首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
When the influence of host species, inoculum density, temperature, leaf wetness duration, and leaf position on the incidence of gentian brown leaf spot caused by Mycochaetophora gentianae, was examined, the fungus severely infected all seven Gentiana triflora cultivars, but failed to infect two cultivars of G. scabra and an interspecific hybrid cultivar. Inoculum density correlated closely with disease incidence, and a minimum of 102 conidia/mL was enough to cause infection. In an analysis of variance, temperature and leaf wetness duration had a significant effect upon disease incidence, which increased with higher temperature (15–25°C) and longer duration of leaf wetness (36–72 h). No disease developed at temperatures lower than 10°C or when leaf wetness lasted <24 h. At 48-h leaf wetness, disease incidence was 0, 28, 77, and 85% at 10, 15, 20, and 25°C, respectively. Middle and lower leaves on the plant were more susceptible than upper leaves. In microscopic observations of inoculated leaves, >50% of conidia germinated at temperatures >15°C after 24-h leaf wetness. More appressoria formed at higher temperatures (15–25°C) with extended duration of leaf wetness (24–72 h). At 48-h leaf wetness, appressorium formation was 0, 8, 26, and 73% at 10, 15, 20, and 25°C, respectively. These results suggest that temperature and leaf wetness duration were important factors for infection of gentian leaves.  相似文献   

2.
Anthracnose fruit rot of blueberries caused by Colletotrichum acutatum is a serious problem in humid blueberry‐growing regions of North America. In order to develop a disease prediction model, environmental factors that affect mycelial growth, conidial germination, appressorium formation and fruit infection by C. acutatum were investigated. Variables included temperature, wetness duration, wetness interruption and relative humidity. The optimal temperature for mycelial growth was 26°C, and little or no growth was observed at 5 and 35°C. The development of melanized appressoria was studied on Parafilm‐covered glass slides and infection was evaluated in immature and mature blueberry fruits. In all three assays, the optimal temperature for infection was identified as 25°C, and infections increased up to a wetness duration of 48 h. Three‐dimensional Gaussian equations were used to assess the effect of temperature and wetness duration on the development of melanized appressoria (R2 = 0·89) on Parafilm‐covered glass slides and on infection incidence in immature (R2 = 0·86) and mature (R2 = 0·90) blueberry fruits. Interrupted wetness periods of different durations were investigated and models were fitted to the response of melanized appressoria (R2 = 0·95) and infection incidence in immature (R2 = 0·90) and mature (R2 = 0·78) blueberry fruits. Additionally, the development of melanized appressoria and fruit infection incidence were modelled in relation to relative humidity (R2 = 0·99 and 0·97, respectively). Three comprehensive equations were then developed that incorporate the aforementioned variables. The results lay the groundwork for a disease prediction model for anthracnose fruit rot in blueberries.  相似文献   

3.
The combined effect of temperature (15°C, 20°C, 25°C, 30°C, 35°C, 40°C and 42°C) and leaf wetness duration (0, 4, 8 12, 16, 20 and 24 h) on infection and development of Asiatic citrus canker (Xanthomonas citri subsp. citri) on Tahiti lime plant was examined in growth chambers. No disease developed at 42°C and zero hours of leaf wetness. Periods of leaf wetness as short as 4 h were sufficient for citrus canker infection. However, a longer leaf duration wetness (24 h) did not result in much increase in the incidence of citrus canker, but led to twice the number of lesions and four times the disease severity. Temperature was the greatest factor influencing disease development. At optimum temperatures (25–35°C), there was 100% disease incidence. Maximum disease development was observed at 30–35°C, with up to a 12-fold increase in lesion density, a 10-fold increase in lesion size and a 60-fold increase in disease severity.  相似文献   

4.
Black leaf mold (BLM), caused by Pseudocercospora fuligena is a serious threat to tomato production in the humid tropics. Accurate information about the incubation (IP) and latent period (LP) under various host susceptibility and weather favourability circumstances will help to formulate holistic approaches to manage this disease. In this study, effects of temperature, wetness duration, and leaf age on the monocyclic components (IP and LP) of BLM were studied from growth chamber (GC) and greenhouse (GH) experiments as well as detached leaf assays in growth cabins. Linear interpolation and inflection point (of logistic regression model) methods were used to determine IP and LP. These two methods were highly correlated in GC (r 2?=?0.89; P?<?0.0001) and GH experiments (r 2?=?0.90; P?<?0.0001) except when the epidemics were not asymptotic. Thus, IP and LP were estimated according to inflection point method. There was a delay of at least 5 days of IP and LP when plants were left in non-humid open environment than when exposed to wetness durations of 1, 2 or 3 days after inoculation. In general, IP and LP became shorter as the temperature increased from 20–24 and then to 28 °C. In growth chambers, there was more disease and consequently shorter IP and LP on young and unfolded tomato leaves that were 1-, 3-, or 5-week old at the time of inoculation than 7-week old leaves. In the greenhouse, there was about 50 % more disease incidence and sporulation on 1-week than 3-week old leaves. The shortest IP (8–11 days) and LP (12–13 days) were recorded from two out of three GH experiments on 1-week old leaves at an ambient mean temperature of 28.5 °C. This study implicated that fresh market tomatoes planted during warm temperatures in 50-mesh greenhouses and exposed to extended periods of wetness are highly prone to BLM infection at their young stages of growth.  相似文献   

