首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract

Edwardsiella ictaluri is the causative agent of enteric septicemia of catfish, which, during the past 5 years, has become the most serious infectious disease problem of cultured channel catfish Ictalurus punctatus. We compared 40 isolates of E. ictaluri from different geographical regions and host fish species. From the biophysical tests, a pH of 7.0–7.5 and a temperature of 25–30°C were optimum growth conditions for all E. ictaluri isolates. All isolates grew well in media with an NaCl concentration of 0.5% or less, but none of the E. ictaluri isolates grew in media with a concentration of 2.0 or 5.0% NaCl. Biochemically, 42 out of 46 tests gave the same reaction for all 40 isolates. The only observed differences were in gas production at 25°C, the o-nitrophenylbeta-D-galactopyranoside test, ornithine decarboxylation, and D-mannose utilization. Serologically, identical agglutinin titers (1:80) to E. ictaluri-specific rabbit antisera were observed, and all isolates cross-agglutinated with four different antisera. Based on the biophysical, biochemical, and serological reactions of 40 isolates of E. ictaluri, identification of distinct strains was not possible, although some were slightly different biotypically.  相似文献   

2.
Abstract

Cell lines from white sturgeon Acipenser transmontanus were derived from peripheral blood cells, heart, and spleen. Incubated with infectious hematopoietic necrosis virus (IHNV) for 8 d at l5°C, these cell lines produced 0.7–53.2 plaque-forming units (PFU)/cell. Waterborne exposure of larval white sturgeons (60 d posthatch) to 106 PFU/mL of IHNV resulted in 10% mortality 5–6 d postinfection, with virus concentrations consistently greater than 105 PFU/g. A replicate group of larval white sturgeons that were sampled at different times post-IHNV exposure had no detectable virus at 24 h, but 72% of the fish had IHNV concentrations of 102-106 PFU/g when they were examined 2–9 d postinfection. Juvenile white sturgeons (mean weight, 35 g) immersed in or injected with IHNV exhibited no mortality, and virus was only detected immediately postexposure in just 25% of the fish tested. Juvenile white sturgeons fed either virus-free rainbow trout Oncorhynchus mykiss or dead IHNV-infected rainbow trout had no viable virus in their feces. Juvenile white sturgeons fed or exposed to IHNV failed to transmit the virus to cohabiting rainbow trout fry. These results suggest that IHNV can replicate in larval white sturgeons but presumably not in juveniles or adults. Virus neutralization activity was detected in serum from adult white sturgeons (4–6 years old) cultured with rainbow trout exposed to IHNV but not in white sturgeons kept in a pathogen-free environment and fed a manufactured diet. White sturgeon serum with IHNV-neutralizing activity was used to passively immunize rainbow trout, and it provided significant (P < 0.01) protection against IHNV challenge.  相似文献   

3.
Abstract

Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC), is one of the most important pathogens to infect channel catfish Ictalurus punctatus. Although the full pathogenesis of E. ictaluri is unclear, the olfactory organ is thought to be a site of entry. We have examined the effects of applying E. ictaluri directly into the olfactory capsule of channel catfish. Olfactory organs of 30 experimental fish were exposed to E. ictaluri for 1 h (1 mL, 1 × 106 colony-forming units/mL). Live fish were sampled at 1, 24, 48, and 72 h, and days 5 and 14 postinfection, and their olfactory organs were examined by light and electron microscopy. Damage, including loss of sensory cilia and microvilli from the olfactory mucosal surface, was observed at 1 h postinfection. Degeneration of olfactory receptors and supporting cells was evident by 24 h postinfection. The nonsensory region also showed signs of degeneration, such as columnar cells lacking cilia. Electron microscopic immunocytochemistry confirmed the presence of E. ictaluri on the mucosal surface and within the epithelium. Host leukocytes responded to bacteria by migrating through the olfactory epithelium into the interlamellar lumen and phagocytosing organisms, but phagocytosed E. ictaluri did not appear to be destroyed. Our results indicate that during initial stages of infection channel catfish olfactory epithelium is vulnerable, and E. ictaluri can enter the host through the olfactory organ. It is also possible that host phagocytic cells serve as a vehicle for the systemic dissemination of E. ictaluri  相似文献   

