首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Proliferative gill disease (PGD), a condition not previously reported in wild fish, was found in two channel catfish Ictalurus punctatus sampled from the Tennessee-Tombigbee Waterway in Mississippi during June and July 1989. The parasite thought to cause PGD was observed in only one of the fish, but the distinctive lesions associated with this disease were prominent in both of the channel catfish. Organisms resembling the PGD parasite were also found in the gills of 4 of 18 largemouth bass Micropterus salmoides and 6 of 20 bluegills Lepomis macrochirus, but there was little or no host response to these parasites.  相似文献   

2.
Abstract

After parenteral treatment with the cyclooxygenase inhibitor indomethacin, channel catfish Ictalurus punctatus were exposed to mature spores of an Aurantiactinomyxon sp. demonstrated to be the etiological agent of proliferative gill disease (PGD). Fish that received indomethacin at a dose of 2.0 or 5.0 mg/kg body weight within 0.5 h before exposure to the myxozoan and again at 24 h postexposure had significantly (P < 0.05) less severe gill lesions 7 d after exposure than fish that received the drug vehicle alone. Fish that received 0.5 mg indomethacin/kg had moderately severe lesions. All fish were confirmed to be infected with the organism associated with PGD by microscopic examination of gills 4 or 7 d postexposure. These results suggest that products of the cyclooxygenase pathway (e.g., prostaglandins) participate in the pathophysiologic host response to PGD.  相似文献   

3.
Abstract

Specific-pathogen-free channel catfish Ictalurus punctatus were exposed to sediment and mud from a pond containing channel catfish with proliferative gill disease. In one experiment, fish were to exposed to mud and sediment for 2 months in water maintained at 19°C. Fish were necropsied weekly, and certain tissues were examined histologically and ultrastructurally. Four trials were conducted with sediment samples from different epizootics of proliferative gill disease. In a second experiment, fish were exposed to sediment for 7 d in water maintained at 16, 19, or 26°C; the fish were then moved to clean water held at 16, 19, or 26°C. Fish were necropsied before transfer to clean water and weekly thereafter for 2 months. Channel catfish held at 19°C developed proliferative gill disease within 2 d of exposure to sediment. Primary cells of a uninucleate myxosporean parasite were present in the gills at the base of lamellae. These developed into plasmodia with numerous secondary cells, and some primary cells disintegrated, releasing their internal secondary cells. Similar development was observed in internal organs 1 week after appearance of the parasite in gills. Complete sporogony did not occur over the 2 months of this study. Plasmodia became necrotic and were not detected after 60 d. In fish exposed to sediment for 7 d at 16, 19, and 21°C, similar organisms were detected, but clinical disease occurred only at 19 and 26°C. Proliferative gill disease may be attributed to extrasporogonic stages of a myxosporean resembling Sphaerospora spp.  相似文献   

4.
Abstract

Proliferative gill disease (PGD) causes high morbidity and mortality in cultured channel catfish Ictalurus punctatus. The presence of the myxozoan Aurantiactinomyxon ictaluri (class Actinosporea) is strongly associated with PGD. This parasite, shed as an actinospore from the aquatic oligochaete Dero digitata, infects channel catfish by an undetermined route. Several other actinosporeans have been identified that are shed from D. digitata isolated from catfish ponds, including those designated A. mississippiensis, Helioactinomyxon sp., and the actinospore stage of Henneguya exilis. By the use of multiple sequence alignment of polymerase chain reaction (PCR)-amplified small subunit ribosomal RNA (SSU rRNA) genes of A. ictaluri, A. mississippiensis, and H. exilis, we identified two variable regions. The largest variable region was PCR amplified, sequenced from the Helioactinomyxon sp., and used in addition to the other three sequences in multiple-sequence alignment comparison to develop PCR primers specific for A. ictaluri. This PCR specific for A. ictaluri produced 104-base-pair products from a plasmid clone containing the SSU rRNA gene of A. ictaluri, spore DNA of A. ictaluri, and DNA prepared from channel catfish gill and D. digitata infected with A. ictaluri. The PCR assay was able to detect as few as 100 copies of the cloned gene. There was no detectable product from the genomic DNA of H. exilis, A. mississippiensis, or Helioactinomyxon sp., specific pathogen-free channel catfish gill, and noninfected D. digitata. The PCR assay will be useful as a diagnostic tool for PGD in channel catfish and will aid in the elucidation of the life cycle of A. ictaluri.  相似文献   

