首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Journal of Plant Diseases and Protection - Bacterial wilt incited by Ralstonia solanacearum has been found the most damaging and widespread diseases of tomato throughout the world and causes heavy...  相似文献   

2.
3.
4.
 利用青枯雷尔氏菌(Ralstonia solanacearum)无致病力菌株防治番茄青枯病具有很好的应用潜力。作者通过分离筛选自然弱毒株、60Co辐射诱变和EZ-Tn5插入诱变,分别获得3、12和40株青枯雷尔氏菌无致病力突变菌株。经盆栽番茄苗致病性检测,15 d后均未发病,证实均为无致病力青枯雷尔氏菌。进一步对番茄青枯病的防治试验表明,从番茄青枯病发病田块分离的无致病力突变菌株FJAT1458的防治效果最好,防效达100%。该菌株能定殖番茄植株根系土壤、根部和茎部,定殖数量均表现为“先增后减”的趋势,并且接种浓度越大、苗龄越小,定殖数量越大。从构建的防效模型可以看出,不同接种浓度条件下,植株发病率随时间变化符合的回归方程不同,相关系数R值也不同,接种浓度越大,R值越小。本研究获得的青枯雷尔氏菌无致病力突变菌株FJAT1458对番茄青枯病具有很好的防病效果。  相似文献   

5.
6.
The interactions between the pathogen Ralstonia solanacearum and potato Solanum tuberosum plants were studied to investigate the reactive oxygen species metabolic system and ascorbate (ASC)-glutathione (GSH) redox cycle in response to compost application. Single potato eyepieces were germinated and grown in pots containing sandy soil with or without compost at a rate of 7.5 g kg?1 soil. Non-compost- and compost-treated plants (CTP) were inoculated with R. solanacearum 25 days after planting and then analyzed after 10 days, unless otherwise stated. The present results revealed that pathogen infection caused a remarkable decrease in plant growth related parameters and productivity and an increase in disease incidence. However, under these conditions compost had substantially improved plant growth and decreased disease incidence and bacterial population. R. solanacearum resulted in significant enhancement in the activities of NADPH oxidase, lipoxygenase, the production rate of superoxide and hydroxyl radicals, levels of hydrogen peroxide, membrane lipid peroxidation, and protein oxidation indicating the induction of oxidative stress in potato roots. However, the pathogen-mediated enhancement in indices of oxidative stress was considerably decreased by compost application, which enhanced the activities of ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) in infected potato plants, implying a better ROS-scavenging activity. Data also indicated that there were general increases in ASC and GSH content in infected compost treated plants, but non-compost treated ones significantly had lower levels of such redox metabolites. In addition, significantly higher ratios of ASC/DHA (dehydroascorbate) and GSH/GSSG (glutathione disulphide) were generally found in CTP than in non-compost treated-ones. The obtained results suggest that compost provides effective protection against the Ralstonia bacterial pathogen via up-regulation of the capacity of the ASC-GSH cycle and modulation of the cellular redox status, thereby eliminating ROS damage and sustaining membrane stability.  相似文献   

7.
番茄青枯病病原菌拮抗菌株的筛选及其田间防控作用研究   总被引:2,自引:0,他引:2  
从番茄青枯病发病严重田块的健康植株根际土壤中分离筛选得到2株高效拮抗菌株,命名为W12和W118,经16SrDNA基因鉴定均属芽胞杆菌属;用PCR扩增的方法扩增脂肽类抗生素合成基因,结果表明W12和W118含有合成bacillomycin、iturin和fengycin三种抗生素的基因;将2株拮抗菌用于田间试验,结果表明混合菌株防控效果最好,3次灌菌后防控效果达到62.3%,单独施用菌株W118较单独施用W12防控效果好,3次灌菌后防控效果达到56.7%。  相似文献   

8.
In this study, we investigated the ability of DL-3-aminobutyric acid (BABA) to protect tomato against bacterial wilt caused by Ralstonia solanacearum. This was combined with studies of accumulation of total phenolic compounds, free and total salicylic acid (SA), and activity of enzymes related to plant defence, i.e., polyphenol oxidase (PPO) and catalase (CAT). Under greenhouse conditions, tomato plants pre-treated by soil drenching with BABA profoundly reduced disease severity of bacterial wilt compared to plants receiving a soil drench with water. Thus, BABA reduced leaf wilting index by 75.3 % and vascular browning index by 69.9 %, without any in vitro inhibitory activity on the pathogen. BABA treatment significantly reduced the population of R. solanacearum in stems of tomato plants and additionally also significantly increased both fresh and dry weight of roots and shoots of tomato plants compared with the inoculated control. Application of BABA resulted in a high increase in PPO activity both in plants with and without inoculation. Compared to water-treated plants, treatment with BABA also induced a significant increase of total phenolic compounds as well as of free and total SA in leaves of both inoculated and non-inoculated tomato plants at all sampling times. CAT activity decreased in tomato plants treated with BABA in comparison with the water-treated control plants and the decrease in activity correlated with an increasing total SA accumulation. These findings suggest that BABA treatment resulted in induction of resistance to bacterial wilt in tomato.  相似文献   

9.
番茄青枯病内生拮抗细菌的筛选   总被引:46,自引:2,他引:46  
 从广西一些市县采集番茄茎标本分离得到55个细菌菌株,分属为芽孢杆菌(Bacillus spp.)、黄单胞菌(Xanthomonas spp.)、假单胞菌(Pseudomonas spp.)和欧文氏菌(Erwinia spp.),其中芽孢杆菌为优势种群。经回接测试,有36个菌株为番茄植株内生菌。这些内生菌只有7个菌株对番茄青枯病菌有拮抗作用,芽孢杆菌B47菌株对番茄青枯病菌拮抗作用较强,经室内和田间初步防治测定,它对番茄青枯病有较好的防治效果。  相似文献   

