首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

Pathogenicity assays showed that 33 of 42 potentially pathogenic strains of bacteria tested were virulent to rainbow trout Oncorhynchus mykiss. Regardless of their degree of virulence to fish, strains of motile Aeromonas, A. salmonicida, and Vibrio anguillarum were moderately hydrophobic. Only 46 and 25°10 of the strains were able to hemagglutinate human and trout erythrocytes, respectively. Hydrophobicity and hemagglutination were practically absent in isolates of Yersinia ruckeri. A notable number of the strains positively adhered to salmonid (51%) and nonsalmonid (55%) fish cells. Whereas the treatment of the bacteria with proteinase K or trypsin did not decrease the hydrophobicity of the isolates, within motile Aeromonas and A. salmonicida species, strains with both protease-sensitive and -resistant hemagglutinating and adhesive abilities occurred. The effects of heat and sugars on hemagglutinating and hydrophobic properties varied within all bacterial groups. Although treatment of strains with D-mannose or L-fucose had distinct effects on adhesiveness according to the bacterial species and the cell system used, none of the heat-treated (80°C for 15 min) bacteria lost their capacity to adhere to cultured fish cells. The results showed that there was no direct relationship between any of the cell surface properties analyzed and the degree of virulence of the strains.  相似文献   

2.
Abstract

Four salmonid cell lines, CoE 45, CoE 115, CoE 345, and RBTE 45, were established from embryonic tissues of coho salmon Oncorhynchus kisutch and rainbow trout O. mykiss. In vitro challenges of the new lines were conducted with four isolates of infectious hematopoietic necrosis virus (IHNV). Two of the IHNV isolates used for the challenges were derived from infected tissues of rainbow trout, one was derived from chinook salmon O. tshawytscha, and the other isolate was derived from coho salmon. To standardize the virus challenges of the new cell lines, several established piscine cell lines (EPC, CHSE 214, CSE-119, RTH-149, RTG, and RTS) were challenged in the same way as the new lines. Each of the lines was challenged with virus at a single low multiplicity of infection (0.01 plaque-forming unit per cell). Virus yields were quantitated by plaque assay on epithelioma papulosum cyprini (EPC) cells on day 3. Results of the challenge experiments revealed different levels of production of virus for each isolate on the various cell lines. Overall, the new cell line derived from rainbow trout, RBTE 45, was quite susceptible to all viruses tested. The three cell lines newly derived from coho salmon embryo were not as resistant to the replication of IHNV as was the established coho salmon cell line, CSE-119. An established cell line, EPC, derived from an epithelial tumor of common carp Cyprinus carpio, remained the most susceptible to all four IHNV isolates tested.  相似文献   

3.
Abstract

Adult rainbow trout Oncorhynchus mykiss were immunized with formalin-inactivated, concentrated infectious pancreatic necrosis virus (IPNV). Although the immune response was variable among fish inoculated with a given virus type, sera were obtained that contained high titers of antibodies against known representatives of each of the three major serotypes and several unclassified field isolates of IPNV. Preparations of semipurified macroglobulins from the rainbow trout were subsequently used for comparative cross-neutralization testing of viruses. Cross-reactions were generally low between serotypes; however, diversity and heterogeneity existed among viral isolates from North American hatcheries (e.g., within serotype 1). For example, the Jasper subtype was clearly serologically distinguishable from other western Canadian isolates and from typical eastern Canadian isolates, which were similar to U.S. isolate VR 299. Specific salmonid immunoglobulin is suggested as a possible supplemental reagent, together with mammalian polyclonal and monoclonal antibody, for determining the epidemiology of IPNV in North America.  相似文献   

