < 0.05) differences were found between planting dates under irrigated conditions and between the irrigated and rainfed treatments. WU was as high as 268 mm for the April 10 planting date under irrigated conditions and as low as 122 mm for the March 27 planting date under rainfed conditions. The maximum soil moisture deficit was reached at the milky kernel stage and was as high as 343 mm for the March 27 planting date under rainfed conditions and as low as 260 mm for the April 10 planting date under irrigated conditions. Further work should focus on the impact of the intra-seasonal weather variability and soil moisture conditions during different crop stages to determine critical periods that affect yield.  相似文献   

12.
Chickpea is one of the major legume crops grown in the West Asia and North Africa (WANA) region. It has considerable importance as a food, feed and fodder. Traditionally, it is sown in spring as a rainfed crop in the region, which has highly variable and often insufficient rainfall. It is, therefore, largely raised on residual moisture, which results in low and variable yields and discourages farmers from investing inputs in its production. In the early 1990s, a winter-sown chickpea technology was developed that outweighs spring-sown chickpea in terms of productivity, water use efficiency and other traits. Limited supplemental irrigation can, however, play a major role in boosting and stabilizing the productivity of both spring-sown and winter-sown chickpea. Therefore, we investigated the effect of supplemental irrigation and sowing date on yield and water use efficiency in winter-sown chickpea.An experiment was carried out over four cropping seasons (1997–2001) at ICARDA’s main station at Tel Hadya, Aleppo, northern Syria (mean annual rainfall 330 mm). A cold-tolerant chickpea cultivar with improved resistance to ascochyta blight (ILC 3279, released as Ghab 2 in Syria) was grown in rotation with wheat. The experiment included three sowing dates (late November, mid-January, and late February) and four levels of supplemental irrigation (SI): full SI, 2/3 SI, 1/3 SI, and no SI, i.e. rainfed. The plots were replicated three times in a split-plot design, with date of sowing being the main plot treatment. Soil water content was monitored at approximately at 7–14-day intervals using a neutron probe. Crop evapotranspiration was determined for each subplot during each time interval, from sowing to harvest, using the soil-water balance equation. Water use efficiency was determined as the ratio of crop yield per unit area to seasonal evapotranspiration.The results showed that chickpea yield per unit area increases with both earlier sowing and increased SI. However, water use efficiency under supplemental irrigation decreases with earlier sowing, due to the relatively large increase that occurs in the amount of evapotranspiration at early sowing dates. The study’s results indicated that a 2/3 SI level gives the optimum water use efficiency for chickpea under supplemental irrigation. Under rainfed conditions, however, it was found that sowing chickpea around mid-January resulted in the highest WUE. The analysis also proposed a function, based on regression, which relates winter-sown chickpea yield to water use and which is applicable under both supplemental and rainfed conditions.  相似文献   

13.
Decreasing in water availability for cotton production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant cotton varieties or water management. A field trial was conducted to observe the effects of different drip irrigation regimes on water use efficiencies (WUE) and fiber quality parameters produced from N-84 cotton variety in the Aegean region of Turkey during 2004 and 2005. Treatments were designated as full irrigation (T100, which received 100% of the soil water depletion) and those that received 75, 50 and 25% of the amount received by treatment T100 on the same day (treatments T75; T50 and T25, respectively). The average seasonal water use values ranged from 265 to 753 mm and the average seed cotton yield varied from 2550 to 5760 kg ha−1. Largest average cotton yield was obtained from the full irrigation treatment (T100). WUE ranged from 0.77 kg m−3 in the T100 to 0.98 kg m−3 in the T25 in 2004 growing season and ranged from 0.76 kg m−3 in the T100 to 0.94 kg m−3 in the T25 in 2005 growing season. The largest irrigation water use efficiency (IWUE) was observed in the T25 (1.46 kg m−3), and the smallest IWUE was in the T100 treatment (0.81 kg m−3) in the experimental years. A yield response factor (ky) value of 0.78 was determined based on averages of two years. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use for treatments. Fiber qualities were influenced by drip irrigation levels in both years. The results revealed that well-irrigated treatments (T100) could be used for the semi-arid climatic conditions under no water shortage. Moreover, the results also demonstrated that irrigation of cotton with drip irrigation method at 75% level (T75) had significant benefits in terms of saved irrigation water and large WUE indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25.0% saving in irrigation water (T75) resulted in 34.0% reduction in the net income. However, the net income of the T100 treatment is found to be reasonable in areas with no water shortage.  相似文献   