4.
Abstract

The digenean Bolbophorus damnificus infects commercial channel catfish Ictalurus punctatus, causing mortality, lower feed consumption, and reduced growth in surviving fish. The purpose of this study was to determine the length of time for which B. damnificus prodiplostomulum metacercariae (juvenile trematode stage that infects fish) would remain viable (parasite appearing to be intact or exhibiting movement) in channel catfish. Fish (n = 210) were infected with molecularly confirmed B. damnificus cercariae harvested from naturally infected marsh rams-horn snails Planorbella trivolvis. During the first sampling (at 20 d postinfection), 8.3 ± 3.6 metacercariae/fish (mean ± SD) were found in the host muscle and visceral organs. The channel catfish were then acclimated to a water temperature of either 18°C or 28°C. After 11 months, 6.8 ± 3.5 and 5.9 ± 3.0 metacercariae/fish were found in groups held at 18°C and 28°C, respectively. The mean number of parasites per fish did not significantly differ between fish held at the two temperatures and did not significantly decline over time at either temperature. Fish examined from 13 to 30 months postinfection all contained viable metacercariae that were morphologically and molecularly identified as B. damnificus. At 18 months, 12 metacercariae (of which 11 were intact and 10 displayed movement) were found in the one fish sampled; at 30 months, the last fish sampled contained three intact metacercariae (one displayed slight movement). Our results indicate that B. damnificus metacercariae can remain viable in channel catfish for at least an 18–30-month production cycle during which they have the potential to affect fish growth; in addition, infected fish may serve as intermediate hosts for these metacercariae for at least 2.5 years postinfection.

Received July 14, 2010; accepted March 6, 2011  相似文献   

5.
Abstract

In nitrite-exposure experiments, percent methemoglobin, plasma nitrite concentration, and plasma chloride ion concentration were compared between channel catfish Ictalurus punctatus and blue catfish I. furcatus exposed to sublethal levels of nitrite for 48 h at 25°C. In nitrite-recovery experiments, fish exposed to elevated environmental nitrite for 12 h were transferred to freshwater, and blood characteristics were monitored during the 24-h recovery period. Blue catfish appeared to be more resistant to environmental nitrite than channel catfish. Methemoglobin levels (percent of hemoglobin in methemoglobin form) were significantly lower in blue catfish than in channel catfish. Maximum plasma nitrite concentrations were 137 mg NO2-/L plasma in blue catfish and 164 mg NO2-/L plasma in channel catfish. Percent methemoglobin and plasma nitrite concentration were closely correlated. Plasma chloride decreased initially with exposure to nitrite but quickly returned to control levels. Blue catfish exposed to nitrite at 10°C required 1 week to recover when placed in nitrite-free water. The methemoglobin reductase enzyme apparently functioned at a slow rate in fish acclimated to cold temperatures.  相似文献   

6.
Abstract

We fed juvenile channel catfish Ictalurus punctatus purified diets containing different lipid sources for 90–110 d to examine the influence of dietary lipids on intracellular killing of Edwardsiella ictaluri by pronephros macrophages. The diets contained either menhaden oil, soybean oil, beef tallow, or a combination ofall three lipids. We performed the study with nonimmune and immunized fish acclimated to optimal (28°C) and suboptimal (19°C) temperatures. In both temperature trials, bactericidal activity was positively correlated with the level of n-3 fatty acids in the diet (particularly long-chain highly unsaturated fatty acids). Vaccination resulted in substantially enhanced bactericidal activity, except at suboptimal temperature in fish fed the diet containing beef tallow (primarily saturated and monoenoic fatty acids). Overall results were similar at optimal and suboptimal temperatures. This study demonstrates the potential for nutritional manipulation of disease resistance in fish and illustrates the need for standardized diets in fish health research.  相似文献   

