首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
In pea, two single recessive genes, er1 and er2, have been identified for resistance to powdery mildew caused by Erysiphe pisi, but little is known about their mode of action. Pea accessions carrying the genes er1 or er2 and other accessions displaying resistance to powdery mildew in the field were studied. In accessions carrying gene er1, epidermal cell penetration was prevented and very few haustoria or colonies were formed. Under controlled conditions, er1 conferred complete or almost complete resistance to the fungal isolates used and this resistance was not associated with macroscopically visible necrosis. Under field conditions these accessions developed a low level of disease. Resistance in line JI2480 (carrying er2) increased with temperature and leaf age, and complete resistance was expressed only at high temperature (25 °C) or in mature leaves. This resistance was based mainly on post-penetration cell death, complemented by a reduction of percentage penetration success in mature leaves. Combining the resistance provided by gene er1 and by line JI2480 into new cultivars is likely to increase their level of resistance and enhance durability of the protection.  相似文献   

2.
Diversity of powdery mildew pathogens infecting pea (Pisum sativum) in the US Pacific Northwest was investigated using both molecular and morphological techniques. Phylogenetic analyses based on rDNA ITS sequences, in combination with assessment of morphological characters, defined two groups of powdery mildews infecting pea. Group I (five field samples and three glasshouse samples) had ITS sequences 99% similar to those of Erysiphe pisi in GenBank and exhibited simple, mycelioid type of chasmothecial appendages typical of E. pisi. Erysiphe pisi is normally considered as the powdery mildew pathogen of pea. Group II (four glasshouse samples and two field samples) had ITS sequences 99% similar to those of E. trifolii and produced chasmothecia with dichotomously branched appendages similar to those of E. trifolii. There are fourteen nucleotide differences in the ITS region between the two groups. The correlation of rDNA ITS sequences with teleomorphic features for each of the two groups confirms their identity. Repeated samplings and artificial inoculations indicate that both E. pisi and E. trifolii infect pea in the US Pacific Northwest. Erysiphe trifolii is not previously known as a pathogen of pea. The existence of two distinct powdery mildew species infecting pea in both glasshouse and field environments may interfere with the powdery mildew‐resistance breeding programmes, and possibly explains putative instances of breakdown of resistance in previously resistant pea breeding lines.  相似文献   

3.
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) is one of the major constraints of pea worldwide. Its control is difficult and is mainly based on the use of resistant cultivars. This study aimed to identify and characterize resistance mechanisms interfering with Fop spore germination, as an additional pre‐penetration resistance mechanism little explored so far. For this, root exudates were collected from 12 pea accessions with differential responses to the disease, from resistant to susceptible, and their effects on Fop germination and growth were determined. While root exudates from most accessions stimulated Fop germination, the root exudates of three accessions, JI 1412, JI 2480 and P42, did not stimulate, or even inhibited, Fop germination. Although some additional compounds might be involved, the analysis showed that the most active metabolite was the pea phytoalexin pisatin. Pisatin was identified in the active fraction of pea root exudate extracts and its amount in the root exudates was negatively correlated with the extent of Fop germination. This suggests an important role of pisatin in the constitutive defence of pea against F. oxysporum.  相似文献   

4.
Abstract

Cercospora leaf spot, caused by Cercospora canescens and powdery mildew, caused by Erysiphe polygoni are two of the most important fungal diseases of mungbeans. Nearly 4000 accessions of the global mungbean collection at the Asian Vegetable Research and Development Center were screened for resistance to these two pathogens. Less than 4% and 12% of the accessions showed resistance to Cercospora leaf spot and powdery mildew, respectively. The level of resistance to Cercospora leaf spot varied and highly resistant lines were not found. A few lines were rated highly resistant to powdery mildew over several years but others were rated moderately resistant or susceptible in other years.  相似文献   