10.
An organic hydroponic system that we developed has potential to control root diseases including bacterial wilt of hydroponically grown tomato. In inoculation tests with Ralstonia solanacearum during tomato plant cultivation in conventional inorganic hydroponics and in our organic system, many of the tomato seedlings in the conventional system wilted and died, but none of the seedlings in the organic hydroponics wilted or developed any symptoms, suggesting that the organic system can suppress this bacterial wilt disease. Interestingly, a rhizosphere biofilm, formed only on roots in the organic hydroponic system, may be responsible for the suppression of the bacterial wilt.  相似文献   

11.
Silicon amendment significantly reduced bacterial wilt incidence expressed as area under disease progress curve for tomato genotypes L390 (susceptible) by 26.8% and King Kong2 (moderately resistant) by 56.1% compared to non-treated plants grown in hydroponic culture. However, wilt incidence in silicon-treated plants of genotype L390 reached 100% at 13 days post-inoculation (dpi), while in genotype King Kong2, plant death was retarded by 6 days, with 20% reduction of final wilt incidence. Bacterial numbers were significantly lower in silicon-treated compared to non-treated plants in King Kong2 at 2 dpi in midstems and in all organs at 5 dpi, and in Hawaii 7998 (resistant) in all organs at 2 dpi. Differences between genotypes were obvious on midstem level (5 dpi), where bacterial populations were generally significantly lower compared to roots. Increased tolerance was observed in genotypes L390 and King Kong2 with silicon treatment.Silicon accumulated in roots and was low in stems and leaves. Inoculation with Ralstonia solanacearum did not significantly affect silicon uptake and distribution. Negative correlations between root silicon content and bacterial numbers of midstems in genotypes Hawaii 7998 and King Kong2 suggested an induced resistance. Indications for an influence of host genotype and silicon treatment on the phenotypic conversion of R. solanacearum strain To-udk2-sb from fluidal to non-fluidal colonies in planta were observed.This is the first report on the effect of silicon on a bacterial disease and in a silicon-non-accumulator plant.  相似文献   

12.
林木青枯病研究进展   总被引:1,自引:0,他引:1  
青枯病是由青枯劳尔氏菌引起的一种严重的植物土传病害,我国南方多种树种被其侵染发病。本文介绍了我国林木青枯病的发生情况,概括了青枯病检测与防治方面的研究进展,并对其中的一些问题进行了探讨。  相似文献   

13.
14.
15.
青枯菌无致病力菌株对烟草青枯病的控病作用初步研究   总被引:1,自引:0,他引:1  
从茄子、番茄、辣椒、烟草青枯病株中分离出116株无致病力青枯菌,室内平板喷雾法拈抗试验结果表明,有21株菌在NA培养基上可明显抑制青枯菌TbRs的生长;烟草MSK326品种温室盆栽控病试验表明,Tnljdl-3和Aujd8—2—1两株菌具有较好控病效果,20d后的相对防效分别为58.4%和97%。  相似文献   

16.
17.
茄青枯病菌引起的新病害-罗汉果青枯病   总被引:4,自引:0,他引:4  
 罗汉果为葫芦科(Cucurbitaceae)罗汉果属[Siraitia grosvenorii(Swingle) C.Jeffrey]植物。罗汉果中含有0.8%~1.0%的罗汉果甜甙,其甜度为蔗糖的300倍,是肥胖症、高血压、高血脂、糖尿病等患者最理想的甜味剂与保健品。罗汉果甜贰远销美国、日本等国外市场,产品供不应求。  相似文献   

18.
A sudden wilt of bellflower (Campanula lactiflora) was observed in Japan in 1997. A bacterium that formed white fluidal and mucoid colonies resembling those of Ralstonia solanacearum was isolated from the infected plants. The bacterium was bacteriologically identified as biovar 3 of R. solanacearum. This is the first report of R. solanacearum affecting a plant species of the Campanulaceae family.  相似文献   

19.
20.
Bacterial wilt is a serious problem affecting many important food crops. Recent studies have indicated that treatment with biotic or abiotic stress factors may increase the resistance of plants to bacterial infection. This study investigated the effects of magnesium oxide nanoparticles (MgO NP) on disease resistance in tomato plants against Ralstonia solanacearum, as well as its antibacterial activity. The roots of tomato seedlings were inoculated with R. solanacearum and then immediately treated with MgO NP; the treated plants showed very little inhibition of bacterial wilt. In contrast, when roots were drenched with a MgO NP suspension prior to inoculation with the pathogen, the incidence of disease was significantly reduced. Rapid generation of reactive oxygen species such as O2 radicals was observed in tomato roots treated with MgO NP. Further O2 was rapidly generated when tomato plant extracts or polyphenols were added to the MgO NP suspension, suggesting that the generation of O2 in tomato roots might be due to a reaction between MgO NP and polyphenols present in the roots. Salicylic acid‐inducible PR1, jasmonic acid‐inducible LoxA, ethylene‐inducible Osm, and systemic resistance‐related GluA were up‐regulated in both the roots and hypocotyls of tomato plants after treatment of the plant roots with MgO NP. Histochemical analyses showed that β‐1,3‐glucanase and tyloses accumulated in the xylem and apoplast of pith tissues of the hypocotyls after MgO NP treatment. These results indicate that MgO NP induces systemic resistance in tomato plants against R. solanacearum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号