4.
Abstract

Cell lines from white sturgeon Acipenser transmontanus were derived from peripheral blood cells, heart, and spleen. Incubated with infectious hematopoietic necrosis virus (IHNV) for 8 d at l5°C, these cell lines produced 0.7–53.2 plaque-forming units (PFU)/cell. Waterborne exposure of larval white sturgeons (60 d posthatch) to 106 PFU/mL of IHNV resulted in 10% mortality 5–6 d postinfection, with virus concentrations consistently greater than 105 PFU/g. A replicate group of larval white sturgeons that were sampled at different times post-IHNV exposure had no detectable virus at 24 h, but 72% of the fish had IHNV concentrations of 102-106 PFU/g when they were examined 2–9 d postinfection. Juvenile white sturgeons (mean weight, 35 g) immersed in or injected with IHNV exhibited no mortality, and virus was only detected immediately postexposure in just 25% of the fish tested. Juvenile white sturgeons fed either virus-free rainbow trout Oncorhynchus mykiss or dead IHNV-infected rainbow trout had no viable virus in their feces. Juvenile white sturgeons fed or exposed to IHNV failed to transmit the virus to cohabiting rainbow trout fry. These results suggest that IHNV can replicate in larval white sturgeons but presumably not in juveniles or adults. Virus neutralization activity was detected in serum from adult white sturgeons (4–6 years old) cultured with rainbow trout exposed to IHNV but not in white sturgeons kept in a pathogen-free environment and fed a manufactured diet. White sturgeon serum with IHNV-neutralizing activity was used to passively immunize rainbow trout, and it provided significant (P < 0.01) protection against IHNV challenge.  相似文献   

5.
Abstract

Over an approximately 2-year period, 20,974 fish (trout and other salmonid species) from 230 separate waters (creeks, rivers, lakes, reservoirs, ponds, hatcheries, and irrigation ditches) within 21 of the 22 major drainages in Montana were examined for Myxobolus cerebralis. Nine of the major river drainages have waters containing infected fish: Beaverhead, Big Hole, Blackfoot, Clark Fork above the Bitterroot River, Flathead below the south fork of the Flathead River, Jefferson, Madison, Missouri above the Marias River, and Yellowstone above the Bighorn River. The Beaverhead, Clark Fork above the Bitterroot River, Jefferson, Madison, and Missouri above the Marias River have the greatest number of waters containing fish infected with M. cerebralis. Comparisons of infection levels (number of pooled samples that contain fish infected with M. cerebralis) between species among these drainages show significantly lower levels of infection in brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss in the Missouri above the Marias River drainage and significantly higher levels of infection of rainbow trout in the Jefferson. Comparisons of differences in infection levels between drainages among species show that, in the Beaverhead, Clark Fork above the Bitterroot River, and Madison, infection levels in brown trout are significantly higher than in rainbow trout. This is partially attributed to losses of juvenile rainbow trout because of M. cerebralis infection, leading to biased samples. Histopathologic studies showed lesions were consistently less severe in brown trout than other species and occurred in a different location (gill arches versus ventral calvarium). In six of the nine affected drainages (Beaverhead, Blackfoot, Clark Fork above the Bitterroot River, Flathead below the South Fork, Jefferson, and Madison), infected fish were found at or near the time that intensive sampling was initiated in the spring of 1995. In the three remaining affected drainages (Missouri above the Marias River, Yellowstone above the Bighorn River, and the Big Hole), infected fish were not identified until at least 15 months after the initiation of widespread testing. This indicates that in the first six drainages listed above, the infection was well established prior to 1995 but spread into the last three drainages in the ensuing months. Methods of transmission and the sources of infection are unknown, although the absence of infected fish in state, private, and federal hatcheries in Montana indicates hatchery fish from these sources are not likely to be responsible.  相似文献   

6.
Abstract

Three continuous cell lines were established: JSKG from gonads of Japanese striped knife jaw Oplegnathus fasciatus, KRE from embryos of a hybrid of kelp Epinephelus moara and red spotted grouper E. akaara, and PAS from the skin of greater amberjack (also called purplish amberjack) Seriola dumerili; these cell lines were passed 60, 89, 120 times, respectively. Although initially cultured in Leibovitz's L-15 medium, two of the cell lines, JSKG and PAS, exhibited optimal growth response in Eagle's minimum essential medium buffered with a combination of tris and sodium bicarbonate. These cell lines were initiated at a higher NaCl concentration of 0.206 M but gradually adapted to the low NaCl concentration of 0.116 M after several subcultures. Optimum growth temperature was 25°C for JSKG and PAS cells, and 30°C for KRE cells. The modal chromosome number is 83 for the JSKG cell line, 92 for the KRE cell line, and 96 for the PAS cell line. Results for efficiency of plating indicate that all three cell lines are composed of transformed cells. Cell lines JSKG and PAS are susceptible to nine fish viruses, including channel catfish virus (CCV) and chum salmon virus (CSV). The KRE cell line is susceptible to CCV and fish rhabdoviruses of the vesiculovirus group. None of the cells showed cytopathic effect for Oncorhynchus masou virus (OMV) or Herpesvirus salmonis. Yields of infectious pancreatic necrosis virus (IPNV), infectious hematopoietic necrosis virus (IHNV), hirame rhabdovirus (HRV), and CSV were relatively low in these cell lines.  相似文献   

