首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC), is one of the most important pathogens to infect channel catfish Ictalurus punctatus. Although the full pathogenesis of E. ictaluri is unclear, the olfactory organ is thought to be a site of entry. We have examined the effects of applying E. ictaluri directly into the olfactory capsule of channel catfish. Olfactory organs of 30 experimental fish were exposed to E. ictaluri for 1 h (1 mL, 1 × 106 colony-forming units/mL). Live fish were sampled at 1, 24, 48, and 72 h, and days 5 and 14 postinfection, and their olfactory organs were examined by light and electron microscopy. Damage, including loss of sensory cilia and microvilli from the olfactory mucosal surface, was observed at 1 h postinfection. Degeneration of olfactory receptors and supporting cells was evident by 24 h postinfection. The nonsensory region also showed signs of degeneration, such as columnar cells lacking cilia. Electron microscopic immunocytochemistry confirmed the presence of E. ictaluri on the mucosal surface and within the epithelium. Host leukocytes responded to bacteria by migrating through the olfactory epithelium into the interlamellar lumen and phagocytosing organisms, but phagocytosed E. ictaluri did not appear to be destroyed. Our results indicate that during initial stages of infection channel catfish olfactory epithelium is vulnerable, and E. ictaluri can enter the host through the olfactory organ. It is also possible that host phagocytic cells serve as a vehicle for the systemic dissemination of E. ictaluri  相似文献   

2.
Abstract

The specificity of channel catfish Ictalurus punctatus serum antibody to Edwardsiella ictaluri was characterized by microtiter agglutination assay. There was no correlation between antibody titer to Aeromonas hydrophila and antibody titer to E. ictaluri in wild or feral channel catfish. Anti-E. ictaluri antibodies in naturally infected channel catfish were not removed by adsorption by nine other species of bacteria found in the channel catfish intestine and fish ponds. Channel catfish immunized with nine other species of bacteria did not develop substantial antibody titer to E. ictaluri. The antibody response of channel catfish to E. ictaluri is highly specific, and the microtiter agglutination test is a specific indicator of previous exposure to E. ictaluri  相似文献   

3.
Abstract

The ability of Edwardsiella ictaluri to attract macrophages of channel catfish Ictalurus punctatus was investigated. Exoantigen from E. ictaluri was tested for macrophage chemotactic activities both in vitro and in vivo. The exoantigen was chemotactic and chemokinetic for macrophages in vitro. Peritoneal injection of 750 μg of exoantigen protein into normal (E. ictaluri-free) channel catfish induced a marked increase in macrophage accumulations at 24 and 48 h. Neutrophil accumulation did not occur at the injection sites. Edwardsiella ictaluri exoantigen attracts macrophages, and this attraction may play an important role in macrophage responses during E. ictaluri infections.  相似文献   

4.
Abstract

Enteric septicemia of catfish (ESC) was transmitted horizontally from channel catfish Icialurus punctatus that had died from Edwardsiella ictaluri infection to contact channel catfish during 2 d of habitation in a tank. The contact channel catfish became positive for E. ictaluri antibody, became infected with this bacterium, and had signs of ESC and died within 12 d postexposure. Edwardsiella ictaluri was recovered from 24 of the 30 contact channel catfish that died from ESC, as well as from 9 of the 25 tested contact survivors. The cannibalizing of E. ictaluri-infected fish, or the shedding of E. ictaluri from dead fish, or both, were shown to be mechanisms of horizontal transmission of ESC among channel catfish.  相似文献   

5.
Abstract

Wild and domestic populations of channel catfish Ictalurus punctatus were examined to determine the distribution of the disease called enteric septicemia of catfish (ESC) in California. The causative agent of ESC, Edwardsiella ictaluri, was isolated from five separate sites in California. Two of these isolations were from rectal swabs of asymptomatic fish, confirming that a carrier state may exist. Normal-appearing fish with serum antibody titer to E. ictaluri were commonly found in domestic channel catfish populations, suggesting that many fish become infected but recover. Wild channel catfish with antibody to E. ictaluri were also found in major reservoirs and water distribution canals. Edwardsiella ictaluri appears to be widely distributed within California.  相似文献   