5.
To determine whether Ca2+ promotes powdery mildew penetration, Ca2+-treated barley coleoptiles were inoculated with conidia of pathogenic and nonpathogenic fungi. Penetration efficiency of the pathogenic powdery mildew Blumeria graminis was enhanced by Ca2+ treatment, but that of the necrotrophic pathogen Helminthosporium sp. remained unaffected. Similarly, when actin-dependent penetration resistance is suppressed with cytochalasin A, Ca2+ treatment specifically enhanced penetration of the nonpathogenic powdery mildew Erysiphe pisi but not that of other nonpathogens. Calmodulin inhibitors suppressed the promotive effect of Ca2+ on B. graminis penetration. These results suggest that barley powdery mildew specifically requires Ca2+ and calmodulin for penetration.  相似文献   

6.
Antifungal activity of bergenin, a constituent of Flueggea microcarpa   总被引:1,自引:0,他引:1  
The antifungal activity of bergenin against some plant pathogenic fungi, namely, Alternaria alternata , A. brassicae , A. carthami , Fusarium udum , F. oxysporum f.sp. ciceri , Curvularia lunata and Erysiphe pisi , was studied. Bergenin as its monosodium salt was effective against all the fungi and the effective dose for complete inhibition of spore germination varied from 15 μg mL−1 for F. udum to 125 μg mL−1 for E. pisi . Experiments on the effect of bergenin on powdery mildew development under glasshouse conditions revealed that it can control powdery mildew of pea at 2000 μg mL−1 by postinoculation treatment, the results being comparable with those of carbendazim (1000 μg mL−1) and wettable sulfur (2000 μg mL−1). It affected hyphal elongation and the number of primary and secondary branches.  相似文献   

7.
The aim of small-site experiments carried out in the area of the foothills of the ?umava Mts. was to determine the etiological agent of the disease of meadow peavine (Lathyrus pratensis L.). The experimental locality (Kaplice-Chuchelec) was situated in an altitude of 655?m a.s.l. The investigation was accomplished in the years 2004–2005. During the vegetation period we observed whitish to grey-white soft cover of mycelium on the leaves of meadow peavine. These characteristic symptoms of powdery mildew (Erysiphe trifolii Grev.) were found on the plants in the observed area at the end of summer and in autumn. In the area of interest with permanent grassland we evaluated the following variants: first M – mulched stands (mulched once), second L – fallow stands, third K – mown stands (mowing once to three times), and fourth P – pasture stands (grazed by cattle twice to four times). The observed stands were managed in different ways from 2000, and in relation to the ways and intensity of management we observed the changes and coverage of creeping legumes including Lathyrus pratensis. Phytopathological analysis of plants with the symptoms of Erysiphe fungi attack was accomplished in all variants and repetitions during the whole vegetation period. The observation of particular variants was carried out in four repetitions, the size of the sites being 30?m2 (4?×?30?m2), and we evaluated the total number of Lathyrus pratensis plants as well as the number of the plants attacked by powdery mildew. Powdery mildew occurrence on Lathyrus pratensis at different management methods of grass stands was statistically processed (in STATISTICA program). The three-year investigation of Lathyrus pratensis L. yielded statistical evidence that the most significant growth of fungal disease Erysiphe trifolii Grev. was recorded in fallow stands. On the other hand, the least occurrence of the disease was found in the pasture stands, which were grazed by the cattle.  相似文献   