7.
Abstract

One hundred seven Aeromonas spp., 26 Edwardsiella ictaluri, 6 E. tarda, 12 Plesiomonas shigelloides, and 6 Pseudomonas spp. (131 piscine isolates and 26 reference isolates) were studied with 36 biochemical tests from the Minitek system, 20 tests from the API 20E system, and corresponding standard tube tests. Isolates were incubated at 25°C. Arginine dihydrolase, ornithine decarboxylase, mannose, and citrate showed less than 95% agreement between the Minitek system and the tube tests. Arginine dihydrolase, lysine decarboxylase, nitrite reductase, Voges-Proskauer, and citrate showed less than 95% agreement between the API 20E system and the tube tests. The 26 reference isolates were examined with the three systems and were incubated at both 25 and 37°C. There were no major differences between tests run at 25 and 37°C except with nine Aeromonas spp. that did not grow well at 37°C. Both the Minitek and API 20E systems will reproduce standard biochemical tube test results with at least 95% accuracy when used to test warmwater fish pathogens incubated at 25°C. However, the numerical identification databases for both the Minitek and API 20E systems were not usable for identifying fish pathogens.  相似文献   

8.
Abstract

Zebrafish (also known as zebra danio) Danio rerio were injected intramuscularly with Edwardsiella ictaluri at doses of 6 × 103, 6 × 104, or 6 × 105 colony-forming units per gram (CFU/g) or sterile phosphate-buffered saline (sham) or were not injected. Mortality occurred from 2 to 5 d postinjection (dpi) at rates of 0, 76.6, and 81.3% for the low, medium, and high doses, respectively, and E. ictaluri was isolated from dead fish. Survivors were sampled at 10 dpi and E. ictaluri was not isolated. Sham-injected and noninjected controls did not suffer mortality. Histopathology trials were performed in which zebrafish were injected with 1 × 104 CFU/g or sham-injected and sampled at 12, 24, 48, 72, and 96 h postinjection for histological interpretation. Collectively, these zebrafish demonstrated increasing severity of splenic, hepatic, cardiac, and renal interstitial necrosis over time. To evaluate the progression of chronic infection, zebrafish were injected with 1 × 102 CFU/g and held for 1 month postinjection. Beginning at 12 dpi and continuing for an additional 2 weeks, zebrafish demonstrated abnormal spiraling and circling swimming behaviors. Histopathology demonstrated necrotizing encephalitis. In immersion trials, zebrafish were exposed to low, medium, and high doses (averaging 1.16 × 105, 1.16 × 106, and 1.16 × 107 CFU/mL of tank water) of E. ictaluri for 2 h. Mortality occurred from 5 to 9 d postexposure at rates of 0, 3.3, and 13.3% for the low, medium, and high doses, respectively; E. ictaluri was isolated from dead fish. Channel catfish Ictalurus punctatus exposed to the medium doses suffered 100% mortality, and E. ictaluri was isolated from these fish. This study demonstrates the potential use of zebrafish as a model for E. ictaluri pathogenesis.  相似文献   

9.
10.
Abstract

Enteric septicemia of catfish (ESC) was transmitted horizontally from channel catfish Icialurus punctatus that had died from Edwardsiella ictaluri infection to contact channel catfish during 2 d of habitation in a tank. The contact channel catfish became positive for E. ictaluri antibody, became infected with this bacterium, and had signs of ESC and died within 12 d postexposure. Edwardsiella ictaluri was recovered from 24 of the 30 contact channel catfish that died from ESC, as well as from 9 of the 25 tested contact survivors. The cannibalizing of E. ictaluri-infected fish, or the shedding of E. ictaluri from dead fish, or both, were shown to be mechanisms of horizontal transmission of ESC among channel catfish.  相似文献   