6.
Abstract

Edwardsiella ictaluri is the causative agent of enteric septicemia of catfish, which, during the past 5 years, has become the most serious infectious disease problem of cultured channel catfish Ictalurus punctatus. We compared 40 isolates of E. ictaluri from different geographical regions and host fish species. From the biophysical tests, a pH of 7.0–7.5 and a temperature of 25–30°C were optimum growth conditions for all E. ictaluri isolates. All isolates grew well in media with an NaCl concentration of 0.5% or less, but none of the E. ictaluri isolates grew in media with a concentration of 2.0 or 5.0% NaCl. Biochemically, 42 out of 46 tests gave the same reaction for all 40 isolates. The only observed differences were in gas production at 25°C, the o-nitrophenylbeta-D-galactopyranoside test, ornithine decarboxylation, and D-mannose utilization. Serologically, identical agglutinin titers (1:80) to E. ictaluri-specific rabbit antisera were observed, and all isolates cross-agglutinated with four different antisera. Based on the biophysical, biochemical, and serological reactions of 40 isolates of E. ictaluri, identification of distinct strains was not possible, although some were slightly different biotypically.  相似文献   

7.
Abstract

Edwardsiella ictaluri, the etiological agent of enteric septicemia of catfish (ESC), is the leading cause of bacterial disease in commercially raised channel catfish Ictalurus punctatus. Little work has been conducted at a genotypic level to determine potential virulence characteristics, but the production of chondroitin sulfatase is a suspected virulence factor. Using transpositional mutagenesis, we created stable E. ictaluri mutants that are deficient in chondroitinase activity. Channel catfish were challenged by injection with E. ictaluri transposon mutant MI15. None of the catfish challenged with the mutant died or showed signs of ESC. These fish were held for 2 weeks and then challenged by injection with the known virulent parent strain of E. ictaluri. The challenged naive control fish showed clinical signs of and a mortality rate consistent with ESC, whereas catfish that had been injected with MI15 prior to challenge with the parent strain were resistant to disease. This work represents a preliminary study to suggest a possible role of chondroitin sulfatase activity in the virulence of E. ictaluri.  相似文献   

8.
Abstract

The effects of intraperitoneal injection of squalene, an oil adjuvant, on nonspecific mortality of channel catfish Ictalurus punctatus and on their resistance to experimental Edwardsiella ictaluri infection were studied. Yearling channel catfish were assigned to control (N = 22) or squalene (N = 25) treatment groups, and mortality was monitored for 14 d following treatment. On day 14 both groups were infected with E. ictaluri, the causative agent of enteric septicemia of catfish, and mortality was monitored for an additional 11 d. Before infection, mortality did not differ between groups. After E. ictaluri infection, fish that received squalene were at a substantially higher risk of dying than control fish (relative risk after squalene treatment = 6.86). These results suggest that intraperitoneal administration of squalene, although not directly toxic, decreased resistance to E. ictaluri infection.  相似文献   

9.
Abstract

Edwardsiella ictaluri is the cause of enteric septicemia of catfish. A monoclonal antibody (MAb AA224) was used to identify a specific and predominant outer-membrane antigen of E. ictaluri. The MAb AA224 was produced by conventional cell fusion technology with spleen cells from mice immunized with an affinity-purified antigen. The affinity-purified antigen was obtained by immunoaffinity chromatography of an E. ictaluri extract with immunoaffinity purified immunoglobin from sera of channel catfish Ictalurus punctatus immune to E. ictaluri as a result of natural infection. The immunoaffinity-purified antigen was used for immunization and identification of the hybridoma producing MAb AA224 by enzyme-linked immunosorbent assay. The predominant antigen was purified by immunoaffinity chromatography with MAb AA224 as the immunoadsorbent. Immunoblotting and high-pressure liquid chromatography were used to determine that the relative sizes of the predominant antigens are 60 and 36 kilodaltons. Immunoelectron microscopy with MAb AA224 conjugated with colloidal gold localized the predominant antigen on the surface of the outer membrane of E. ictaluri  相似文献   