8.
The new systemic fungicide N,N'-bis-(1-formamido-2,2,2-trichloroethyl)-piperazine (CELA W 524) was shown to display a moderate to distinct fungitoxic activity in vitro towards several pathogenic and non-pathogenic fungi. Depending on the inert ingredients present2, the available formulations proved to be either rather phytotoxic or virtually non-phytotoxic. Pre-infectional spraying with the non-phytotoxic formulation provided complete protection of barley, bean, cucumber, pea and tomato plants against barley powdery mildew, bean rust, cucumber powdery mildew and cucumber scab, pea powdery mildew and tomato leaf mould, respectively. some suppression of disease symptoms —although only at high concentrations of CELA W 524 — was observed in the case of leaf spot in pea plants. Upon post-infectional treatment disease control was less pronounced, although powdery mildew diseases and tomato leaf mould were effectively suppressed. When applied via the roots CELA W 524 proved to be systemically active, successfully protecting barley plants against powdery mildew, and cucumber plants against powdery mildew and cucumber scab.Samenvatting Het nieuwe systemische fungicide CELA W 524 (C. H. Boehringer Sohn, Ingelheim am Rhein, Duitsland) bleek een matige tot duidelijke fungitoxische werking in vitro te vertonen tegenover verschillende pathogene en niet-pathogene schimmels. Eén van de beschikbare formuleringen bleek vrij sterk fytotoxisch, de andere was nagenoeg niet fytotoxisch. Bespuiting vóór inoculatie met de niet-fytotoxische formulering resulteerde in volledige bescherming van gerst, bonen, komkommers, erwten en tomaten tegen respectievelijk gerstemeeldauw, boneroest, komkommermeeldauw en vruchtvuur, erwtemeeldauw en bladvlekkenziekte bij tomaat. Enige onderdrukking van ziektesymptomen trad ook op bij erwten, geïnoculeerd metAscochyta pisi, tenminste, wanneer hoge concentraties van CELA W 524 werden gebruikt. Bij bespuiting na inoculatie was het effect geringer, hoewel meeldauwziekten en bladvlekkenziekte bij tomaat toch doeltreffend bestreden werden. Toegediend via de wortels bleek CELA W 524 systemisch actief; het beschermde aldus gerst tegen meeldauw en komkommers tegen meeldauw en vruchtvuur.  相似文献   

9.
Cashew powdery mildew is presently the most important disease of cashew trees in all Brazilian growing regions. Although it was described over a century ago, it had never threatened the Brazilian cashew industry until the first decade of the 21st century. Morphological and pathogenic evidence indicated the possibility of different pathogen species being involved in early and late types of cashew powdery mildew. This study was designed to elucidate this issue by comparing two different powdery mildew fungi occurring on cashew plants in Brazil according to the morphological characteristics, phylogenetic relationships with closely related powdery mildew fungi and pathogenic relationships. Based on morphology, molecular phylogenetics and pathogenicity on cashew, it was shown that two species of powdery mildew specimens are without question associated with cashew trees. One species, which infects young immature tissues such as shiny leaves, flowers and young fruits, is Erysiphe quercicola, while Erysiphe necator is associated exclusively with mature leaves. This is the first report of both E. quercicola and E. necator causing cashew powdery mildew, and the first detection of E. necator on cashew.  相似文献   

10.
Adenine and adenosine are metabolized by the adenine salvage pathway during primary infection of barley powdery mildew, Erysiphe graminis f.sp. hordei. Operation of this pathway was affected by the hydroxypyrimidine fungicide, ethirimol. Adenosine deaminase, ADAase, which was detected in mildew conidia and infected plants, but not in healthy barley, was the only enzyme in this pathway inhibited by the fungicide in in vitro assays. This feature of the mildew enzyme was unusual, and correlates with the specificity of hydroxypyrimidines which act against powdery mildews only. Other properties of this enzyme were similar to ADAase from other sources. In structure/activity studies with dimethirimol analogs, poor fungicidal activity was often associated with failure to inhibit ADAase, especially when assayed during appressoria formation. Purine derivatives were much less specific, and their mode of action against powdery mildew is probably different. Ethirimol resistance was not related to changes in ADAase, nor was the fungicide altered to an inactive metabolite. It is concluded that ADAase is one site of hydroxypyrimidine action.  相似文献   