5.
Abstract

Wild and domestic populations of channel catfish Ictalurus punctatus were examined to determine the distribution of the disease called enteric septicemia of catfish (ESC) in California. The causative agent of ESC, Edwardsiella ictaluri, was isolated from five separate sites in California. Two of these isolations were from rectal swabs of asymptomatic fish, confirming that a carrier state may exist. Normal-appearing fish with serum antibody titer to E. ictaluri were commonly found in domestic channel catfish populations, suggesting that many fish become infected but recover. Wild channel catfish with antibody to E. ictaluri were also found in major reservoirs and water distribution canals. Edwardsiella ictaluri appears to be widely distributed within California.  相似文献   

6.
Abstract

A pond study was conducted from November 1 through April 30 with young (age-0; average size, 43 g) and market-size (age-2; average size, 660 g) channel catfish Ictalurus punctatus to compare three management regimens: No feeding, partial feeding (no feeding in December, January, and February), and continuous feeding according to fish size and water temperature. Weight change, feed conversion ratio, and responses to experimental challenge with Edwardsiella ictaluri were evaluated. No significant difference in weight gain occurred between partially fed and continuously fed fish in either age-group; average weight increase for fed age-0 fish was 99% and for fed age-2 fish was 38%. The nonfed age-0 fish lost 12.3% and the nonfed age-2 fish lost 7% of their initial weight. Feed conversion ratios were significantly lower in partially fed fish than in continuously fed fish in both age-groups. Mortality from E. ictaluri challenge among age-0 fish was significantly higher in the nonfed fish, but among the age-2 fish, mortality was significantly lower in the nonfed fish. No difference in mortality rate occurred between partially fed and continuously fed fish in either age-group. Starvation induced lower antibody production against E. ictaluri antigen in the age-0 fish but higher antibody production in the age-2 fish. Phagocytic index was lower in nonfed fish than in fed fish from both age-groups. This study indicates no benefit from feeding age-0 and age-2 channel catfish during December, January, or February if feeding is reintroduced in March and continued through April. Although starvation was immunosuppressive in small channel catfish, it enhanced resistance to bacterial infection in larger fish. However, more research information is needed before reduced feeding can be recommended to enhance resistance of channel catfish to E. ictaluri.  相似文献   

7.
Abstract

Specific-pathogen-free fry of channel catfish Ictalurus punctatus raised in well water were exposed to Dero digitata (an oligochaete) collected from ponds where catfish have had proliferative gill disease (PGD) and where D. digitata is known to be infected with the triactinomyxid myxozoan Aurantiactinomyxon sp. These fry developed gill lesions and parasites characteristic of PGD. Fry exposed to suspensions of mature Aurantiactinomyxon spores obtained from squashes of infected D. digitata also developed PGD. Fry exposed to oligochaetes other than Dero spp., non-oligochaete benthic macroinvertebrates, or suspensions of squashes of D. digitata without identifiable myxozoans did not develop PGD.  相似文献   

8.
Abstract

Enteric septicemia of catfish (ESC) was transmitted horizontally from channel catfish Icialurus punctatus that had died from Edwardsiella ictaluri infection to contact channel catfish during 2 d of habitation in a tank. The contact channel catfish became positive for E. ictaluri antibody, became infected with this bacterium, and had signs of ESC and died within 12 d postexposure. Edwardsiella ictaluri was recovered from 24 of the 30 contact channel catfish that died from ESC, as well as from 9 of the 25 tested contact survivors. The cannibalizing of E. ictaluri-infected fish, or the shedding of E. ictaluri from dead fish, or both, were shown to be mechanisms of horizontal transmission of ESC among channel catfish.  相似文献   

9.
Abstract

During June and July 1998, at least three Arkansas fish farms polyculturing bighead carp Hypophthalmichthys nobilis with channel catfish Ictalurus punctatus suffered major losses of catfish associated with massive infestations by the crustacean parasite Lernaea cyprinacea. The channel catfish had few adult Lernaea attached to their skin, but there were 8–50 Lernaea copepodids on the surface of each catfish gill filament. The copepodids were found grazing on the gill tissue, and their feeding activity was associated with gill damage including epithelial hyperplasia, telangiectasis, and hemorrhage. Bighead carp in the same ponds were reported to have had numerous adult Lernaea on their skin but did not die during the epizootic. It is possible that the filter-feeding apparatus of the carp captured the copepodids, thus preventing heavy infestation of the gill filaments. Lernaea copepodids have not been implicated previously in fish losses resulting from parasite damage to the gills. The loss of catfish in these cases is likely to be due to their polyculture with the bighead carp, a species that provides an excellent host for adult Lernaea.  相似文献   