10.
Abstract

The in vitro and in vivo efficacies of two aryl-fluoroquinolones, A-56619 and A-56620, against two bacterial pathogens of channel catfish Ictalurus punctatus were determined The minimum inhibitory concentrations (MIC) of A-56619, A-56620, oxytetracycline, nalidixic acid, spectinomycin, ampicillin, doxycycline, and ormetoprim-sulfadimethoxine against 10 isolates of both Edwardsiella ictaluri and Aeromonas sobria were determined by the agar-dilution method. The in vivo efficacies of A-56619 and A-56620 were determined by bacterial challenge of channel catfish with E. ictaluri. Fish were fed a prepared diet that supplied 12.5, 25.0, or 50.0 mg of active drug per kilogram body weight per day. In vitro tests showed that all strains of E. ictaluri and A. sobria were sensitive to A-56619 and A-56620. The two aryl-fluoroquinolones demonstrated a lower mean MIC against these organisms than any of the other antibiotics tested. Significant reductions in mortality occurred within all channel catfish groups treated with these two chemicals as compared with controls. Mortality from E. ictaluri infection of fish given feed medicated with A-56619 and A-56620 ranged from 4 to 12%. Mortality among unmedicated controls ranged from 20 to 68%. No significant difference in mortality among dosage levels was demonstrated.  相似文献   

11.
Abstract

Administration of various immunostimulants to fish has resulted in enhanced immune responses. The purpose of this study was to determine if feeding Spirulina, a processed form of the blue-green alga Spirulina platensis, enhanced specific and nonspecific immunity and resistance against Edwardsiella ictaluri infection in channel catfish Ictalurus punctatus. Peritoneal phagocytes from fish fed Spirulina showed enhanced phagocytosis to zymosan and increased chemotaxis to E. ictaluri exoantigen. No significant difference in mortality due to E. ictaluri existed between fish fed Spirulina and fish fed a basal diet. No significant difference in antibody titer or in the percentage of fish positive for E. ictaluri antibody was found between the groups after immunization with formalin-killed E. ictaluri. Spirulina-fed fish had significantly higher antibody titers to key hole limpet hemocyanin (KLH) on day 22, and a greater percentage of these fish were positive for KLH antibody on days 15 and 36. Feeding Spirulina enhanced nonspecific cellular immune responses such as chemotaxis and phagocytosis but did not provide protection against infection with E. ictaluri. The use of Spirulina in feed resulted in enhanced antibody responses to KLH, a thymus-dependent antigen, but not to E. ictaluri, a thymus-independent antigen. These results indicate that stimulation of the nonspecific immune system of channel catfish does not provide enhanced protection from E. ictaluri.  相似文献   

12.
Abstract

Zebrafish (also known as zebra danio) Danio rerio were injected intramuscularly with Edwardsiella ictaluri at doses of 6 × 103, 6 × 104, or 6 × 105 colony-forming units per gram (CFU/g) or sterile phosphate-buffered saline (sham) or were not injected. Mortality occurred from 2 to 5 d postinjection (dpi) at rates of 0, 76.6, and 81.3% for the low, medium, and high doses, respectively, and E. ictaluri was isolated from dead fish. Survivors were sampled at 10 dpi and E. ictaluri was not isolated. Sham-injected and noninjected controls did not suffer mortality. Histopathology trials were performed in which zebrafish were injected with 1 × 104 CFU/g or sham-injected and sampled at 12, 24, 48, 72, and 96 h postinjection for histological interpretation. Collectively, these zebrafish demonstrated increasing severity of splenic, hepatic, cardiac, and renal interstitial necrosis over time. To evaluate the progression of chronic infection, zebrafish were injected with 1 × 102 CFU/g and held for 1 month postinjection. Beginning at 12 dpi and continuing for an additional 2 weeks, zebrafish demonstrated abnormal spiraling and circling swimming behaviors. Histopathology demonstrated necrotizing encephalitis. In immersion trials, zebrafish were exposed to low, medium, and high doses (averaging 1.16 × 105, 1.16 × 106, and 1.16 × 107 CFU/mL of tank water) of E. ictaluri for 2 h. Mortality occurred from 5 to 9 d postexposure at rates of 0, 3.3, and 13.3% for the low, medium, and high doses, respectively; E. ictaluri was isolated from dead fish. Channel catfish Ictalurus punctatus exposed to the medium doses suffered 100% mortality, and E. ictaluri was isolated from these fish. This study demonstrates the potential use of zebrafish as a model for E. ictaluri pathogenesis.  相似文献   

