首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Potassium (K) is one of the essential elements for plants. There has been enough research to determine pollution of nitrogen (N), phosphorus (P), and heavy metals in soil. However, by comparison research on the storage and transport of K has been neglected. Chemical fertilizer usage leads to serious environmental problems in Iran. Leaching of K can be affected by type of anions and cations present in the chemical fertilizers. Potassium leaching experiments were performed using 10 mM NH4Cl, (NH4)2HPO4, NH4H2PO4, NH4NO3, NH4OAC, CaCl2, Ca(NO3)2, NaNO3, and CO(NH3)2. The leaching experiment was lasted for 20 days (15 pore volumes). In addition, a set of experiments were conducted, where potato and wheat residues and poultry manure and sheep manure were added to soil at the rate of 5% and distilled water was used as the leaching solution to investigate impacts of organic residues on K leaching. In general, maximum K release was observed using NH4Cl (566 kg ha?1). Potato and wheat residues had maximum and minimum impacts on K leaching, respectively. Potassium fractionation was carried out after the end of the leaching experiment. The results indicated that leaching of soil in the presence of soluble salts and organic residues altered K distribution in different parts of soil.  相似文献   

2.
稻田土壤中氮素淋失的研究   总被引:88,自引:3,他引:88  
本文应用稻田大型原状土柱渗漏计,研究了双季稻田土壤中氮素随渗漏水流淋失的形态、数量、季节性变化以及若干农化因子的影响。明确了稻田中氮素淋失的基本形态是硝态氮(NO3^--N),估算出双季稻田中氮素淋失总量可接近30kgN/ha,同时肯定了农田施用氮肥对地下水体环境可能的NO3^--N污染,建议双季稻田中每季水稻的氮肥用量宜控制在150kgN/ha;本文还证实氮肥用量对氮素淋失有明显影响,不同氮肥品  相似文献   

3.
为揭示不同垄沟坡度对径流中溶解态氮、磷流失的影响,采用人工模拟降雨试验,设置4个垄沟坡度处理(0°,9°,18°和27°),研究了不同垄沟坡度对径流中速效磷(PO_4~(3-)—P)、硝态氮(NO_3~-—N)和铵态氮(NH_4~+—N)浓度和流失量的影响;并利用Inorganic—N/PO_4~(3-)—P、NO_3~-—N/PO_4~(3-)—P和NH_4~+—N/PO_4~(3-)—P 3种氮磷比,评价不同处理的富营养化风险。结果表明:(1)在降雨过程中,4个垄沟坡度处理径流中PO_4~(3-)—P、NO_3~-—N和NH_4~+—N浓度随时间均呈锯齿状变化;其流失量随时间变化均呈先增加后以锯齿状变化的趋势,且波动幅度大,最大值(16.60,1 020.73,48.35 mg)分别出现在垄沟坡度为0°,0°和9°处理。(2)4个垄沟坡度处理间相比较,径流中PO_4~(3-)—P和NH_4~+—N流失量均表现为0°9°27°18°,其浓度最大值(0.50,1.08 mg/L)和最小值(0.37,0.76 mg/L)均分别出现在垄沟坡度为9°和18°处理;而径流中NO_3~-—N浓度和流失量均在垄沟坡度0°处理时为最大值(30.68 mg/L和64.16 mg/m~2),18°处理时为最小值(21.78 mg/L和42.22 mg/m~2)。(3)Inorganic—N/PO_4~(3-)—P率和NH_4~+—N/PO_4~(3-)—P率表明4个垄沟坡度处理径流中均存在一定的富营养化风险。其中,垄沟坡度为0°处理的径流富营养化风险水平最高,27°处理的径流富营养化风险水平最低。研究结果可为横坡垄作的水土流失及养分流失评价、预测以及防治提供科学依据。  相似文献   

4.
间歇性降雨对黄土坡地水土养分流失的影响   总被引:4,自引:4,他引:0  
坡面水土养分流失是研究农业非点源污染方面的核心问题,涉及土壤侵蚀、坡地水文和环境治理等方面的内容。以黄土坡地为研究对象,利用人工降雨模拟试验,分析间歇降雨时坡地产流-入渗-土壤侵蚀过程,以及通过预先在坡地喷施养分(NH_4~+-N、NO_3~--N、PO_4~(3-)-P),研究间歇降雨时坡面水土流失以及土壤溶质的迁移规律。试验采用针孔式人工模拟降雨器进行模拟降雨,对试验坡地间歇性进行3次降雨,雨强恒为100mm/h,每次降雨历时60min,降雨间隔时间60min。结果表明:(1)3次降雨的初始含水率不同,但产流规律相似,降雨径流率均为先增大后趋于平稳。(2)3次降雨产生的泥沙累积量分别为250.91,100.20,79.76g,第1次降雨的泥沙量远高于第2,3次。泥沙率先迅速增大到峰值然后缓慢减少,平均泥沙率随降雨次数的增多而递减。(3)对于非吸附性的NO_3~-、NH_4~+,3场降雨过程中溶质浓度均呈现由高降低并逐渐平稳的变化趋势;PO_4~(3-)-P浓度的变化规律却略显不同,降雨初期溶质浓度先短暂升高,然后再由高降低并逐渐平稳。(4)3次降雨的NH_4~+-N、NO_3~--N、PO_4~(3-)-P的径流总流失量分别为535.33,1 058.18,400.79mg,其中NO_3~--N流失量最多,PO_4~(3-)-P流失量最少。随着降雨次数的增加,不同降雨次数下的NH_4~+-N、NO_3~--N、PO_4~(3-)-P径流流失量均逐渐减少,流失量较前次降雨分别降低了19%,14%、3%,62%和57%,28.3%。因此,通过对间歇性降雨条件下黄土坡地水土溶质迁移特征的研究,对揭示降雨-径流-土壤相互作用过程和土壤养分迁移机理具有重要意义。  相似文献   

