首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
文章对尾菜和小麦秸秆两级联合厌氧发酵工艺进行了研究,结果表明,第1级尾菜发酵后的沼液用作第2级发酵的接种物,对小麦秸秆进行喷淋和浸泡,有效地提高了产气率,缩短了产气周期。试验结果显示,在中温(35℃)发酵条件下,尾菜厌氧发酵最大负荷为3.2 kg·m-3d-1TS,容积产气率为2.72 m^3·m-3d-1;小麦秸秆厌氧干发酵启动时间加快至1~2 d,发酵周期缩短至40 d,小麦秸秆和尾菜沼液混合原料TS产气率达到334.26 mL·g-1。  相似文献   

2.
研究以餐厨垃圾为原料,在中温(37℃)和高温(55℃)条件下开展批次试验。通过测定各项产气指标探究不同温度对餐厨垃圾厌氧发酵产气性能的影响,并采用Gompertz模型和一级动力学模型对中温和高温条件下餐厨垃圾厌氧发酵累计产甲烷量进行拟合。结果表明,高温厌氧发酵最大产甲烷潜能为398.33 mL·g-1VS,高出中温发酵32.37%,高温条件下餐厨垃圾厌氧发酵累积沼气产量和甲烷产量分别为665.89和399.41 mL·g-1VS,显著高于中温条件下的累积沼气产量及甲烷产量。餐厨垃圾高温发酵甲烷生成速率常数k为0.43558 d-1,高于中温发酵动力学常数(k=0.31367 d-1),餐厨垃圾高温厌氧发酵产甲烷速率高于中温发酵。综上所述,相较于中温条件,高温条件下餐厨垃圾批次厌氧发酵产气性能更优异。  相似文献   

3.
文章以冰糖橙皮为原料,采取中温(29℃±1℃)的条件下进行批量式沼气发酵试验,实验采用3个不同TS含量的接种物进行发酵,发酵时间分别为45 d,38 d,30 d。实验结果表明,冰糖橙皮在厌氧活化污泥TS为6.58%,8.04%,11.76%的含量下,产气潜力分别为214 mL·g~(-1)TS,245 mL·g~(-1)TS,386 mL·g~(-1)TS;225 mL·g~(-1)VS,258mL·g~(-1)VS,406 mL·g~(-1)VS,是一种可行的沼气发酵原料,为冰糖橙皮提供了新的资源化利用途径。  相似文献   

4.
文章为探究猪肉的资源化利用潜力,对新鲜购买的猪肉进行厌氧消化实验,分别以猪皮、猪瘦肉和猪脂肪为实验原料,实验温度为30℃,采用批量式发酵工艺,进行发酵产沼气实验。整个实验分别历时76 d,113 d和83 d,总产气量分别为13660 mL,18850 mL和14780mL,平均甲烷含量分别为64%,66%和63%,产沼气潜力分别为1139 mL·g-1TS,1571 mL·g-1TS和1231 mL·g-1TS或1159 mL·g-1VS,1687 mL·g-1VS和1257 mL·g-1VS。结果表明厌氧工艺可以很好地实现病死猪肉的资源化利用。  相似文献   

5.
啤酒糟产沼气潜力试验研究   总被引:1,自引:0,他引:1  
文章以啤酒糟为发酵原料,在厌氧发酵温度35℃±1℃条件下进行序批式沼气发酵试验,发酵历时60 d,总固体TS浓度为6%时,其原料产气率为115 mL·g~(-1),TS产气率为139 mL·g~(-1)TS,VS产气率为149 mL·g~(-1)VS,池容产气率为0.11 mL·mL~(-1)d~(-1)。结果表明,啤酒糟是较好的沼气发酵原料。  相似文献   

6.
为解决蜀葵废弃物浪费及污染环境问题,以蜀葵叶子、蜀葵秸秆、蜀葵花籽为原料,分别进行中温(35℃±1℃)条件批量式沼气发酵实验;发酵料液的TS浓度均为6%,沼气发酵实验的运行时间为22 d。实验结果表明:蜀葵叶子、蜀葵秸秆、蜀葵花籽发酵产沼气的潜力分别为397 mL·g~(-1)TS,481 mL·g~(-1)VS; 264 mL·g~(-1)TS,280 mL·g~(-1)VS; 290 mL·g~(-1)TS,314 mL·g~(-1)VS;池容产气率分别为0.39 mL·mL~(-1)d~(-1),0.26 mL·mL~(-1)d~(-1),0.28 mL·mL~(-1)d~(-1),蜀葵叶子的产气潜力明显大于蜀葵花籽和蜀葵秸秆的产气潜力,且蜀葵叶子的甲烷含量也较后两者高,说明蜀葵叶子产出的沼气品位较后两者好。与其他原料相比表明:蜀葵适合用作发酵产沼气的原料,且蜀葵叶子发酵产出的沼气品质较好。  相似文献   