13.
Abstract

Edwardsiella ictaluri and Flavobacterium columnare are two bacterial pathogens that affect channel catfish Ictalurus punctatus aquaculture. At the Catfish Genetics Research Unit (U.S. Department of Agriculture, Agricultural Research Service), some progress has been made in selectively breeding for resistance to E. ictaluri; however, the susceptibility of these families to F. columnare is not known. Our objectives were to obtain baseline information on the susceptibility of channel catfish families (maintained as part of the selective breeding program) to E. ictaluri and F. columnare and to determine whether the spleen index and plasma levels of mannose-binding lectin (MBL) are predictive indicators of susceptibility to these pathogens. Four channel catfish families were used: family A was randomly chosen from spawns of fish that were not selectively bred for resistance; families B, C, and D were obtained after selection for resistance to E. ictaluri. All four families were immersion challenged with both bacterial pathogens; the spleen index and plasma MBL levels of unchallenged fish from each family were determined. Mean cumulative percent mortality (CPM) after E. ictaluri challenge ranged from 4% to 33% among families. Families A and B were more susceptible to F. columnare (mean CPM of three independent challenges = 95% and 93%) than families C and D (45% and 48%), demonstrating that there is genetic variation in resistance to F. columnare. Spleen index values and MBL levels were not significantly different, indicating that these metrics are not predictive indicators of F. columnare or E. ictaluri susceptibility in the four tested families. Interestingly, the two families that exhibited the highest CPM after F. columnare challenges had the lowest CPM after E. ictaluri challenge. Further research on larger numbers of families is needed to determine whether there is any genetic correlation between resistance to E. ictaluri and resistance to F. columnare.

Received November 18, 2011; accepted February 23, 2012  相似文献   

14.
Abstract

Serum samples from 15 yearling channel catfish Ictalurus punctatus convalescing after experiencing enteric septicemia of catfish were distributed into three representative serum pools, each containing equal volumes of serum from five fish. Serologic recognition of each pooled serum sample against Edwardsiella ictaluri and Escherichia coli whole cells and against secretory antigen (exoantigen) derived from E. ictaluri was measured by enzyme-linked immunosorbent assays (ELISA). Serum samples were purified by affinity chromatography with a heterologous Ra,-mutant lipopolysaccharide that was derived from rough Salmonella typhimurium TV 119 and was covalently bound to an agarose matrix. Removal of antibodies recognizing the lipopolysaccharide by cross-reactive affinity purification caused significant decreases in serologic recognition of E. ictaluri (P < 0.10) and E. coli (P < 0.01) whole cells; however, serologic recognition of the E. ictaluri-specific exoantigen was not significantly decreased. These results indicate that serologic recognition of the exoantigen is highly specific and that cross-reactive immune responses recognizing homologous gram-negative core antigens will not cause false-positive test results when the specific capture ELISA is used to detect exposure to E. ictaluri  相似文献   

15.
Abstract

A rapid (4.5-h) and sensitive assay based on polymerase chain reaction (PCR) was developed to facilitate the early detection of Edwardsiella ictaluri in channel catfish Ictalurus punctatus. A 129-base-pair fragment of a sequence specific to E. ictaluri was amplified with both standard and real-time (quantitative) PCR. The sensitivity of detection was determined to be as low as the equivalent of 2.5 cells in DNA samples from both E. ictaluri cells and mixtures of blood from noninfected catfish and E. ictaluri cells. Infection levels (as determined by real-time PCR) in blood from experimentally challenged fish were compared with brain–heart-infusion-cultured bacterial colony counts to assess the accuracy of the PCR assay. The PCR-based detection level (the equivalent of 105–108 cells/mL) was comparable to that of traditional culturing techniques (106–107 cells/mL). In future applications, this assay will be applied in a comprehensive breeding program to select channel catfish that are resistant to enteric septicemia of catfish.  相似文献   