14.
A 2-year experiment was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to determine water use and lint yield response to the length of irrigation season of drip irrigated cotton (Gossypium hirsutum L.). Crop evapotranspiration (ETcrop) and reference evapotranspiration (ETrye-grass) were directly measured at weekly basis during the 2001 growing period using crop and rye-grass drainage lysimeters. Crop coefficients (Kc) in the different growth stages were calculated as ETcrop/ETrye-grass. Then, the calculated Kc values were used in the 2002 growing period to estimate evapotranspiration of cotton using the FAO method by multiplying the calculated Kc values by ETrye-grass measured in 2002. The length of irrigation season was determined by terminating irrigation permanently at first open boll (S1), at early boll loading (S2), and at mid boll loading (S3). The three treatments were compared to a well-watered control (C) throughout the growing period. Lint yield was defined as a function of components including plant height at harvest, number of bolls per plant, and percentage of opened bolls per plant.Lysimeter-measured crop evapotranspiration (ETcrop) totaled 642 mm in 2001 for a total growing period of 134 days, while when estimated with the FAO method in 2002 it averaged 669 mm for a total growing period of 141 days from sowing to mature bolls. Average Kc values varied from 0.58 at initial growth stages (sowing to squaring), to 1.10 at mid growth stages (first bloom to first open boll), and 0.83 at late growth stages (early boll loading to mature bolls).Results showed that cotton lint yields were reduced as irrigation amounts increased. Average across years, the S1 treatment produced the highest yield of 639 kg ha−1 from total irrigations of 549 mm, compared to the S2 and S3 treatments, which yielded 577 and 547 kg ha−1 from total irrigations of 633 and 692 mm, respectively, while the control resulted in 457 kg ha−1 of lint yield from 738 mm of irrigation water. Water use efficiency (WUE) was found to be higher in S1 treatment and averaged 1.3 kg ha−1 mm−1, followed by S2 (1.1 kg ha−1 mm−1), and S3 (1.0 kg ha−1 mm−1), while in the control WUE was 0.80 kg ha−1 mm−1. Lint yield was negatively correlated with plant height and the number of bolls per plant and positively correlated with the percentage of opened bolls. This study suggests that terminating irrigation at first open boll stage has been found to provide the highest cotton yield with maximum WUE under the semi-arid conditions of the Bekaa Valley of Lebanon.  相似文献   

15.
为了阐明大兴区冬小麦农业用水效率时空变化趋势, 基于近10 a大兴区冬小麦产量统计值和遥感ET值, 构建了冬小麦脱氮-分解作用模型(DNDC模型), 验证了DNDC模型在区域冬小麦水分生产率方面的适用性.结果表明:点位模拟与验证中,冬小麦产量和ET值模拟效果较好,相对误差均小于4.20%,作物水分生产率WP点位模拟值分别为1.91和1.75 kg/m3.区域模拟与验证中,不同土壤区冬小麦产量及ET不尽相同,但总体趋势保持一致,产量随降雨量变化较大,2008年产量达到最大.2007-2016年产量统计平均值为5 227 kg/hm2,产量模拟平均值为4 845 kg/hm2;同期区域冬小麦ET模拟平均值为381.74 mm,遥感平均值为392.66 mm,产量和ET平均相对误差小于13%.2007-2016年WP模拟值为1.10~1.62 kg/m3,平均值为1.27 kg/m3,统计值为1.15~1.62 kg/m3,统计平均值为1.34 kg/m3.  相似文献   

16.
Partial rootzone irrigation (PRI) can substantially reduce irrigation amount and has been demonstrated as a promising irrigation method for crops in arid or semiarid areas. Many earlier researches have shown that PRI reduces leaf transpiration by narrowing stomatal opening. In this study we verified the hypothesis that PRI can also save irrigation water by substantially reducing soil evaporation. Field experiment was conducted in an arid area where cotton production almost completely relies on irrigation. Water was applied to furrows in the cotton field either alternatively (AFI, alternative furrow irrigation), or evenly to all the furrows (CFI, conventional furrow irrigation), or to one fixed furrow in every two (FFI, fixed furrow irrigation). Our results show that surface evaporation constitutes a large fraction of the irrigation water loss from cropped field (more than 20%), and with the two PRI treatments nearly 40% of the evaporative water loss is saved. Transpiration accounted for 48%, 58% and 57% of the total amount of irrigation respectively for the CFI, AFI and FFI treatments. This result suggests that PRI increases the proportion of applied water that is transpired, and therefore leads to a higher water use efficiency than regular irrigation. Overall, when irrigation was reduced by 30%, the average final yield loss of AFI was only 4.44%, a non-significant reduction statistically. The FFI had a significant reduction in yield of 12.01% in comparison to CFI. Moreover, PRI brings in earlier flowering and a higher economical return due to early harvested cotton. This indicates that the final economical output could compensate for the loss of cotton yield due to water-saving. With very little extra cost to implementation, PRI proves a very promising method in cotton production in arid zone.  相似文献   