7.
接种物的特性关系到能否正常启动厌氧消化系统,是厌氧消化系统启动成败的关键所在。以牛粪(NF)、秸秆厌氧消化液(ZY)和餐厨干发酵物出料(CN)3种接种物为研究对象,研究了不同接种物对不同原料产氢烷潜力的影响及其微生物群落结构特性。结果表明:厨余-CN和玉米秸秆-NF组的最高产甲烷和产氢速率分别为42.4和26.5 mL·g-1VS·d-1。玉米秸秆-NF组的累积甲烷产量最高为80.9 mL·g-1VS,分别比其它实验组累积产甲烷量高出18.1%~255.4%。玉米秸秆-NF组在产甲烷和产氢气方面均为最优,其次是厨余-CN组。Proteiniphilum(16.2%)、Turicibacter(12.6%)和Methanocorpusculum(80.5%)、Methanobrevibacter(18.6%)是NF接种物在属水平上的优势细菌和古菌。因此,不同微生物样本的微生物群落结构存在较大显著性差异,不同原料的产氢烷潜力均受不同接种物中的多种微生物种类和丰度的影响,牛粪接种物消化玉米秸秆原料的产氢产甲烷潜力最优。  相似文献   

8.
厌氧发酵产沼气是秸秆利用的主要途径之一,而秸秆的有效贮存是保障秸秆沼气工程周年稳定运行的关键。该研究以麦秸为试验材料,研究了含水率为75%的麦秸,在氧分压分别为21%(未气调),17%,13%条件下贮存30天的性状变化,通过中温厌氧发酵试验探索贮存后麦秸的发酵潜力。结果表明,未气调的麦秸贮存30天后,干物质损失率为36.73%;而进行气调的处理组,氧分压分别为17%,13%,其干物质损失分别为12.56%和11.00%,分别较对照组降低了24.17%和25.73%;未气调贮存的麦秸TS产气量分别为66.25±0.53 mL·g-1TS,氧分压为13%的麦秸TS产气量(191.93±1.54 mL·g-1TS)比氧分压为17%的麦秸TS产气量(171.43±1.22 mL·g-1TS)提高了11.9%。结果表明:气调作为麦秸贮存与预处理方法,在技术上是可行的,可以确保沼气工程周年稳定运行的原料供应。  相似文献   

9.
试验研究了以甜高粱秸秆非粮乙醇生产过程中形成的酒糟为原料进行沼气发酵的特性。分析了温度、TS浓度、接种物添加量以及pH值等条件对酒糟沼气发酵的影响。研究结果表明,在高温55℃,TS浓度3.3%,接种物添加量1.5%,并在发酵前对发酵液pH值进行调节的条件下,酒糟产气在第9天达到最大峰值3710 m L·d-1,产气周期为32天,原料产气率高达509 m L·g-1TS。研究结果可为以酒糟为原料进行的沼气发酵提供一定的理论依据。  相似文献   

10.
文章以生产甾体类药物过程中的药渣为原料,进行批量式和半连续式沼气发酵实验。通过批量沼气发酵实验测定药渣的发酵情况和产沼气潜力。采用CSTR反应器进行半连续沼气发酵实验。批量实验结果表明:在温度为32℃和TS浓度为3.8%的条件下发酵,药渣的产气潜力达到667 mL·g~(-1)TS和748 mL·g~(-1)VS。在温度为28℃,32℃,36℃和TS浓度为5%的条件下进行发酵,28℃下药渣的产气潜力达到514 mL·g~(-1)TS和576 mL·g~(-1)VS;32℃下药渣的产气潜力达到539 mL·g~(-1)TS和604 mL·g~(-1)VS;36℃下药渣的产气潜力达到601 mL·g~(-1)TS和674 mL·g~(-1)VS。Gompertz模型的拟合结果也较好地反应了批量发酵过程中物料降解情况。半连续沼气发酵实验设置发酵TS浓度为4%和5%,发酵温度为30℃,水力滞留时间为15 d。实验结果表明:CSTR反应器最高日产气量达11 L,稳定期日均产气量为9413 mL。池容产气率最高达1.02 L·L~(-1)d~(-1),沼气中的甲烷含量达到60%以上。甾体制药渣具有良好的产沼气潜力,适宜应用于沼气工程,是一种具有广阔开发前景的生物质资源。  相似文献   