5.
大孔隙分布对坡地产汇流及溶质运移的影响   总被引:2,自引:0,他引:2  
以室内土槽为平台,采用人工模拟降雨试验,研究了粉砂壤土中两种不同大孔隙分布情况下,土槽中土壤含水量、坡面流速、地面径流、地下径流及溶质运移的变化。结果表明,相对于面大孔隙度为19%,容积大孔隙度为0.095%的未加密型的土槽,面大孔隙度为57%,容积大孔隙度为0.285%的大孔隙加密型土槽中各层土壤含水量增加幅度、平均坡面流速及地面径流量相对偏小,地下流出现时间较早且径流量较大,地面径流中溴离子、铵根离子浓度、硝酸根离子浓度偏小。在地下水出流前期,大孔隙加密型土槽中的铵根离子浓度和浓度变化幅度都偏小,但溴离子、硝酸根离子浓度则偏大。  相似文献   

6.
Fertilizers applied to turfgrass may pose a threat to surface and groundwater quality, and hence, a study was carried out to evaluate the fate of fertilizer applied to turfgrass of the Clearwater Bay Golf and Country Club in Hong Kong. Lysimeters with reconstituted soils collected from fairways and greens with Bermudagrass (Cynodon dactylon) growing in the surface were used to evaluate the leaching loss of nitrate (NO3 -), ammonium (NH4 +), and phosphate (PO4 3-) for 22 weeks under greenhouse condition. Both soils received a slow release fertilizer at an application rate of 25 (low) or 50 (high) kg N ha-1, and an application frequency of monthly and fortnightly for fairways and greens, respectively, simulating the fertilizer application strategy of the golf course. Both low and high fertilizer application rate supported the same amount of biomass production for each soil type. Breakthrough of NO3 - occurred only in greens after 11 weeks of leaching, but the total amount of NO3 - leached did not differ significantly for the two different fertilizer application rates. The continued addition of fertilizer to greens resulted in a final leachate NO3 - concentration exceeding 45 mg L-1, while fairways maintained a concentration below 5 mg L-1. Also PO4 3- concentration in leachate of greens exceeded the surface water standard of 0.3 mg L-1. The results of the lysimeter study showed that the current application rate on greens would create adverse environmental impacts on the surface water and groundwater due to leaching loss of PO4 3 - and NO3 -.  相似文献   

7.
宁夏引黄灌区稻田氮素浓度变化与迁移特征   总被引:3,自引:0,他引:3  
过量施氮与不合理灌水是农田面源污染加剧的主要原因。为了寻求较优的水氮管理模式以促进农业生产和减少农田退水对黄河水体的污染, 在宁夏引黄灌区典型稻田中开展了不同水氮条件下稻田氮素迁移转化规律研究。结果表明: 不同水氮条件下稻田田面水NH4+-N 与NO3--N 浓度伴随施肥出现明显峰值, NO3--N 峰值出现时间较NH4+-N 晚, 且变化较平缓。3 次追肥时期和整个生育期田面水NH4+-N 平均浓度与施氮量和灌水量都呈显著相关, 田面水NO3--N 平均浓度与施氮量呈显著正相关, 与灌水量相关性不显著。稻田30 cm与60 cm 深度的直渗水NH4+-N 浓度受施肥影响较大, 与田面水NH4+-N 浓度变化规律相似, 90 cm 处直渗水NH4+-N 浓度峰值出现较为滞后, 且浓度较上层土体低, 120 cm 处直渗水NH4+-N 浓度大体呈现持续上升趋势,整个生育期直渗水NH4+-N 平均浓度与施氮量呈显著相关, 仅30 cm 处NH4+-N 平均浓度与灌水量呈负相关, 其他土层深度不显著。30 cm 与60 cm 直渗水NO3--N 浓度在首次灌水后急剧下降, 在施肥后有较小幅度上升, 90 cm 与120 cm 直渗水NO3--N 浓度下降缓慢, 仅30 cm 处NO3--N 平均浓度与施肥量显著正相关。总的结果表明减少施肥或灌水均可达到减少农田氮素淋失的目的。  相似文献   