5.
The effects of temperature, relative humidity (RH), leaf wetness and leaf age on conidium germination were investigated for Spilocaea oleagina, the causal organism of olive leaf spot. Detached leaves of five ages (2, 4, 6, 8 and 10 weeks after emergence), six different temperatures (5, 10, 15, 20, 25 and 30°C), eight wetness periods (0, 6, 9, 12, 18, 24, 36 and 48 h), and three RH levels (60, 80 and 100%) were tested. Results showed that percentage germination decreased linearly in proportion to leaf age (P < 0.001), being 58% at 2 weeks and 35% at 10 weeks. A polynomial equation with linear term of leaf age was developed to describe the effect of leaf age on conidium germination. Temperature significantly (P < 0.001) affected frequencies of conidium germination on wet leaves held at 100% RH, with the effective range being 5 to 25°C. The percent germination was 16.1, 23.9, 38.8, 47.8 and 35.5% germination at 5, 10, 15, 20 and 25°C, respectively, after 24 h. Polynomial models adequately described the frequencies of conidium germination at these conditions over the wetness periods. The rate of germ tube elongation followed a similar trend, except that the optimum was 15°C, with final mean lengths of 175, 228, 248, 215 and 135 μm at 5, 10, 15, 20 and 25°C, respectively after 168 h. Polynomial models satisfactorily described the relationships between temperature and germ tube elongation. Formation of appressoria, when found, occurred 6 h after the first signs of germination. The percentage of germlings with appressoria increased with increasing temperature to a maximum of 43% at 15°C, with no appressoria formed at 25°C after 48 h of incubation. Increasing wetness duration caused increasing numbers of conidia to germinate at all temperatures tested (5–25°C). The minimum leaf wetness periods required for germination at 5, 10, 15, 20 and 25°C were 24, 12, 9, 9 and 12 h, respectively. At 20°C, a shorter wetness period (6 h) was sufficient if germinating conidia were then placed in 100% RH, but not at 80 or 60%. However, no conidia germinated without free water even after 48 h of incubation at 20°C and 100% RH. The models developed in this study should be validated under field conditions. They could be developed into a forecasting component of an integrated system for the control of olive leaf spot.  相似文献   

6.
Sphaeropsis pyriputrescens is the cause of Sphaeropsis rot in apples and pears. In this study, effects of temperature, wetness duration, relative humidity (RH), dryness, and interrupted wetness duration on conidial germination of the fungus were evaluated. Conidial germination and germ tube elongation occurred at temperatures from 0°C to 30°C. The optimum temperature for germination and germ tube elongation appeared to be 20°C, at which a minimum wetness period of 5 h was required. Conidia germinated at RH as low as 92% after 36 h at 20°C, but not at 88.5% RH. The effect of dry periods on germination depended on RH. Conidial germination at 85% RH was higher than that at 25% RH within a 4-h dry period, after which time no difference was observed. Less than 10% conidia germinated after a 10-day dry period at both 20°C and 28°C. Conidial germination decreased as the wetness duration prior to dryness increased. Conidia wetted for 6 h prior to dryness died within a 1-h dry period. After a 12-h dry period, no or few conidia germinated at 25% RH, whereas 3% to 10% of the conidia germinated at 85% RH and no further decrease was observed as the dry period increased. The results contribute to our understanding of conditions required for conidial germination of S. pyriputrescens and infection of fruit leading to Sphaeropsis rot.  相似文献   

7.
8.
Experiments are described to quantify the effects of temperature and leaf wetness duration on infection of groundnut by Phaeoisariopsis personata. Temperature response curves for conidial germination and infection were similar, with optima close to 20°C and minimum and maximum temperatures of about 8°C and 34 C, respectively. The effect of temperature on infection between 15°C and 26°C was slight. Lesions developed only if the leaf wetness period exceeded about 20 h, and the total wetness period necessary for maximum infection exceeded 160 h. The number of lesions resulting from a fixed amount of inoculum was several times greater if leaves were exposed to alternate wet and dry periods (intermittent wetness), compared with continuous wetness. With intermittent wetness the length of the dry period had little effect on the number of lesions, providing it exceeded 2 h. The response curve relating total wetness periods to lesion density was an exponential asymptote.  相似文献   