11.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

12.
In Mexico, corn production, part of which is sweet corn, is mainly destined for human consumption. In the present work, the morphological quality of sweet corn ears was assessed in response to four levels of soil moisture tension indicating irrigation start (−5, −30, −55, and −80 kPa) and three levels of phosphate fertilization (60, 80 and 100 kg ha−1) in carstic soils in the south-east of Mexico. A factorial experimental design with three replicates was used. The following variables were determined: fresh weight (SCFWh), dry weight (SCDWh), diameter (SCDh), and length (SCLh) of sweet corn ears, all without husk, as well as number of kernels (NKxE), number of unfilled kernels (NUK), number of rows (NRxE), and dry kernel weight per ear (DKW). Yield of fresh (YFSCh) and dry (YDSCh) sweet corn ears, both without husk, and the harvest index (HI) were also determined. HI did not show significant statistical differences among irrigation or fertilization treatments. Regarding the other variables, the effect of the more humid treatments (−5 and −30 kPa) and the effect of the higher phosphorus doses (80 and 100 kg ha−1) were statistically equal (P ≤ 0.01) with the lowest NUK and the highest values of all other variables; therefore, irrigation start at soil moisture tension of −30 kPa and phosphate fertilization application of 80 kg ha−1 are recommended. At this level of soil moisture, the mean values over the three fertilization levels and all the replicates, obtained for SCFWh, SCDh, SCLh and NKxE were 198.5 g, 4.39 cm, 26.72 cm and 467 grains, respectively. According to the regression models, moisture tensions from −11.8 to −24.0 kPa, and phosphate fertilization doses from 87.7 to 102.2 kg ha−1 minimize NUK and maximize the values of the rest of the variables. The highest irrigation water use efficiency was found in the moisture tension treatment of −30 kPa with an increase of 27 kg ha−1 ears for each millimeter of applied irrigation water.  相似文献   

13.
Grapevines are extensively grown in the semiarid and arid regions, but little information is available on the variability of energy partitioning and resistance parameters for the vineyard. To address this question, an eddy covariance system was applied to measure energy balance over a vineyard in northwest China during 2005-2006. Result indicated that 2-year average Bowen ratio (β) of vineyard was 1.0, canopy resistance (rc) 289.3 s m−1, aerodynamic resistance (ra) 9.7 s m−1 and climatological resistance (ri) 117 s m−1. This implied that the annual energy was split almost equally between sensible heat and latent heat. Compared to the corresponding values in other ecosystems reported by Wilson et al. [Wilson, K.B., Baldocchi, D.D., Aubinet, M., Berbigier, P., Bernhofer, C., Dolman, H., Falge, E., Field, C., Goldstein, A., Granier, A., Grelle, A., Halldor, T., Hollinger, D., Katul, G., Law, B.E., Lindroth, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., Vesala, T., Wofsy, S., 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resource Research 38, 1294-1305.], the vineyard had a higher β, rc and ri than deciduous forests, corn and soybean, and grassland. Such difference was mainly attributed to (1) serious water stress in 2005, which resulted in a greater rc up to 364.4 s m−1; (2) sparse canopy with row spacing of 2.9 m and plant spacing of 1.8 m; (3) warm-dry climate and high attitude (1581 m) along with higher ri and lower psychrometer (54 Pa K−1) in the arid region of northwest China. These characters of vineyard revealed varying process of energy partitioning and surface resistance, and provided a scientific basis in understanding and modeling water and energy balance for the vineyard in the semiarid and arid regions.  相似文献   