11.
Abstract

Specific-pathogen-free channel catfish Ictalurus punctatus were exposed to sediment and mud from a pond containing channel catfish with proliferative gill disease. In one experiment, fish were to exposed to mud and sediment for 2 months in water maintained at 19°C. Fish were necropsied weekly, and certain tissues were examined histologically and ultrastructurally. Four trials were conducted with sediment samples from different epizootics of proliferative gill disease. In a second experiment, fish were exposed to sediment for 7 d in water maintained at 16, 19, or 26°C; the fish were then moved to clean water held at 16, 19, or 26°C. Fish were necropsied before transfer to clean water and weekly thereafter for 2 months. Channel catfish held at 19°C developed proliferative gill disease within 2 d of exposure to sediment. Primary cells of a uninucleate myxosporean parasite were present in the gills at the base of lamellae. These developed into plasmodia with numerous secondary cells, and some primary cells disintegrated, releasing their internal secondary cells. Similar development was observed in internal organs 1 week after appearance of the parasite in gills. Complete sporogony did not occur over the 2 months of this study. Plasmodia became necrotic and were not detected after 60 d. In fish exposed to sediment for 7 d at 16, 19, and 21°C, similar organisms were detected, but clinical disease occurred only at 19 and 26°C. Proliferative gill disease may be attributed to extrasporogonic stages of a myxosporean resembling Sphaerospora spp.  相似文献   

12.
Abstract

The effects of intraperitoneal injection of squalene, an oil adjuvant, on nonspecific mortality of channel catfish Ictalurus punctatus and on their resistance to experimental Edwardsiella ictaluri infection were studied. Yearling channel catfish were assigned to control (N = 22) or squalene (N = 25) treatment groups, and mortality was monitored for 14 d following treatment. On day 14 both groups were infected with E. ictaluri, the causative agent of enteric septicemia of catfish, and mortality was monitored for an additional 11 d. Before infection, mortality did not differ between groups. After E. ictaluri infection, fish that received squalene were at a substantially higher risk of dying than control fish (relative risk after squalene treatment = 6.86). These results suggest that intraperitoneal administration of squalene, although not directly toxic, decreased resistance to E. ictaluri infection.  相似文献   

13.
Abstract

Channel catfish Ictalurus punctatus injected with Aeromonas hydrophila, Pseudomonas fluorescens, Edwardsiella tarda, or E. ictraluri were frozen at ?20°C after death. Bacterial isolation at 2-d intervals after freezing indicated that A. hydrophila could be recovered for 20 d, P. fuorescens for 60 d, E. tarda for 50 d, and E. ictaluri for 30 d in frozen fish.  相似文献   

14.
Enteric septicemia of catfish (ESC), caused by Edwardsiella ictaluri, is the most problematic bacterial disease affecting catfish aquaculture in the southeastern United States. Efforts to develop an effective ESC vaccine have had limited industrial success. In commercial settings, ESC vaccines are typically administered by immersion when fry are transferred from the hatchery to rearing ponds. While this approach is a practical method of mass delivery, this strategy administers vaccines to very young fish, which lack a fully developed immune system. To circumvent this limitation, an oral vaccination strategy was evaluated as a means of immunizing catfish at the fingerling stage of production, when fish possess a more complete immune arsenal. A virulent E. ictaluri isolate (S97-773) was attenuated by successive passage on media containing increasing concentrations of rifamycin. In laboratory trials, cultured vaccine was diluted and mixed with feed (100 mL diluted vaccine/454 g feed). This mixture was then fed to Channel Catfish Ictalurus punctatus fingerlings. Two separate dilutions of cultured vaccine (1:10 and 1:100) were used to create the vaccine–feed mixture, equating to estimated doses of 5 × 107 and 5 × 106 CFU/g of feed, respectively. After 30 d, catfish were exposed by immersion (1 × 106 CFU/mL) to the virulent parental strain of E. ictaluri. The target dose (1:100 dilution, ~5 × 106 CFU/g of feed) offered exceptional protection (relative percent survival = 82.6–100%). In addition, negligible deaths occurred in fish vaccinated at 10 times the target dose (1:10 dilution, ~5 × 107 CFU/g of feed). In pond trials, antibody production increased 18-fold in orally vaccinated fish. When compared with nonvaccinated controls, vaccination significantly improved survival, feed fed, feed conversion, biomass produced, and total harvest. This research demonstrates Channel Catfish can be successfully immunized in a commercial setting against E. ictaluri with a single dose of an orally delivered, live attenuated, E. ictaluri vaccine.