10.
Abstract

The effects of intraperitoneal injection of squalene, an oil adjuvant, on nonspecific mortality of channel catfish Ictalurus punctatus and on their resistance to experimental Edwardsiella ictaluri infection were studied. Yearling channel catfish were assigned to control (N = 22) or squalene (N = 25) treatment groups, and mortality was monitored for 14 d following treatment. On day 14 both groups were infected with E. ictaluri, the causative agent of enteric septicemia of catfish, and mortality was monitored for an additional 11 d. Before infection, mortality did not differ between groups. After E. ictaluri infection, fish that received squalene were at a substantially higher risk of dying than control fish (relative risk after squalene treatment = 6.86). These results suggest that intraperitoneal administration of squalene, although not directly toxic, decreased resistance to E. ictaluri infection.  相似文献   

11.
Abstract

Administration of various immunostimulants to fish has resulted in enhanced immune responses. The purpose of this study was to determine if feeding Spirulina, a processed form of the blue-green alga Spirulina platensis, enhanced specific and nonspecific immunity and resistance against Edwardsiella ictaluri infection in channel catfish Ictalurus punctatus. Peritoneal phagocytes from fish fed Spirulina showed enhanced phagocytosis to zymosan and increased chemotaxis to E. ictaluri exoantigen. No significant difference in mortality due to E. ictaluri existed between fish fed Spirulina and fish fed a basal diet. No significant difference in antibody titer or in the percentage of fish positive for E. ictaluri antibody was found between the groups after immunization with formalin-killed E. ictaluri. Spirulina-fed fish had significantly higher antibody titers to key hole limpet hemocyanin (KLH) on day 22, and a greater percentage of these fish were positive for KLH antibody on days 15 and 36. Feeding Spirulina enhanced nonspecific cellular immune responses such as chemotaxis and phagocytosis but did not provide protection against infection with E. ictaluri. The use of Spirulina in feed resulted in enhanced antibody responses to KLH, a thymus-dependent antigen, but not to E. ictaluri, a thymus-independent antigen. These results indicate that stimulation of the nonspecific immune system of channel catfish does not provide enhanced protection from E. ictaluri.  相似文献   

12.
Abstract

A quantitative polymerase chain reaction (qPCR) assay was developed for the detection and quantification of Edwardsiella ictaluri in channel catfish Ictalurus punctatus pond water using modifications to a published E. ictaluri–specific qPCR assay and previously established protocols for the molecular detection of myxozoan parasites in catfish ponds. Genomic DNA equivalents indicative of the number of bacteria in a sample were determined and standard curves correlating to bacterial numbers were established. The assay was found to be highly repeatable and reproducible, with a linear dynamic range of five orders of magnitude. There was no interference of the assay from the presence of large quantities of nontarget DNA. Known quantities of bacteria were added to sample volumes of 40 or 500 mL of pond water collected from several different ponds. The minimum level of detection was approximately 100 cell equivalents (CE) in 40 (2.5 CE/mL) or 500 mL of pond water (0.2 CE/mL). Sample volumes of 40 mL yielded the most consistent results, which were not significantly different from those obtained from broth culture alone. Cell equivalents determined by qPCR in 40-mL pond water samples spiked with known quantities of bacteria were within one order of magnitude of the actual number of cells added. Repetitive element-based polymerase chain reaction analysis of archived isolates demonstrated the genetic homogeneity of E. ictaluri, and consistent amplification of these isolates by qPCR analysis demonstrated the stability of the PCR target. The assay described here provides a reliable method for the detection and quantification of E. ictaluri in pond water and will be an invaluable tool in epidemiological studies. Additionally, the assay provides a way to evaluate the effects that vaccination, antibiotic treatments, and restricted feeding practices have on E. ictaluri populations during an outbreak. Information obtained with these tools will aid in optimizing disease management practices designed to maximize productivity while minimizing losses.