14.
The efficient use of water by modern irrigation systems is becoming increasingly important in arid and semi-arid regions with limited water resources. This study was conducted for 2 years (2005 and 2006) to establish optimal irrigation rates and plant population densities for corn (Zea mays L.) in sandy soils using drip irrigation system. The study aimed at achieving high yield and efficient irrigation water use (IWUE) simultaneously. A field experiment was conducted using a randomized complete block split plot design with three drip irrigation rates (I1: 1.00, I2: 0.80, and I3: 0.60 of the estimated evapotranspiration), and three plant population densities (D1: 48,000, D2: 71,000 and D3: 95,000 plants ha−1) as the main plot and split plot, respectively. Irrigation water applied at I1, I2 and I3 were 5955, 4762 and 3572 m3 ha−1, respectively. A 3-day irrigation interval and three-way cross 310 hybrid corn were used. Results indicated that corn yield, yield components, and IWUE increased with increasing irrigation rates and decreasing plant population densities. Significant interaction effects between irrigation rate and plant population density were detected in both seasons for yield, selected yield components, and IWUE. The highest grain yield, yield components, and IWUE were found for I1D1, I1D2, or I2D1, while the lowest were found for I3D2 or I3D3. Thus, a high irrigation rate with low or medium plant population densities or a medium irrigation rate with a low plant population density are recommended for drip-irrigated corn in sandy soil. Crop production functions with respect to irrigation rates, determined for grain yield and different yield components, enable the results from this study to be extrapolated to similar agro-climatic conditions.  相似文献   

15.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

16.
Based on successive observation, fifteen-day evapotranspiration (ETc) of Populus euphratica Oliv forest, in the extreme arid region northwest China, was estimated by application of Bowen ratio-energy balance method (BREB) during the growing season in 2005. During the growing season in 2005, total ETc was 446.96 mm. From the beginning of growing season, the ETc increased gradually, and reached its maximum value of 6.724 mm d−1 in the last fifteen days of June. Hereafter the ETc dropped rapidly, and reached its minimum value of 1.215 mm d−1 at the end of growing season. The variation pattern of crop coefficient (Kc) was similar to that of ETc. From the beginning of growing season, the Kc value increased rapidly, and reached its maximum value of 0.623 in the last fifteen days of June. Afterward, with slowing growth of P. euphratica, the value dropped rapidly to the end of growing season. According to this study, the ETc of P. euphratica forest is affected not only by meteorological factors, but by water content in soil.  相似文献   

17.
To investigate the relationship between stable carbon isotope discrimination (Δ) of different organs and water use efficiency (WUE) under different water deficit levels, severe, moderate and low water deficit levels were treated at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages of field grown pear-jujube tree, and leaf stable carbon isotope discrimination (ΔL) at different growth stages and fruit stable carbon isotope discrimination (ΔF) at fruit maturation stage were measured. The results indicated that water deficit had significant effect on ΔL at different growth stages and ΔF at fruit maturation stage. As compared with full irrigation, the average ΔL at different growth stages and ΔF at fruit maturation stage were decreased by 1.23% and 2.67% for different water deficit levels, respectively. ΔL and ΔF among different water deficit treatments had significant difference at the same growth stage (P < 0.05). Under different water deficit conditions, significant relationships between the ΔL and WUEi (photosynthesis rate/transpiration rate, Pn/Tr), WUEn (photosynthesis rate/stomatal conductance of CO2, Pn/gs), WUEy (yield/crop water consumption, Y/ETc) and yield, or between the ΔF and WUEy and yield were found, respectively. There were significantly negative correlations of ΔL with WUEi, WUEn, WUEy and yield (P < 0.01) at the fruit maturation stage, or ΔL with WUEi and WUEn (P < 0.01) over whole growth stage, respectively. ΔF was negatively correlated with WUEy, WUEn and yield (P < 0.05), but positively correlated with ETc (P < 0.01) over the whole growth stage. Thus ΔL or ΔF can compare WUEn and WUEy, so the stable carbon isotope discrimination method can be applied to evaluate the water use efficiency of pear-jujube tree under the regulated deficit irrigation.  相似文献   

18.
The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008-2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50-60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72 ± 0.06 and it increased to 0.99 ± 0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration.Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14 ± 0.03) than in aerobic fields (0.24 ± 0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81 ± 0.21 mm d−1) than the flooded rice fields (4.29 ± 0.23 mm d−1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, Kc, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, Kc values were 0.95 ± 0.01 for the vegetative stage, 1.00 ± 0.01 for the reproductive stage, 0.97 ± 0.04 for the ripening stage and 0.88 ± 0.03 for the fallow period, whereas, for flooded rice, Kc values were 1.04 ± 0.04 for the vegetative stage, 1.11 ± 0.05 for the reproductive stage, 1.04 ± 0.05 for the ripening stage and 0.93 ± 0.06 for the fallow period. The average annual ET was 1301 mm for aerobic rice and 1440 mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42 ± 0.03 g grain kg−1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg−1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress.The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems.  相似文献   