Received July 31, 2014; accepted March 2, 2015  相似文献   


15.
Abstract

Ichthyophthirius multifiliis is a protozoan that may infest and significantly damage cultured fish species. The purpose of this study was to measure the efficacy of copper sulfate in treating ichthyophthiriasis. Fingerling channel catfish Ictalurus punctatus exposed to at least 2,000 theronts of I. multifiliis per liter of water developed consistent infestations of I. multifiliis (20 or more trophonts on the dorsal surface of the head of the fish). Infestation was observed in untreated controls at day 5 after exposure and mortality occurred after day 10. Coexposure studies with theronts and different concentrations of copper sulfate revealed that all theronts were killed at concentrations greater than 0.05 mg/L. To determine the effect of copper sulfate in the treatment of ichthyophthiriasis, fish were exposed to the parasite until trophonts were observed (day 5), and they were subsequently treated with copper sulfate. The lowest effective concentration of copper sulfate for treatment of ichthyophthiriasis (i.e., after infestation was observed in the fish) was 0.4 mg/L. To assess the effects of various water quality conditions on copper treatment, total suspended solids (TSS) and pH were varied during treatment of ichthyophthiriasis. Concentration of TSS was inversely correlated to the efficacy of copper sulfate for I. multifiliis infestations, whereas no relationship was observed between pH and efficacy of a single copper sulfate dose. The results indicated that copper sulfate can be used to treat ichthyophthiriasis at concentrations of 0.4 mg/L for at least 5 d under the specific water conditions used in this study (pH, 7.45 ± 0.27; temperature, 20.5 ± 0.7°C; alkalinity, 176.6 ± 28.1 mg/L as CaCO3) and that efficacy of copper sulfate was affected more by TSS concentration than by pH.  相似文献   

16.
Abstract

Water temperature, a pivotal factor influencing interactions between teleosts and pathogens, was examined to determine its effects on the kinetics of xenoma formation and dissolution subsequent to experimental exposure of rainbow trout Oncorhynchus mykiss to the microsporidian gill pathogen Loma salmonae. The permissive water temperature range in which xenomas developed was between 9° and 20°C. Parasite development was arrested at temperatures outside this range, as indicated by the absence of visible xenomas among exposed fish. In addition, when these trout were subsequently moved to temperatures within the permissive range, xenomas failed to develop. Water temperature, within the permissive range, had no significant effect on either the number of xenomas that formed or the proportion of fish that developed xenomas following gastric intubation with a standard dose of spores. The relationship between water temperature and xenoma onset-time was best described (R 2 = 88.3%) by polynomial regression analysis: onset = 320 ? 33.4T + 0.9547T 2, where T is temperature (°C). Xenoma onset rate was also described through a modified degree-days model, yielding a predictive equation appropriate for use under conditions of fluctuating temperature. The thermal units, expressed as days × (°C above 7°C) necessary for xenoma onset were 298.6 on average. Xenoma dissolution rates, from the time of onset, also appeared to have a trend; more rapid dissolution occurred as temperatures increased. However, this trend correlated minimally with regression models.  相似文献   