11.
Aerated compost tea (ACT), prepared from immature compost, was applied to foliage and fruit of grapevines (Vitis vinifera) to assess its potential for suppressing two important diseases: botrytis bunch rot, caused by Botrytis cinerea, and powdery mildew, caused by Erysiphe necator. An ACT applied to leaves of Cabernet Sauvignon vines in pots 7 days before inoculation with E. necator conidia reduced mean powdery mildew severity on the three youngest expanded leaves (at inoculation) to less than 1 %; mean severity on non-treated, inoculated leaves was 15 %. Multiple applications of ACTs at two vineyards in different growing seasons suppressed powdery mildew to <1 % mean severity on Chardonnay leaves (non-treated 79 % severity) and bunches (non-treated 77 % severity), and on Riesling leaves (non-treated 24 % severity). The same treatments reduced the incidence of Chardonnay bunches with latent B. cinerea and Riesling bunches with sporulating B. cinerea, although the level of botrytis bunch rot in both experiments was not economically damaging. The numbers of culturable bacteria, fungi and yeasts on Chardonnay leaves were higher than pre-treatment levels 10 days after ACT application, as were fungal numbers on Riesling leaves 21 days after treatment. Suppression by ACTs of two fruit and foliar pathogens of grapevine with different biology and epidemiology indicated potential for their use as a tactic in integrated disease management. Further testing of ACTs in a range of viticultural environments and application regimes will contribute to a better understanding of the impact of this tactic on disease, grape and wine quality.  相似文献   

12.
Powdery mildew caused by Blumeria graminis DC. f. sp. avenae Em. Marchal. is a deleterious foliar disease of common oat which occurs in many parts of the world. Resistance existing in oat cultivars is broken down by new races of this pathogen and because of this fact there is necessity to look for new and effective sources of resistance to powdery mildew in oat. To identify new potential resistance sources to powdery mildew, a total of 67 oat genotypes from five different species Avena sterilis, A. fatua, A. sativa, A. maroccana and A. murphyi and 20 powdery mildew isolates were investigated for disease reactions. Among tested oat accessions the highest level of resistance was associated with A. maroccana genotypes. Genotypes belonging to species of A. murphi and A. sterilis also showed a good level of resistance. Identified genotypes could be used in oat breeding programmes to improve levels of resistance to powdery mildew.  相似文献   

13.
The antifungal properties of two phosphonates (fosetyl-Al and a fertilizer) and acibenzolar-S-methyl (ASM) were evaluated to assess their potential for protecting grapevine leaves against grapevine mildews (Plasmopara viticola and Erysiphe necator), and to determine their effects on the development of various mildew isolates, taking into account the inter- and intra-species variability of the pathogens. The phosphonates directly and significantly inhibited the growth of these pathogens. By contrast, ASM had no direct effect on spore production and growth of P. viticola and of E. necator at 1.9 mM. Applied before inoculation, the mean EC50 of ASM was 0.50?±?0.04 mM and 1.00?±?0.07 mM for downy and powdery mildew isolates, respectively. The EC50 of the fosetyl-aluminium (FOS) was 0.50?±?0.02 mM for downy mildew and the EC50 for powdery mildew varied depending on the genetic group under consideration (0.89?±?0.32 mM for group B 3.30?±?0.46 mM for group A, respectively). The EC50 of the potassium phosphonate fertilizer (PK2) was 0.96?±?0.45 mM for downy and 6.9?±?0.76 mM for powdery mildew isolates. These compounds showed differences in their efficacy depending on the variability of mildews and could be an alternative or additional method to traditional pest management in the grapevine.  相似文献   

14.
Ethirimol, a hydroxypyrimidine fungicide active against powdery mildews only, inhibited the formation of appressoria during primary infection of barley powdery mildew, Erysiphe graminis f.sp hordei. It also affected other stages of mildew development. Several adenine analogs had similar effects and ethirimol-resistant mildew strains were generally cross-resistant to these. Adenine and adenosine reduced the fungitoxicity of ethirimol. During the formation of appressoria [3H]adenine was incorporated into RNA but [14C]glycine was not, suggesting that purine biosynthesis did not occur. Ethirimol inhibited this RNA synthesis and it is concluded that the fungicide may interfere with adenine metabolism at some site subsequent to its synthesis.  相似文献   