9.
Asiatic citrus canker, caused by Xanthomonas smithii ssp. citri , formerly X. axonopodis pv. citri , is one of the most serious phytosanitary problems in Brazilian citrus crops. Experiments were conducted under controlled conditions to assess the influence of temperature and leaf wetness duration on infection and subsequent symptom development of citrus canker in sweet orange cvs Hamlin, Natal, Pera and Valencia. The quantified variables were incubation period, disease incidence, disease severity, mean lesion density and mean lesion size at temperatures of 12, 15, 20, 25, 30, 35, 40 and 42°C, and leaf wetness durations of 0, 4, 8, 12, 16, 20 and 24 h. Symptoms did not develop at 42°C. A generalized beta function showed a good fit to the temperature data, severity being highest in the range 30–35°C. The relationship between citrus canker severity and leaf wetness duration was explained by a monomolecular model, with the greatest severity occurring at 24 h of leaf wetness, with 4 h of wetness being the minimum duration sufficient to cause 100% incidence at optimal temperatures of 25–35°C. Mean lesion density behaved similarly to disease severity in relation to temperature variation and leaf wetness duration. A combined monomolecular-beta generalized model fitted disease severity, mean lesion density or lesion size as a function of both temperature and duration of leaf wetness. The estimated minimum and maximum temperatures for the occurrence of disease were 12°C and 40°C, respectively.  相似文献   

10.
Calonectria pseudonaviculata causes lesions on boxwood leaves and twigs. Controlled-environment experiments were conducted to determine the effects of temperature and leaf wetness period on C. pseudonaviculata sporulation on diseased (cv. Suffruticosa) leaves and of dryness periods and high temperature on conidial survival. Infected leaves were incubated in moist chambers and subjected to six temperatures (9, 13, 17, 21, 25, and 29°C) and six leaf wetness periods (0, 12, 24, 40, 48, and 72 h). Spore production was influenced significantly by wetness period, temperature, and their interaction. Increasing duration of leaf wetness and increasing temperature generally increased sporulation, with no sporulation occurring at 29°C or 9 and 13°C, except at 72 h of wetness exposure, while it was optimal at 21°C. Detached leaves with profuse conidia were subjected to a range of drying (relative humidity at 65%) times (0, 2, 4, 6, and 8 h) at two temperatures of 21 and 29°C. Conidia were then harvested and plated on water agar. Germinating conidia were counted to measure the spore viability. Spore mortality increased with increasing dryness duration at both temperatures but occurred more quickly and severely at 29 than 21°C. Overall, this study extended biological knowledge of conditions required for crucial stages of the C. pseudonaviculata disease cycle and the obtained results will be vital for developing boxwood blight forecasting and management tools.  相似文献   

11.
12.
Several golf courses established with hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) were surveyed from April 2011 through April 2015 in Hainan Province, China. The hybrid bermudagrass in these golf courses showed a new leaf spot disease, and a filamentous fungus was consistently recovered from the infected leaves. Based on the morphological characteristics of colony color and appearance, shapes of conidiophores and conidia as well as sequences of internal transcribed spacer regions (ITS) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the fungus was identified as Bipolaris peregianensis. The pathogenicity test conducted on healthy hybrid bermudagrass produced leaf spot symptoms one week post inoculation. B. peregianensis mycelia grew in a temperature range of 5 to 35 °C with the optimum temperature being 28 °C.  相似文献   

13.
Ascospores can be collected from dried leaves of white cabbage from the previous season, carrying lesions of the fungus. Discharge of ascospores is stimulated by light and takes place within a broad temperature range (5–20 °C) under humid conditions. A method is described to isolate single ascospores, or to collect sufficient ascospores for small inoculation experiments. In order to screen large numbers of plants under controlled conditions, mycelial fragments can be used as inoculum. Using mycelial fragments requires a long (4–5 days) duration of leaf wetness necessary for infection. Ascospores infected the host plant with a much shorter duration of leaf wetness (<2 days). The results of this study show that the use of mycelial fragments as the inoculum type in infection studies may lead to erroneous conclusions and false recommendations. Results of inoculation with ascospores indicate that the minimum humidity requirement for infection in the field is lower (<2 days) than generally assumed, and that the temperature range for infection by ascospores is at least 10–20 °C.  相似文献   