Received October 20, 2010; accepted June 13, 2011  相似文献   

13.
Abstract

Edwardsiella ictaluri, the etiological agent of enteric septicemia of catfish (ESC), is the leading cause of bacterial disease in commercially raised channel catfish Ictalurus punctatus. Little work has been conducted at a genotypic level to determine potential virulence characteristics, but the production of chondroitin sulfatase is a suspected virulence factor. Using transpositional mutagenesis, we created stable E. ictaluri mutants that are deficient in chondroitinase activity. Channel catfish were challenged by injection with E. ictaluri transposon mutant MI15. None of the catfish challenged with the mutant died or showed signs of ESC. These fish were held for 2 weeks and then challenged by injection with the known virulent parent strain of E. ictaluri. The challenged naive control fish showed clinical signs of and a mortality rate consistent with ESC, whereas catfish that had been injected with MI15 prior to challenge with the parent strain were resistant to disease. This work represents a preliminary study to suggest a possible role of chondroitin sulfatase activity in the virulence of E. ictaluri.  相似文献   

14.
Abstract

The specificity of channel catfish Ictalurus punctatus serum antibody to Edwardsiella ictaluri was characterized by microtiter agglutination assay. There was no correlation between antibody titer to Aeromonas hydrophila and antibody titer to E. ictaluri in wild or feral channel catfish. Anti-E. ictaluri antibodies in naturally infected channel catfish were not removed by adsorption by nine other species of bacteria found in the channel catfish intestine and fish ponds. Channel catfish immunized with nine other species of bacteria did not develop substantial antibody titer to E. ictaluri. The antibody response of channel catfish to E. ictaluri is highly specific, and the microtiter agglutination test is a specific indicator of previous exposure to E. ictaluri  相似文献   

15.
Abstract

Edwardsiella ictaluri is the causative agent of enteric septicemia of catfish, which, during the past 5 years, has become the most serious infectious disease problem of cultured channel catfish Ictalurus punctatus. We compared 40 isolates of E. ictaluri from different geographical regions and host fish species. From the biophysical tests, a pH of 7.0–7.5 and a temperature of 25–30°C were optimum growth conditions for all E. ictaluri isolates. All isolates grew well in media with an NaCl concentration of 0.5% or less, but none of the E. ictaluri isolates grew in media with a concentration of 2.0 or 5.0% NaCl. Biochemically, 42 out of 46 tests gave the same reaction for all 40 isolates. The only observed differences were in gas production at 25°C, the o-nitrophenylbeta-D-galactopyranoside test, ornithine decarboxylation, and D-mannose utilization. Serologically, identical agglutinin titers (1:80) to E. ictaluri-specific rabbit antisera were observed, and all isolates cross-agglutinated with four different antisera. Based on the biophysical, biochemical, and serological reactions of 40 isolates of E. ictaluri, identification of distinct strains was not possible, although some were slightly different biotypically.  相似文献   

16.
Abstract

Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC), is one of the most important pathogens to infect channel catfish Ictalurus punctatus. Although the full pathogenesis of E. ictaluri is unclear, the olfactory organ is thought to be a site of entry. We have examined the effects of applying E. ictaluri directly into the olfactory capsule of channel catfish. Olfactory organs of 30 experimental fish were exposed to E. ictaluri for 1 h (1 mL, 1 × 106 colony-forming units/mL). Live fish were sampled at 1, 24, 48, and 72 h, and days 5 and 14 postinfection, and their olfactory organs were examined by light and electron microscopy. Damage, including loss of sensory cilia and microvilli from the olfactory mucosal surface, was observed at 1 h postinfection. Degeneration of olfactory receptors and supporting cells was evident by 24 h postinfection. The nonsensory region also showed signs of degeneration, such as columnar cells lacking cilia. Electron microscopic immunocytochemistry confirmed the presence of E. ictaluri on the mucosal surface and within the epithelium. Host leukocytes responded to bacteria by migrating through the olfactory epithelium into the interlamellar lumen and phagocytosing organisms, but phagocytosed E. ictaluri did not appear to be destroyed. Our results indicate that during initial stages of infection channel catfish olfactory epithelium is vulnerable, and E. ictaluri can enter the host through the olfactory organ. It is also possible that host phagocytic cells serve as a vehicle for the systemic dissemination of E. ictaluri  相似文献   