16.
Abstract

Edwardsiellosis is an important bacterial infection of freshwater and marine fishes. Edwardsiella ictaluri causes enteric septicemia of catfish, and E. tarda causes emphysematous putrefactive disease of catfish and fish gangrene in various species; these diseases have considerable economic effects on the aquaculture industry. In addition, E. tarda is an important zoonotic pathogen. Thus, the reduction or elimination of these pathogens from an aquarium or aquaculture facility is imperative. This study examined a variety of commercially available chemicals for their ability to reduce or eliminate E. ictaluri and E. tarda from the aquatic environment. The various concentrations of chemicals were tested in vitro in microcentrifuge tubes with a known concentration of bacteria at room temperature. In this study, ethyl alcohol (30, 50, or 70%), benzyl-4-chlorophenol/phenylphenol (1%), sodium hypochlorite (50, 100, 200, or 50,000 mg/L), n-alkyl dimethyl benzyl ammonium chloride (1:256), povidone iodine (50 or 100 mg/L), glutaraldehyde (2%), and potassium peroxymonosulfate/sodium chloride (1%) were effective disinfectants, as each reduced or eliminated the number of detectable organisms within 1 min of contact time. However, neither Chloramine-T (15 mg/L) nor formalin (250 mg/L) substantially reduced bacterial counts even after 60 min of contact time.  相似文献   

17.
Ten calves were used to elucidate the ultrastructure of enterocytes before and 24 h after colostral intake. Tissue samples were obtained from duodenum, jejunum (5 locations) and ileum. Protein A-gold technique was applied to immuno-electron-microscopically demonstrate colostral IgA. The prominent feature of the precolostral enterocytes are intra-cytoplasmic vacuoles. The frequency of vacuoles increases from cranial jejunum to ileum and from the villi bases to the tips. The appearance of absorptive vacuoles after colostral administration correlates with the incidence of precolostral empty vacuoles. Bovine IgA was detected in absorptive vacuoles and within the intestinal lumen of postcolostral calves. In addition to a diffuse IgA labelling of most vacuoles, a few corresponding enterocytic vacuoles labelled inhomogenously or negatively. This study demonstrates morphologically that the main site of colostral absorption is the middle-to-caudal region of the small intestine. Immunoelectron microscopy of IgA labelling provides indications of a selective IgA absorption in addition to pinocytosis.  相似文献   

18.

Background

Porcine proliferative enteropathy in pigs is caused by the obligate, intracellular bacterium Lawsonia intracellularis. In vitro studies have shown close bacterium-cell interaction followed by cellular uptake of the bacterium within 3 h post inoculation (PI). However, knowledge of the initial in vivo interaction between porcine intestinal epithelium and the bacterium is limited. The aims of the present study were to evaluate the usefulness of a ligated small intestinal loop model to study L. intracellularis infections and to obtain information on the very early L. intracellularis-enterocyte interactions.

Methods

A ligated small intestinal loop model using three different L. intracellularis inocula was applied to 10-11-week-old pigs. The inocula were 1) wild type bacteria derived from overnight incubation of L. intracellularis bacteria from spontaneous disease, 2) crude vaccine bacteria (Enterisol® Ileitis Vet), and 3) vaccine bacteria propagated in cell culture. The bacteria-enterocyte interaction was visualised using immunohistochemistry on specimens derived 1, 3 and 6 h PI respectively.

Results

Although at a low level, close contact between bacteria and the enterocyte brush border including intracellular uptake of bacteria in mature enterocytes was seen at 3 and 6 h PI for the vaccine and the propagated vaccine inocula. Interaction between the wild-type bacteria and villus enterocytes was scarce and only seen at 6 h PI, where a few bacteria were found in close contact with the brush border.