17.
Various land uses, including sole plantations of leucaena and eucalyptus, maize–wheat, chrysopogon grass or turmeric and their tree crop mixtures were compared for period of nine years in two sequences for runoff, water use and water use efficiency on nine large erosion plots on 4% slope. Availability of water during summers and climatic evaporative (EP) demand during winters appear to be the governing factors for seasonal water use. About 70% of annual water consumption occurs during the four months (July to October) of rainy season. During this season water use was about 3–4 times to EP for trees and grass and 2.5 times for maize. The water use equals EP regardless the land use during winter season, while it reduced to about one-third to half of EP in the summer season. Annual water use is found to be closely linked with runoff reduction efficiency of the land use. Sole plantations of leucaena and eucalyptus showed negligible runoff losses and their water use approximated annual rainfall. Agroforestry land uses also reduced runoff and increased water use and water use efficiency. Seasonal crops exploited 1.5 m depth of profile more exhaustively than trees, whereas trees used soil water down to 3.0 m depth. Therefore, in tree crop mixtures more efficient soil water use was observed as compared to monocropping systems. Results of this study indicate that water conserved under sole tree plantations and due to tree intervention in agroforestry land uses through runoff reduction, is utilised to meet increased evapotranspiration demand, and hence ground water recharge in appreciable quantities is unlikely.  相似文献   

18.
Two-year field experiments were conducted to investigate the effect of alternate partial root-zone drip irrigation on fruit yield, fruit quality and water use efficiency of table grape (Vitis vinifera L. cv Rizamat) in the arid region of northwest China. Three irrigation treatments were included, i.e. CDI (conventional drip irrigation, both sides of the root-zone irrigated), ADI (alternate drip irrigation, both sides of the root-zone irrigated alternatively with half the water) and FDI (fixed drip irrigation, only one side of the root system irrigated with half the water). Results indicated that compared to CDI, ADI kept the same photosynthetic rate (Pn) but reduced transpiration rate, thus increased leaf water use efficiency (WUE) of table grape. And diurnal variation of leaf water potential showed no significant differences during 7.00 a.m. to 14.00 p.m. in both years. ADI also produced similar yield and improved WUEET by 26.7–46.4% and increased the percentage of edible grape by 3.88–5.78%, vitamin C content in the fruit by 15.3–42.2% and ratio of total soluble solid concentration/titrated acid in both years as compared to CDI. Thus ADI saved irrigation water, improved the water use efficiency and fruit quality of table grape without detrimental effect on the fruit yield in arid region.  相似文献   

19.
Selecting more water efficient cultivars is an important way to reduce water use in a water-scarce region. The objectives of this study were to measure the grain yield and water use efficiency (WUE) of winter wheat (Triticum aestivum L.) cultivars to understand the genetic gains in yield and WUE and their associated physiological and agronomic traits in Hebei province, North China Plain (NCP). Two groups of winter wheat cultivars were tested. Group 1 included 16 winter wheat cultivars that were released between 1998 and 2002 and were tested during the 2002/2003 and 2003/2004 seasons under two water regimes. Group 2 included 10 cultivars released between 1970 and 2000, and were tested during the 2005/2006 and 2006/2007 seasons under three water regimes. Results showed that WUE increased substantially from 1.0-1.2 kg m−3 for cultivars from the early 1970s to 1.4-1.5 kg m−3 for recently released cultivars. There was also a variation in yield and WUE of about 20% among Group 1 cultivars. Most of the cultivars in both groups had similar responses to water supply. WUE was greater for less irrigated treatments and maximum grain production was achieved with moderate water deficit. The genetic gains in grain yield were associated with increasing in biomass, harvest index and kernel numbers per spike for cultivars released in different years. Among the Group 1 cultivars, the ones with higher yield generally had higher WUE. No significant correlations were found between WUE and physiological traits such as ash content, chlorophyll content, or relative water content among the cultivars released recently. However, a significant relationship was found between stomatal conductance or ash contents and WUE or grain yield among the Group 2 cultivars. Relationships were apparent between WUE and date of anthesis and harvest index (P < 0.05) in Group 1. Earlier flowering cultivars tended to have higher grain yield. In Group 2, flowering date was advancing by about 4 days over the 30 years of crop breeding. The positive relationship between grain yield and WUE for all the cultivars indicated that using a higher yielding cultivar has the potential to improve WUE and thereby to save water.  相似文献   

20.
A field experiment was carried out over 2 years to investigate the effect of partial root-zone irrigation applied using drip irrigation on the water use and yield of cotton (Gossypium hirsutum) in oasis fields of arid north-west China. Two irrigation treatments, i.e., conventional drip irrigation (CDI, both sides of plant row watered) or alternate drip irrigation (ADI, both sides of plant row alternatively watered) were applied under plastic mulch. Three irrigation levels (i.e., 15, 22.5, 30 mm during 2004 and 12, 18, 24 mm during 2005) were applied at each irrigation. Monitoring of soil water contents in the ADI treatment indicated a change in root-zone uptake in response to the irrigation method, although there existed some lateral soil water movement from the wetted side to the dry side after each watering. Stomatal conductance in ADI was lower than that of CDI when compared at the same irrigation level. Reduced stomatal conductance and water loss resulted in higher water use efficiency (WUE) in the ADI treatment. About 31-33% less total irrigation water was applied using the ADI method when compared to that of the CDI treatment with a similar seed cotton yield. ADI also yielded 11% more pre-frost seed cotton than CDI in 2005, indicating a better lint quality and higher price. These results suggest that ADI should be a useful water-saving irrigation method in arid oasis fields where cotton production is heavily dependent on irrigation and water resources are scarce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号