15.
Fusarium oxysporum f. sp. pisi (Fop) is an important pathogen of field pea (Pisum sativum) worldwide. The constant evolution of the pathogen drives the necessity to broaden the genetic basis of resistance to Fop. To achieve this, it is important to have a large germplasm collection available and an accurate and efficient method for disease assessment. Here, a detailed evaluation method coupling disease incidence, disease rating over time and its related area under the disease progression curve (AUDPC) was established and used to screen a Pisum spp. germplasm collection against one isolate of Fop race 2. A large variation in the disease response of specific pea accessions ranging from highly resistant to susceptible was observed within the collection, indicating the quantitative expression of the resistance. The repetition of the inoculation experiments on a subset of 19 accessions, including two susceptible accessions, indicated that the scoring method was robust and reproducible and confirmed the highly resistant phenotypes of 11 accessions. To initiate the characterization of resistance mechanisms within these accessions, the external and internal stem symptoms were compared between these selected pea accessions, together with the extent of fungal colonization within plants. All these tests indicated that, in all resistant accessions, the resistance mechanisms efficiently stopped pathogen progression at the crown. Incorporation of these sources of resistance to breeding programmes will contribute to improved Fop resistance in pea cultivars.  相似文献   

16.
Jasmonic acid (JA) signalling plays an important role in plant resistance to pathogens. Previously, JA has been found to play a role in induced disease resistance to necrotrophic pathogens in various plant species, but current researches showed that JA also enhanced resistance to biotrophic pathogens. However, its role in wheat (Triticum aestivum L.) powdery mildew (Blumeria graminis f. sp. tritici, Bgt) resistance reaction is largely unknown. To settle this issue, several typical powdery mildew resistant and susceptible wheat varieties were employed. The sensitivity to exogenous methyl jasmonate (MeJA) to wheat powdery mildew resistance, the concentration fluctuation of endogenous JAs after Bgt inoculation, and the expression profiles of nine pathogenesis-related protein genes (PR genes) after MeJA and Bgt treatments were studied systematically. Exogenous MeJA significantly enhanced the powdery mildew resistance of the susceptible varieties. After inoculation with Bgt, endogenous JAs accumulated rapidly, reached the maxima at 2 to 5 h post-inoculation (hpi), then decreased rapidly, and the concentration was almost the same as that of un-inoculated control at 96 hpi. The expression levels of the nine PRs were measured by real time quantitative RT-PCR (qRT-PCR) at different time points after MeJA application or Bgt inoculation respectively. The MeJA and Bgt strongly activated PR1, PR2, PR3, PR4, PR5, PR9, PR10 and Ta-JA2, but almost didn’t affect Ta-GLP2a. The induced powdery mildew resistance was positively correlated with the activated PR genes. JA plays a positive role in defence against Bgt. JA is a signalling molecule in wheat powdery mildew resistance and future manipulation of this pathway may improve powdery mildew resistance in wheat breeding.  相似文献   

17.
Powdery mildew caused by Erysiphe necator is one of the most important diseases affecting grapevine (Vitis vinifera, L.). Control of this pathogen is based on the use of fungicides, which cause environmental damage and increase production costs. A cost-effective and environmentally friendly alternative to control the disease relies on using resistant varieties. While most V. vinifera cultivars are susceptible to powdery mildew, several species belonging to the Vitaceae have been described as resistant. Several loci for resistance to grapevine powdery mildew have been identified through genetic analysis of segregating populations derived from different resistance sources. Identifying quantitative trait loci (QTL) with minor effects on the resistance may prove valuable in a strategy of pyramiding, which aims at increasing the durability of the resistance. However, current methods for evaluation of resistance either do not take into account quantitative variations, or, if they do, are not adapted to large sample sets. Here we develop a method for the analysis of quantitative resistance to grapevine powdery mildew in large populations. We devised a semi-quantitative resistance scale and confirmed the usefulness of a cell counter to quantify sporulation. We compared three inoculation methods and identified dry inoculation using a settling tower as the one giving the best infection. Finally, we confirmed the value of the method by applying it to a set of plants segregating for resistance to E. necator. Using the method described here for the quantitative analysis of the resistance to powdery mildew will prove valuable for breeding for durable resistance.  相似文献   