Conclusions

The ligated intestinal loop model was useful with respect to maintaining an intact intestinal morphology for up to 6 h. Furthermore, the study demonstrated that L. intracellularis interacts with villus enterocytes within 3 to 6 h after inoculation into intestinal loops and that the bacterium, as shown for the vaccine bacteria, propagated as well as non-propagated, was able to invade mature enterocytes. Thus, the study demonstrates the early intestinal invasion of L. intracellularis in vivo.  相似文献   

19.
Abstract

The olfactory organ is a primary infection site for Edwardsiella ictaluri, the etiologic agent of enteric septicemia of channel catfish Ictalurus punctatus. The olfactory mucosal surface is a major interface between host and pathogen where commonly occurring carbohydrates may act as receptors for bacterial attachment. In this study, d-mannose, N-acetylgalactosamine, N-acetylglucosamine, N-acetylneuraminic acid, d-galactose, and l-fucose were histochemically localized in the olfactory mucosa of channel catfish by using lectins that preferentially bind these carbohydrates. These lectins were Concanavalin A (ConA), soybean agglutinin (SBA), pokeweed agglutinin (PWA), wheat germ agglutinin (WGA), peanut agglutinin (PNA), and Ulex europaeus agglutinin I (UEA-I), respectively. The olfactory mucosa expressed d-mannose ubiquitously, whereas l-fucose and N-acetylneuraminic acid expression was specific to the apical mucosal surface. The carbohydrates d-galactose, N-acetylgalactosamine, and N-acetylglucosamine were most abundant in the sensory mucosa, specifically olfactory receptor neurons and cells near the basal lamina. Edwardsiella ictaluri was assayed for carbohydrate affinities by colloidal gold immunolocalization and transmission electron microscopy. Of the anti-lectins examined, those against WGA and UEA-I cross-reacted most intensely with Edwardsiella ictaluri, whereas cross-reactivities of anti-ConA, -SBA, and -PNA were more moderate. Double immunofluorescence labeling of experimentally infected catfish showed E. ictaluri adherent to cell surfaces or intercellularly associated with labeled carbohydrate components of the olfactory mucosa. Preincubation of the olfactory mucosa with soluble d-galactose significantly reduced bacterial adhesion compared with controls. Our results indicate a specific pattern of carbohydrates present in the catfish olfactory mucosa and suggest carbohydrates participate in initial E. ictaluri attachment by acting as ligands for pathogen constituents.  相似文献   

20.
Abstract

A tolerance study was conducted to determine the palatability of florfenicol to channel catfish Ictalurus punctatus. Four tanks of fish (20 fish/tank) were assigned to each of five treatments distinguished by the amount of florfenicol given in feed per kilogram of body weight, namely, 0, 10, 20, 40, or 100 mg. Fish were fed at a rate of 2.5% of body weight per day for 10 consecutive days. On day 11, all surviving fish were euthanatized, counted, and weighed as a group. Florfenicol- medicated feed was palatable to fish at doses of 10, 20, 40, and 100 mg for 10 consecutive days. All 400 fish were necropsied and examined by histopathology, and no treatment-related changes were observed. In a separate exploratory efficacy study, four tanks (20 fish/tank) were assigned to each of the following treatments: (1) not challenged with Edwardsiella ictaluri and fed unmedicated feed, (2) challenged with E. ictaluri and fed unmedicated feed, (3) challenged with E. ictaluri and fed florfenicol at 10 mg per kilogram of body weight, (4) challenged and fed florfenicol at 20 mg/kg, and (5) challenged and fed florfenicol at 40 mg/kg. Treatment was initiated the day after inoculation, and feed was administered by hand for five consecutive days at 2.5% of body weight. The cumulative mortality observed over a 17-d period in treatment groups 1–5 was 2.5, 57.5, 0, 1.25, and 1.25%, respectively. All 400 fish were necropsied and examined by histopathology. The results indicate that florfenicol was effective in controlling mortality from enteric septicemia of catfish with no adverse treatment-related tissue changes. Florfenicol was palatable, safe, and efficacious in controlling mortality due to infection by E. ictaluri in channel catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号