14.
Bacterial spot disease of stone fruits, caused by Xanthomonas arboricola pv. pruni, is of high economic importance in the major stone-fruit-producing areas worldwide. A better understanding of disease epidemiology can be valuable in developing disease management strategies. The effects of weather variables (temperature and wet/dry period) on epiphytic growth of X. arboricola pv. pruni on Prunus leaves were analyzed, and the relationship between inoculum density and temperature on disease development was determined and modeled. The information generated in this study, performed under controlled environmental conditions, will be useful to develop a forecasting system for X. arboricola pv. pruni. Optimal temperature for growth of epiphytic populations ranged from 20 to 30 °C under leaf wetness. In contrast, multiplication of epiphytic populations was not only interrupted under low relative humidity (RH) (< 40%) at 25 °C, but also resulted in cell inactivation, with only 0.001% initial cells recovered after 72 h incubation. A significant effect of inoculum density on disease severity was observed and 106 CFU/ml was determined as the minimal infective dose for X. arboricola pv. pruni on Prunus. Infections occurred at temperatures from 15 to 35 °C, but incubation at 25 and 30 °C gave the shortest incubation periods (7.7 and 5.9 days respectively). A model for predicting disease symptom development was generated and successfully evaluated, based on the relationship between disease severity and the accumulated heat expressed in cumulative degree day (CDD). Incubation periods of 150, 175 and 280 CDD were required for 5, 10 and 50% of disease severity, respectively.  相似文献   

15.
Citrus black spot (CBS), caused by Phyllosticta citricarpa McAlp Van der Aa, was recently detected in southern Florida in the US. In addition to infected plant propagation materials, movement of infected citrus fruit poses a concern for potential spread of the disease out of the current quarantine zone, because lesions with pycnidia and conidia could develop after harvest. The conditions conducive for mycelial growth and development of pycnidia and conidia are not well known. Therefore, effects of temperature and relative humidity on growth and conidial production of P. citricarpa were determined and used as parameter inputs in CLIMEX to predict potential establishment of CBS in North America. Colony growth and conidial production in vitro were optimal at 27 °C, whereas there was no growth below 4 °C and above 37 °C. On fruit, lesion development and conidial production were observed at 4 °C, though at a low rate, indicating a greater versatility of the fungus on fruit. More full pycnidia were produced on the CBS lesions at 91 % RH compared to 84 %. Input parameters for CBS risk in CLIMEX obtained from literature, which reflected conditions for infection in spring/summer in Florida, predicted potential establishment in Florida but not in California. However, altering the parameter values to account for survival of the pathogen in leaf litter in winter predicted potential establishment in California as well as Florida. Thus, P. citricarpa could possibly establish beyond Florida if this organism is transported outside of the current quarantine zone to other citrus production areas.  相似文献   

16.
The monocyclic phase of Stemphylium vesicarium is part of its life cycle and a possible factor for forecasting and the integrated control of purple spot on asparagus. The purpose of the study was to model the flight, germination and germ tube growth of ascospores as basis for the development of a forecasting system. During 2014–2016, the flight period was determined by spore traps. The ascospores flew between March and early July, but most were released in early May. The cumulative percentage of trapped ascospores depending on the daily summed temperature (base 5 °C) on rainy days starting from February 1st was described best by a Chapman Richards function. The germination and germ tube length of ascospores depending on leaf wetness duration and temperature were investigated in laboratory trials. Ascospores germinated rapidly in a wide temperature range. The fitted Chapman Richards function with a temperature-dependent capacity and rate described germination adequately with a calculated optimal temperature of 31.0 °C. The germ tube length was modelled by a combined generalised beta-linear function and it was optimal at 30.4 °C with a narrow temperature range of 25–35 °C for values close to the optimum length. Therefore, the infection process is restricted more severely by the germ tube length than by germination. The ascospore flight is often finished before the end of the harvest, so fungicide treatments during the monocyclic phase might be ineffective in many production sites in Germany. The situation could be different for shorter harvest periods and in non-harvested young plants.  相似文献   

17.
ABSTRACT Strawberry leaves (cv. Tristar) inoculated with Colletotrichum acuta-tum conidia were incubated at 10, 15, 20, 25, 30, and 35 degrees C under continuous wetness, and at 25 degrees C under six intermittent wetness regimes. The number of conidia and appressoria was quantified on excised leaf disks. In order to assess pathogen survival, inoculated leaves were frozen and incubated to induce acervular development. Germination, secondary3 conidiation, and appressorial development were significantly (P /= 0.95) related to appressorial populations prior to this treatment and was greatest following periods of continuous wetness. Production of secondary conidia and appressoria of C. acutatum on symptomless strawberry leaves under a range of environmental conditions suggests that these processes also occur under field conditions and contribute to inoculum availability during the growing season.  相似文献   