18.
Seven chloraniformethan analogues, which were predicted, on the basis of the quantitative Hansch analysis performed previously, to be as active as the parent compound against barley powdery mildew (Erysiphe graminis), were prepared. Their activity as leaf sprays against E. graminis was much lower than that calculated using the regression equations, indicating that the Hansch analysis is not a suitable method for predicting fungitoxicity in this chloraniformethan series of compounds.  相似文献   

19.
Hazelnut (Corylus avellana L.) which is intensively grown in the Black Sea region is the most important agricultural product of Turkey. Hazelnut production and quality are negatively affected by several diseases and pests. Powdery mildew is nowadays one of the most common diseases in almost whole hazelnut producing areas. The disease is caused by two different species, Phyllactinia guttata (Wallr. et Lev.) Fr. and Erysiphe corylacearum U. Braun & S. Takam. For the last 4 years, E. corylacearum, a newly invasive fungus in Turkey, has been caused significant economic losses. In the present study, the efficacy of ammonium, potassium and sodium bicarbonates, and two fungicides were evaluated in field trials against powdery mildew on hazelnuts in Samsun in 2016. The application rates of compounds used in the experiment were as follows: ammonium, potassium and sodium bicarbonates (Sigma-Aldrich, Seelze, Germany) at 1.5, 3, 4.5 and 6% (w/v); Collis® SC (100?g/l Kresoxim methyl +200?g/l Boscalid, BASF, Spain) at 30?ml/100?l and Sulflow® 80 WG (Sulphur 800?g/l, Agrofarm, Turkey) at 400?g/100?l. Of the compounds tested, except for fungicides, sodium was found to be the most effective in controlling the powdery mildew on hazelnuts, followed by potassium and ammonium, respectively. Among those three, ammonium bicarbonate was ineffective against fruit infections of the disease. There was also no significant difference between inhibitory effects of 6% sodium bicarbonate, Collis and Sulflow against the disease (P < 0.05). In addition, bicarbonate salts was phytotoxic to hazelnut leaves at concentrations greater than 1.5%. The results indicate that sodium or potassium bicarbonate solutions seems to be a useful biocompatible fungicide for controlling the powdery mildew on hazelnuts.  相似文献   

20.
Resistance to powdery mildew was induced in barley by preinoculation with virulent and avirulent races of barley powdery mildew ( Erysiphe graminis f.sp. hordei ), and with a race of wheat powdery mildew ( E. graminis f.sp. tritici ). Four inducer densities were tested in 13 different induction periods between 1 and 24 h. Generally, the resistance induced by barley powdery mildew increased up to 10-12 h of induction and was maintained in longer induction periods. The inducing abilities of virulent and avirulent races could not be distinguished up to 10-12 h of induction, after which the inducing ability of avirulent races increased significantly in relation to virulent races. Wheat powdery mildew was able to induce more resistance than barley powdery mildew in induction periods up to 8 h. In a single inoculation procedure the number of haustoria developing from virulent barley powdery mildew decreased as inoculum density increased. The effect was ascribed to induction of resistance. This reduction of infection efficiency in the compatible interaction was compared to induced resistance. However, the inoculum density needed for 50% resistance induction in the double inoculation procedure was approximately 40 times higher than the inoculum density needed for 50% reduction in infection efficiency in the single inoculation procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号