7.
Poor quality eggs produced by the fully homozygous doubled haploids (DHs) may impair generation of clonal lines in fish species. In the present research, gynogenetic development of rainbow trout (Oncorhynchus mykiss) was induced in eggs originated from the DH females. Eggs were activated with the UV‐irradiated grayling (Thymallus thymallus) spermatozoa and subjected to the high hydrostatic pressure (HHP) shock to provide diploid clonal individuals. Only two of four DH females produced eggs that were successfully activated by the irradiated spermatozoa and subsequently developed into the gynogenetic embryos. Survival rates of rainbow trout from the clonal lines equalled 21.5% and 19.8% during embryogenesis and decreased after hatching to 18.6% and 14.9%, respectively. Some of the dead rainbow trout clones collected between hatching and swim‐up stage were emaciated and exhibited spinal deformities including scoliosis. Provided results confirmed limited developmental competences of eggs produced by rainbow trout DH females. Clonal rainbow trout developing in such eggs exhibited reduced survival and increased frequency of the body abnormalities.  相似文献   

8.
Abstract

Laboratory exposures to the infectious stages (triactinomyxons) of Myxobolus cerebralis demonstrated a range of susceptibility to whirling disease among four species of inland salmonids. Replicate groups of each species were exposed to two concentrations of triactinomyxons, a low dose (100–200 per fish) and a high dose (1,000–2,000 per fish). Exposed fish were evaluated for clinical signs, for severity of microscopic lesions at 35 d, 2 and 5 months, and for spore concentrations in the head cartilage at 5 months. A standard strain of rainbow trout Oncorhynchus mykiss matched for age served as a susceptible species control. Rainbow trout, westslope cutthroat trout O. clarki lewisi, Yellowstone cutthroat trout O. clarki bouvieri, and bull trout Salvelinus confluentus were susceptible to M. cerebralis infections. Clinical signs, including radical swimming (“whirling”) and black tails, were observed at 7 weeks postexposure among rainbow and cutthroat trout challenged at 3 weeks of age. Clinical signs were rare among bull trout exposed at an age of 4 weeks and absent among rainbow and cutthroat trout exposed at 3 months posthatch. Most rainbow, cutthroat, and bull trout were found to be infected when examined at 5 months postexposure. The most severe microscopic lesions among infected fish at 5 months postexposure were found among rainbow trout. Cutthroat trout had less severe lesions, bull trout had mild infections, and no evidence of infection was found among Arctic grayling Thymallus arcticus. Mean spore concentrations among infected fish correlated with the severity of microscopic lesion scores. Rainbow trout had mean concentrations of spores in head cartilage reaching 106, whereas more resistant species such as bull trout had 104 spores; no spores were found among Arctic grayling at 5 months postexposure.  相似文献   

9.
Abstract

Two sizes of fingerling Snake River cutthroat trout Oncorhynchus clarkii behnkei and Colorado River rainbow trout O. mykiss were raised at hatcheries testing negative for Myxobolus cerebralis and stocked into the Dolores and Cache la Poudre rivers from 1999 to 2001. Populations were resampled over a 2-year period to determine which species and size combination had the highest growth and survival rates. Fish were tested for M. cerebralis via polymerase chain reaction and pepsin?trypsin digest analyses. Growth and survival rates between the species and size groups were not significantly different in either river. In the Dolores River, annual survival for both species and sizes of fish combined ranged from 0.063 to 0.12. In the Cache la Poudre River, survival for both sizes of rainbow trout was 0.004; survival for cutthroat trout ranged from 0.182 to 0.53. Larger fish had higher growth rates than smaller fish, and cutthroat trout had higher rates than similar sizes of rainbow trout. In both rivers, a higher percentage of the rainbow trout sample was infected than in the cutthroat trout sample. Rainbow trout also had a higher mean number of spores per head than cutthroat trout, and small rainbow trout had higher spore counts than large rainbow trout. Survival rates for cutthroat trout in the Cache la Poudre River were the highest of any of the groups, suggesting a difference that is biologically significant. Raising fingerlings to sizes greater than 100 mm can improve poststocking survival. If rainbow trout are stocked into contaminated waters, raising fingerlings to a larger size does not appear to improve growth or survival rates. Stocking rainbow trout in the spring could maximize growth rates but will expose fish to greater triactinomyxon densities, resulting in higher intensities of infection.  相似文献   