17.
Abstract

Seven full-sib families in each of three strains of channel catfish Ictalurus punctatus (mean weight, 10.7 g; SD, 2.6 g) and one family of blue catfish I. furcatus (mean, 10.9 g; SD, 0.4 g) were challenged by immersion with the bacterium Edwardsiella ictaluri, the causative agent of enteric septicemia, to evaluate variation in disease resistance. Blue catfish were resistant to infection and had only 0.7% mortality. Significant (P < 0.001) variation in channel catfish resistance was found among strains, families, and body weights. Red River strain channel catfish were the most resistant (14.9% mortality), followed by Mississippi-select fish (67.1%) and Mississippi-normal fish (72.3%). Mean family mortality of channel catfish ranged from 1.3% in a Red River family to 95.3% in a Mississippi-select family. Although weight had a significant effect on survival, the regression slope of survival on weight was ?0.10 (SE, 0.02). Sources of variation in channel catfish mortality adjusted for weight were 67.3% from strains, 29.7% from families, and 3.0% from replicate tanks. The mechanism for differential resistance presently is unknown. Results indicate considerable potential for reducing disease losses by using E. ictaluri-resistant catfish strains in aquaculture and for genetic improvement in resistance via selective breeding programs.  相似文献   

18.
Proliferative gill disease (PGD), caused by the myxozoan parasite Henneguya ictaluri, is the most prevalent parasitic infection affecting commercial channel catfish (Ictalurus punctatus) aquaculture. There are currently no effective chemotherapeutic or biological control measures for PGD, which often peaks during the spring and fall when water temperatures are between 16-25 degrees C. The current diagnostic techniques of gross examination of gill clip wet mounts and histopathology are subject to false-negatives during the early stages of infection, and the quantifiable nature of end-point polymerase chain reaction (PCR) is subjective. Consequently, a rapid and more sensitive quantitative real-time PCR assay was developed for the detection of H. ictaluri during the early stages of infection in channel catfish. A 23 base-pair TaqMan probe was designed based on previously published H. ictaluri PCR protocols. The sensitivity of the assay was the equivalent of a single H. ictaluri actinospore, and in a pond challenge study, quantitative real-time PCR proved to be more sensitive than gross examination, microscopic examination of gill clip wet mounts, and histopathologic examination of gill tissue sections. Future applications of this assay will focus on developing methodologies to be used in conjunction with current pond-monitoring protocols to evaluate potential treatments and better manage this significant seasonal disease.  相似文献   

19.
Enteric septicemia of catfish (ESC), caused by Edwardsiella ictaluri, is the most problematic bacterial disease affecting catfish aquaculture in the southeastern United States. Efforts to develop an effective ESC vaccine have had limited industrial success. In commercial settings, ESC vaccines are typically administered by immersion when fry are transferred from the hatchery to rearing ponds. While this approach is a practical method of mass delivery, this strategy administers vaccines to very young fish, which lack a fully developed immune system. To circumvent this limitation, an oral vaccination strategy was evaluated as a means of immunizing catfish at the fingerling stage of production, when fish possess a more complete immune arsenal. A virulent E. ictaluri isolate (S97-773) was attenuated by successive passage on media containing increasing concentrations of rifamycin. In laboratory trials, cultured vaccine was diluted and mixed with feed (100 mL diluted vaccine/454 g feed). This mixture was then fed to Channel Catfish Ictalurus punctatus fingerlings. Two separate dilutions of cultured vaccine (1:10 and 1:100) were used to create the vaccine–feed mixture, equating to estimated doses of 5 × 107 and 5 × 106 CFU/g of feed, respectively. After 30 d, catfish were exposed by immersion (1 × 106 CFU/mL) to the virulent parental strain of E. ictaluri. The target dose (1:100 dilution, ~5 × 106 CFU/g of feed) offered exceptional protection (relative percent survival = 82.6–100%). In addition, negligible deaths occurred in fish vaccinated at 10 times the target dose (1:10 dilution, ~5 × 107 CFU/g of feed). In pond trials, antibody production increased 18-fold in orally vaccinated fish. When compared with nonvaccinated controls, vaccination significantly improved survival, feed fed, feed conversion, biomass produced, and total harvest. This research demonstrates Channel Catfish can be successfully immunized in a commercial setting against E. ictaluri with a single dose of an orally delivered, live attenuated, E. ictaluri vaccine.

Received July 31, 2014; accepted March 2, 2015  相似文献   


20.
Two cases of Amoeba‐like infections in cultured warmwater marine fish are described, an unusual systemic infection in pompano Trachinotus falcatus L. from Singapore and a gill infection in Mediterranean sea bream Sparus aurata L. All pompano showed marked systemic infection of Amoeba‐like parasites in gills, kidney, intestine, pancreas and spleen. The most severe lesions were in the gills and renal tissue with minimal tissue reaction in other organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号