17.
Abstract

Little scientific information is available to assess whether White Sturgeon Acipenser transmontanus can become infected and potential carriers of infectious pancreatic necrosis virus (IPNV). To assess this risk, monitoring results of adult and progeny White Sturgeon were examined from waters historically stocked with salmonid fish known to be IPNV carriers. From 1999 through 2004 White Sturgeon from a total of 30 separate families whose parentage came from waters historically stocked with IPNV carrier fish were tested. Duplicate groups of 25 juvenile Snake River White Sturgeon were waterborne exposed to 1.0×104 50% tissue culture infective dose (TCID50)/mL of water for 1 h and an additional group was injected intraperitoneally with 1.0×105 TCID50/fish. A negative control group was handled similarly but was not exposed to the virus. No morbidity was detected in any of the treatment groups or the negative control. At 34, 40, 47, and 54 d postexposure to IPNV, virus reisolation was attempted on five fish from each group, and an additional five fish from each group were examined for histological changes consistent with an IPNV infection. At 34 and 40 d postinjection with IPNV, 20% (one of five) of the fish tested positive for the virus per sample interval; however, fish from groups that were waterborne-exposed to IPNV were all negative. At 47 and 54 d after exposure or injection with IPNV an additional five fish from each group were tested at each sample interval and all results were negative. Histological analysis of target tissue obtained from five fish per group at 34 and 54 d postinfection also failed to detect any consistent change associated with an IPNV infection. These results suggest that the risk of White Sturgeon to become infected and develop into potential carriers of IPNV is negligible.

Received May 21, 2013; accepted July 8, 2013  相似文献   

18.
1. The present study was conducted to examine the effects of α-lipoic acid on hypothyroidism-induced negative growth performance and whether α-lipoic acid alleviates acute heat stress in relation to hypothyroid status.

2. Female broiler chickens (14?d-old) were fed diets supplemented with α-lipoic acid (100?mg/kg) and an antithyroid substance, propylthiouracil (200?mg/kg), for 20?d under thermoneutral conditions (25°C). At 42?d of age, chickens were exposed to a high ambient temperature (36°C, 60% RH) for 4?h.

3. Under the thermoneutral condition, propylthiouracil administration decreased feed efficiency and concomitantly increased adipose tissue and thyroid gland weights. Plasma nonesterified fatty acids and triacylglycerol were also increased by propylthiouracil administration. However, α-lipoic acid supplementation did not affect the hypothyroidism-induced effects.

4. In hypothyroid chickens, the rise in respiratory rate induced by heat exposure was greatly inhibited by α-lipoic acid administration at 1?h, but this effect had disappeared at 4?h. In addition, a similar inhibitory effect on the concentrations of plasma nonesterified fatty acids was subsequently observed at 4?h.

5. Therefore, the present study suggested that α-lipoic acid alleviates acute heat stress if chickens are in a hypothyroid status.  相似文献   

19.
Abstract

The specificity of channel catfish Ictalurus punctatus serum antibody to Edwardsiella ictaluri was characterized by microtiter agglutination assay. There was no correlation between antibody titer to Aeromonas hydrophila and antibody titer to E. ictaluri in wild or feral channel catfish. Anti-E. ictaluri antibodies in naturally infected channel catfish were not removed by adsorption by nine other species of bacteria found in the channel catfish intestine and fish ponds. Channel catfish immunized with nine other species of bacteria did not develop substantial antibody titer to E. ictaluri. The antibody response of channel catfish to E. ictaluri is highly specific, and the microtiter agglutination test is a specific indicator of previous exposure to E. ictaluri  相似文献   

20.
Abstract

The effect of temperature and salinity on the elimination of enrofloxacin (EF) in Manila clams Ruditapes philippinarum was investigated. The clams, cultured under different temperatures and salinities (16°C and 30‰, 22°C and 30‰, or 22°C and 20‰), were exposed to EF at 5 μg/mL of water in a medicated bath. After a 24-h exposure, the concentration of EF in various tissues was measured by high-performance liquid chromatography and the elimination rate of EF in those tissues was investigated by regression analysis. After the treatment, the initial concentrations of EF among tissues were (in decreasing order) plasma > gill > visceral mass > foot > adductor muscle. In all tissues the elimination half-life (t 1/2) of EF in the clams cultured at 22°C and 20‰ and 16°C and 30‰ were markedly longer than in those cultured at 22°C and 30‰, and the t 1/2 at 16°C and 30‰ was slightly longer than that at 22°C and 20‰. Slight differences were also observed in t 1/2 values among various tissues. These data indicate that both temperature and salinity had significant effects on the elimination of EF in the Manila clams and that lower temperature or salinity could result in slower elimination.

Received January 21, 2011; accepted December 2, 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号