10.
Abstract

Juvenile rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta acclimated to freshwater or salinities of 9.0‰ or less were exposed to Yersinia ruckeri, the bacterial pathogen that causes enteric redmouth disease (ERM). Both species of fish were kept in the same recirculating systems after bacterial exposure. Rainbow trout mortality was significantly (P < 0.05) different in each salinity: 96.5% in freshwater, 89.5% in water of 1.1‰ salinity, 81.3% in 3.0‰ salinity, and 75.0% in 9.0‰ salinity (model SE = 1.0). All deaths occurred between 3 and 12 d after exposure to Y. ruckeri. Only 2.3% of brown trout in all salinities died, and differences among treatments were not significant. For both fish species, Y. ruckeri was isolated from liver, spleen, and trunk kidney of fish dying during this experiment, and lesions of rainbow trout were consistent with ERM. Yersinia ruckeri was not isolated from brown trout surviving for 21 d after bacterial exposure but was isolated from 3 of 24 surviving rainbow trout; a polymerase chain reaction assay detected the DNA of Y. ruckeri in 3 additional rainbow trout survivors. Neither the lesions of fish with ERM nor the percentage of surviving fish subclinically infected with Y. ruckeri was affected by salinity. Bacterial growth in vitro was not affected by low (≤9.0‰) salinity; however, bacterial adhesion to polystyrene was significantly reduced as salinity increased. Although mortality caused by Y. ruckeri was significantly lower for rainbow trout in water with slightly increased salinity, none of the salinities tested was effective in preventing serious losses caused by this pathogen in recirculating systems.  相似文献   

11.
Abstract

Infectious hematopoietic necrosis virus (IHNV) causes important losses of chinook salmon Oncorhynchus tshawytscha, sockeye salmon Oncorhynchus nerka, and rainbow trout and steelhead Oncorhynchus mykiss on the west coast of North America. Although coho salmon Oncorhynchus kisutch are considered resistant to IHNV infection, the virus was detected in numerous adult coho salmon returning to Trinity River Hatchery, California, in 1985 and 1986. The virus was isolated from internal organs and ovarian fluids of these fish. Antigenic and structural polypeptides of the viruses were identical in adult coho and chinook salmon collected at the same location. Chinook salmon and rainbow trout alevins exhibited high degrees of susceptibility to IHNV obtained from adult coho and chinook salmon. Coho salmon alevins were resistant to both virus isolants.  相似文献   

12.
Abstract

During 1996 and 1997, 112 rainbow trout Oncorhynchus mykiss and 204 brown trout Salmo trutta, all young of the year, were sampled from a 40-km study area of the upper Colorado River and were examined for gill parasites. Ambiphrya, Chilodonella, Ichthyobodo, Apiosoma, Trichodina, Trichodinella, Tripartiella, Epistylis, and an unidentified cochliopodid amoeba were the representative protozoan genera observed on fish examined. Significant month–year–species interactions (P = 0.0295) were revealed, reflecting the changes in infestation prevalence among months, years, and species of salmonid. Greater ectoparasite richness was observed in downstream sections of the study area, most notably near Hot Sulphur Springs, Colorado. Peaks of infestation intensity and ectoparasite richness occurred in August and September of both years, presumably because of high mean water temperatures and low flows during that time.  相似文献   