18.
ABSTRACT Experiments were conducted in three prune orchards in California. In each orchard, inoculations with Monilinia fructicola, the causal agent of brown rot of stone fruits, were performed on branches of trees at bloom and fruit developmental stages. Five inoculum concentrations were used in each inoculation. Six and four wetness durations were created for each inoculum concentration at bloom and fruit developmental stages, respectively. Fruit were harvested 3 weeks before commercial harvest. The overnight freezing incubation technique was used to promote sporulation and to determine incidence of latent infection (ILI) of fruit brown rot. No differences in ILI among locations were found. A seasonal pattern of bloom and fruit susceptibility to latent infection was determined. Susceptibility to latent infection at bloom stage was at a moderate level and increased to reach the highest level at pit hardening stage. Subsequently, fruit susceptibility to latent infection decreased, reaching the lowest level in early June at embryo growth stage. Thereafter, the susceptibility increased again with fruit development and maturity until harvest. Linear relationships between ILI and inoculum concentration were obtained for most combinations of growth stage and wetness duration. Incidence of latent infection increased linearly with increased wetness duration at bloom stage and increased exponentially with increased wetness duration at early and late fruit developmental stages. The optimum temperatures for latent infection at pit hardening stage ranged from 14 to 18 degrees C, but the effect of temperature on latent infection was reduced at resistant stages. The temperature range favorable to latent infection varied for different wetness durations.  相似文献   

19.
Infection of onion by Alternaria porri and Stemphylium vesicarium was investigated under a range of controlled temperatures (4–25°C) and leaf wetness periods (0–24 h). Conidia of A. porri and S. vesicarium germinated within 2 h when incubated at 4°C. Terminal and intercalary appressoria were produced at similar frequencies at or above 10°C. The maximum number of appressoria was produced after 24 h at 25°C. Penetration of leaves by both pathogens was via the epidermis and stomata, but the frequency of stomatal penetration exceeded that of epidermal penetration. There was a strong correlation ( R 2 > 90%) between appressorium formation and total penetrations at all temperatures. Infection of onion leaves occurred after 16 h of leaf wetness at 15°C and 8 h of leaf wetness at 10–25°C, and infection increased with increasing leaf wetness duration to 24 h at all temperatures. Interruption of a single or double leaf wetness period by a dry period of 4–24 h had little effect on lesion numbers. Conidia of A. porri and S. vesicarium separately or in mixtures caused similar numbers of lesions. Alternaria porri and S. vesicarium are both potentially important pathogens in winter-grown Allium crops and purple leaf blotch symptoms were considered to be a complex caused by both pathogens.  相似文献   

20.
Experiments were conducted on olive plants in controlled environments to determine the effect of conidial concentration, leaf age, temperature, continuous and interrupted leaf wetness periods, and relative humidity (RH) during the drier periods that interrupted wet periods, on olive leaf spot (OLS) severity. As inoculum concentration increased from 1·0 × 102 to 2·5 × 105 conidia mL?1, the severity of OLS increased at all five temperatures (5, 10, 15, 20 and 25°C). A simple polynomial model satisfactorily described the relationship between the inoculum concentration at the upper asymptote (maximum number of lesions) and temperature. The results showed that for the three leaf age groups tested (2–4, 6–8 and 10–12 weeks old) OLS severity decreased significantly (P < 0·001) with increasing leaf age at the time of inoculation. Overall, temperature also affected (P < 0·001) OLS severity, with the lesion numbers increasing gradually from 5°C to a maximum at 15°C, and then declining to a minimum at 25°C. When nine leaf wetness periods (0, 6, 12, 18, 24, 36, 48, 72 and 96 h) were tested at the same temperatures, the numbers of lesions increased with increasing leaf wetness period at all temperatures tested. The minimum leaf wetness periods for infection at 5, 10, 15, 20 and 25°C were 18, 12, 12, 12 and 24 h, respectively. The wet periods during early infection processes were interrupted with drying periods (0, 3, 6, 12, 18 and 24 h) at two levels of RH (70 and 100%). The length of drying period had a significant (P < 0·001) effect on disease severity, the effect depending on the RH during the interruption. High RH (100%) resulted in greater disease severity than low RH (70%). A polynomial equation with linear and quadratic terms of temperature, wetness and leaf age was developed to describe the effects of temperature, wetness and leaf age on OLS infection, which could be incorporated as a forecasting component of an integrated system for the control of OLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号