19.
Free-drainage or “open” substrate system used for vegetable production in greenhouses is associated with appreciable NO3 leaching losses and drainage volumes. Simulation models of crop N uptake, N leaching, water use and drainage of crops in these systems will be useful for crop and water resource management, and environmental assessment. This work (i) modified the TOMGRO model to simulate N uptake for tomato grown in greenhouses in SE Spain, (ii) modified the PrHo model to simulate transpiration of tomato grown in substrate and (iii) developed an aggregated model combining TOMGRO and PrHo to calculate N uptake concentrations and drainage NO3 concentration. The component models simulate NO3-N leached by subtracting simulated N uptake from measured applied N, and drainage by subtracting simulated transpiration from measured irrigation. Three tomato crops grown sequentially in free-draining rock wool in a plastic greenhouse were used for calibration and validation. Measured daily transpiration was determined by the water balance method from daily measurements of irrigation and drainage. Measured N uptake was determined by N balance, using data of volumes and of concentrations of NO3 and NH4+ in applied nutrient solution and drainage. Accuracy of the two modified component models and aggregated model was assessed by comparing simulated to measured values using linear regression analysis, comparison of slope and intercept values of regression equations, and root mean squared error (RMSE) values. For the three crops, the modified TOMGRO provided accurate simulations of cumulative crop N uptake, (RMSE = 6.4, 1.9 and 2.6% of total N uptake) and NO3-N leached (RMSE = 11.0, 10.3, and 6.1% of total NO3-N leached). The modified PrHo provided accurate simulation of cumulative transpiration (RMSE = 4.3, 1.7 and 2.4% of total transpiration) and cumulative drainage (RMSE = 13.8, 6.9, 7.4% of total drainage). For the four cumulative parameters, slopes and intercepts of the linear regressions were mostly not statistically significant (P < 0.05) from one and zero, respectively, and coefficient of determination (r2) values were 0.96-0.98. Simulated values of total drainage volumes for the three crops were +21, +1 and −13% of measured total drainage volumes. The aggregated TOMGRO-PrHo model generally provided accurate simulation of crop N uptake concentration after 30-40 days of transplanting, with an average RMSE of approximately 2 mmol L−1. Simulated values of average NO3 concentration in drainage, obtained with the aggregated model, were −7, +18 and +31% of measured values.  相似文献   

20.
In 2004 and 2005, the feasibility of agricultural use of saline aquaculture wastewater for irrigation of Jerusalem artichoke and sunflower was conducted in the Laizhou region using saline aquaculture wastewater mixed with brackish groundwater at different ratios. Six treatments with different electrical conductivities (EC) were included in the experiment: CK1 (rainfed), CK2 (irrigation with freshwater, EC of 0.02 dS m−1), and saline aquaculture wastewater (EC of 39.2 dS m−1) mixed with brackish groundwater (EC of 4.4 dS m−1) at volumetric ratios of 1:1, 1:2, 1:3, and 1:4 with corresponding EC of 22.0, 16.1, 13.2, and 11.4 dS m−1. Soil electrical conductivity (ECe) in the saline aquaculture wastewater irrigation treatments was significantly higher (P ≤ 0.05) than that in the rainfed or freshwater irrigation treatments, and the maximum value occurred in the 22.0 dS m−1 treatment. The sodium adsorption ratio (SAR) ranged from 4.1 to 11.7 mmol1/2 L−1/2 and increased with decreasing salinity of irrigation water. The biomass of Jerusalem artichoke significantly decreased (P ≤ 0.05) when irrigated with saline aquaculture wastewater compared to the rainfed or freshwater irrigation treatments; however, the effect of salinity on root biomass was much smaller than the aerial parts. Concomitantly, the highest tuber yield of Jerusalem artichoke occurred in the 11.4 dS m−1 treatment, while the highest seed yield of sunflower occurred in the rainfed treatment. Additionally, nitrogen and phosphorus concentrations of Jerusalem artichoke were significantly higher in the 11.4 dS m−1 treatment than the other treatments. This study demonstrated that properly diluted saline aquaculture wastewater can be used successfully to irrigate Jerusalem artichoke with higher economic yield and nutrient removal, but not sunflower due to the difference in salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号