13.
The monogenean Gyrodactylus salaris Malmberg, 1957 is considered one of the most important parasites of wild salmonids in the European Community due to the heavy ecological and economical damage it has inflicted on Atlantic salmon (Salmo salar) parr populations. Rainbow trout (Oncorhynchus mykiss) is susceptible to G. salaris and can act as a suitable carrier host and, consequently, its trade in EU territory is restricted in relation to the status of “recognized free” zones. Despite the economic importance of rainbow trout farming in Italy, information on the Italian gyrodactylid fauna is lacking and prior to this study, G. salaris had not been officially reported. During a routine health examination of farmed rainbow trout stock throughout Central and Northern Italy in 2004–2005, five fish farms were found to be infected with G. salaris alongside three other gyrodactylids. Morphological and molecular characterisation confirmed the presence of G. salaris, Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999 and Gyrodactylus derjavinoides Malmberg, Collins, Cunningham et Jalali, 2007, while Gyrodactylus truttae Gläser, 1974 was identified by morphological analysis only. The findings from this study extend the distribution of G. salaris within Europe and highlight the importance of the rainbow trout trade in its dissemination.  相似文献   

14.
Ionizing radiation (IR) is applied to inactivate nuclear genome in the salmonid eggs to induce androgenetic development. However, it has been considered that doses of IR used to damage maternal chromosomes may also affect morphology of the eggs and decrease their developmental potential. Thus, the main goal of the present research was to assess alterations in the rainbow trout (Oncorhynchus mykiss) eggs caused by the high dose of IR administered during androgenesis. In the present research, rainbow trout eggs were irradiated with 350 Gy of X‐rays, inseminated and exposed to the high hydrostatic pressure (HHP) shock to develop as androgenetic doubled haploids (DHs). The distribution of lipid droplets in the irradiated and non‐irradiated rainbow trout eggs, survival rates and morphology of larvae from androgenetic and control groups were compared. It has been observed that non‐irradiated and irradiated eggs exhibited altered distribution of lipid droplets. Most of the eggs before IR treatment displayed rather equal distribution of the oil droplets. In turn, majority of eggs studied after irradiation had coalesced lipid droplets, a pattern found in eggs with reduced quality. Incidences of abnormally developed larvae were more frequently observed among fish that hatched from the irradiated eggs. Observed changes suggest X‐rays applied for the genetic inactivation of rainbow trout eggs may lead to decrease of their developmental competence.  相似文献   

15.
Differences in susceptibility to the myxozoan parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD), between four strains of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) were evaluated. Fish were exposed to water enzootic for the parasite in the field for 5 days and were subsequently transferred to the laboratory. Relative parasite load was determined after 2, 3 and 4 weeks post-exposure (wpe) by quantitative real-time PCR (qPCR) of kidney samples and number of parasite stages was determined in immunohistochemical stained sections of kidney, liver and spleen tissues. According to qPCR results, the highest amount of parasite DNA per equal amount of host tissue at all time points was measured in brown trout. Two of the rainbow trout strains showed lower relative parasite load than all other groups at the beginning of the experiment, but the parasite multiplied faster in these strains resulting in an equal level of relative parasite load for all rainbow trout strains at 4 wpe. A weak negative correlation of fish size and parasite load was detected. Only in samples of a few fish, single stages of T. bryosalmonae were found in sections stained by immunohistochemistry impeding quantitative evaluation of parasite numbers by this method. The results indicate a differential resistance to T. bryosalmonae between the rainbow trout strains investigated and between rainbow trout and brown trout.  相似文献   

16.
The bacterium Flavobacterium psychrophilum is a serious problem for salmonid farming worldwide. This study investigates by multilocus sequence typing (MLST) the population structure of this pathogen in Japan where it is also a major concern for ayu, a popular game fish related to salmoniforms. A total of 34 isolates collected across the country and 80 isolates sampled in a single model river by electrofishing were genotyped. The data accounting for 15 fish species allowed identifying 35 distinct sequence types (ST) in Japan. These ST are distinct from those reported elsewhere, except for some ST found in rainbow trout and coho salmon, two fish that have been the subject of intensive international trade. The pattern of polymorphism is, however, strikingly similar across geographical scales (model river, Japan, world) in terms of the fraction of molecular variance linked to the fish host (~50%) and of pairwise nucleotide diversity between ST (~5 Kbp-1). These observations go against the hypothesis of a recent introduction of F. psychrophilum in Japan. Two findings were made that are important for disease control: 1) at least two independent F. psychrophilum lineages infect ayu and 2) co-infections of the same individual fish by different strains occur.  相似文献   

17.
Abstract

Infectious salmon anemia (ISA) is a viral disease of Atlantic salmon Salmo salar that have been exposed to seawater in fish farms or hatcheries. This disease was previously believed to be exclusively one of salmon. However, it has been shown that anadromous brown trout Salmo trutta may carry the ISA virus (ISAV). Propagation of the ISAV in brown trout without the trout's showing any gross clinical signs of disease could be a result of a longstanding host-pathogen relationship between the virus and brown trout. A brown trout population isolated from the sea during the last 5,000 years and expected to be naive to the virus was challenged. These fish did not develop any gross signs of disease, but a few ISAVs were present as late as 46 d postchallenge. It was also shown that the ISA virus was present in brown trout as late as 7 months after challenge.  相似文献   

18.
Abstract

A nonradioactive in situ hybridization (ISH) protocol was developed to detect Myxobolus cerebralis, the causative organism of whirling disease, in its primary host, rainbow trout Oncorhynchus mykiss, and in its alternate oligochaete host, Tubifex tubifex. A cocktail of three oligonucleotide primers (derived from the small subunit ribosomal DNA sequence) directed at target sequences of the parasite DNA was tailed at the 3′ end with digoxigenin-labeled deoxyuridine triphosphate (DIG-dUTP). Labeled probes were hybridized to parasite DNA present in deparaffinized tissue sections from infected trout and oligochaetes. The bound probes were visualized after modifications of existing ISH protocols. By using the new ISH procedure, the parasite was found in target tissues of subclinically and clinically infected fish and tubificid oligochaetes after exposures of these hosts to triactinomyxons and mature spores, respectively. The probe did not bind with salmonid tissues infected with two other myxosporean parasites, Ceratomyxa shasta or the PKX organism, or to a Myxobolus sp. infecting the cartilage of plain sculpin Myoxocephalus jaok. These initial results indicate that ISH is an effective and specific test for detecting Myxobolus cerebralis in its fish and oligochaete hosts.  相似文献   

19.
Abstract

A series of dams on the Deschutes River, Oregon, act as migration barriers that segregate the river system into upper and lower basins. Proposed fish passage between basins would reunite populations of native potamodromous fish and allow anadromous fish of Deschutes River origin access to the upper basin. We assessed the potential redistribution of host-species-specific genotypes (O, I, II, III) of the myxozoan parasite Ceratomyxa shasta that could occur with fish passage and examined the influence of nonnative fish on genotype composition. To determine the present distribution of the parasite genotypes, we exposed eight salmonid species—three native and five stocked for sport fishing—in present and predicted anadromous salmonid habitats. We monitored fish for infection by C. shasta and sequenced a section of the parasite ribosomal DNA gene from fish and water samples to determine parasite genotype. Genotype O was present in both upper and lower basins and detected only in steelhead Oncorhynchus mykiss. Genotype I was spatially limited to the lower basin, isolated predominately from Chinook salmon O. tshawytscha, and lethal for this species only. Genotype II was detected in both basins and in multiple species, but only as a minor component of the infection. Genotype III was also present in both basins, had a wide host range, and caused mortality in native steelhead and multiple nonnative species. Atlantic salmon Salmo salar and kokanee O. nerka were the least susceptible to infection by any genotype of C. shasta. Our findings confirmed the host-specific patterns of C. shasta infections and indicated that passage of Chinook salmon would probably spread genotype I into the upper Deschutes River basin, but with little risk to native salmonid populations.

Received April 20, 2012; accepted July 19, 2012  相似文献   

20.
Abstract

Fry of rainbow trout Oncorhynchus mykiss were exposed to serotype VR-299 of infectious pancreatic necrosis virus (IPNV) by using a standardized immersion challenge. In concurrent experiments, fish were monitored for 11 d for excretion of IPNV or monitored for 9 d for excretion and transmission of IPNV to susceptible rainbow trout fry. Immersion-challenged fish began excreting virus within 2 d after challenge. The rate of IPNV excretion per fish increased steadily from about day 4 to day 8 and then decreased. Virus concentrations in tissues of immersion-challenged fish increased exponentially. Susceptible fish became infected with IPNV within 4 d after being introduced to immersion-challenged fish (e.g., 2 d after the challenged fish began excreting virus). By 9 d, 84% of the susceptible fish were infected with IPNV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号