8.
High concentrations of atmospheric ammonia (NH3) can impact poultry and human health. During composting inside high-rise, caged layer facilities, high concentrations of NH3 are produced due to low carbon to nitrogen ratios of composting materials and the confined building environment. This study characterized the spatial and temporal variability of NH3 during in-house composting as a preliminary step to identifying control measures. Boric acid solutions and gas sensors were used to measure NH3 in 2 m × 7.5 m grid patterns for three high-rise laying hen structures during composting. Spatial variability was evident in all buildings, with areas of higher NH3 concentration near the center of buildings away from ventilation fans. Ammonia concentrations in the composting area frequently exceeded human health standards for 8-hour and 10-minute exposure periods of 25 and 35 μL L?1, respectively. Ammonia concentrations were lower in cage areas of high-rise structures due to the negative pressure ventilation system venting gas directly from the composting area to the outside of buildings. Over a 6-week composting cycle, NH3 generally increased as compost accumulated in the structure. Over 1-day periods of time, NH3 concentrations varied with fluctuations in outdoor air temperatures and fan operation. During turning of compost, atmospheric NH3 reached a high of nearly 50 μL L?1 for over 30 minutes. Monitoring NH3 and altering the ventilation of poultry houses could reduce NH3 concentrations below critical levels at peak times such as during turning. However, ventilation as a solution to high NH3 levels may not be environmentally sustainable. Other alternatives such as chemical and process controls, structural changes, or biofiltration should be explored to prevent NH3 volatilization or remove NH3 from air vented during in-house composting.  相似文献   

9.
Composting municipal wastewater sludge may generate composting wastewater (acid washer water and tunnel wastewater) with high ammonium–nitrogen (NH4–N) concentration; this kind of wastewater is usually generated in a rather small daily amount. A procedure of air stripping with catalytic oxidation was developed and tested with pilot-scale and full-scale units for synthetic disposal of the high NH4–N wastewaters from composting facilities. In air stripping, around 90% NH4–N removal efficiency was reliably achieved with a maximum of 98%. A model to describe the stripping process efficiency was constructed, which can be used for process optimization. After catalytic oxidation, the concentrations in the outlet gas were acceptable for NH3, NOX, NO2, and N2O, but the NH3 and N2O concentrations limited the feasible loading range. The treatment costs were estimated in detail. The results indicate that air stripping with the catalytic oxidation process can be applied for wastewater treatment in composting facilities.  相似文献   

10.
The responses of nitrogen transformations and nitrate (NO_3 -) leaching to experimentally increased N deposition were studied in forested sub-catchments (1500 m2) with Gleysols in Central Switzerland. The aim was toinvestigate whether the increase in NO3 - leaching,due to elevated N deposition, was hydrologically driven orresulted from N saturation of the forest ecosystem.Three years of continuous N addition at a rate of 30 kgNH4NO3-N ha-1 yr-1 had no effects on bulksoil N, on microbial biomass N, on K2SO4-extractableN concentrations in the soil, and on net nitrification rates.In contrast, N losses from the ecosystem through denitrification and NO3 - leaching increased significantly. Nitrate leaching was 4 kg N ha-1yr-1at an ambient N deposition of 18 kg N ha-1 yr-1.Leaching of NO3 - at elevated N deposition was 8 kg Nha-1 yr-1. Highest NO3 - leaching occurredduring snowmelt. Ammonium was effectively retained within theuppermost centimetres of the soil as shown by the absence ofNH4 + in the soil solution collected with microsuction cups. Quantifying the N fluxes indicated that 80% ofthe added N were retained in the forest ecosystem.Discharge and NO3 - concentrations of the outflow from the sub-catchments responded to rainfall within 30 min. The water chemistry of the sub-catchment outflow showed thatduring storms, a large part of the runoff from this Gleysol derived from precipitation and from water which had interactedonly with the topsoil. This suggests a dominance of near-surface flow and/or preferential transport through this soil. The contact time of the water with the soil matrix wassufficient to retain NH4 +, but insufficient for a complete retention of NO3 -. At this site with soilsclose to water saturation, the increase in NO3 - leaching by 4 kg N ha-1 yr-1 through elevated N inputsappeared to be due to the bypassing of the soil and the rootsystem rather than to a soil-internal N surplus.  相似文献   

11.
The fluxes recovered from washing branches and surrogatesurfaces were compared for two holm oak (Quercus ilex L.)forests in the Montseny mountains (NE Spain) differentiallyexposed to pollution. For 5 periods in May and June 1996 afterexposures ranging between 68–189 hr, 6 metacrylate plates and 8branches were extracted with distilled water. Also, a sequentialwashing of branches was undertaken, with 5 min separationsbetween the 3 initial washes, one hour between the 3rd and the4th, and 6 hr between the 4th and the last one. The compositionwas analysed for PO4 3-, SO4 2-,NO3 -, Cl, F, NH4 +,Ca2+, Mg2+, Na+, K+, Cu, Pb, Mn, Co, Ni and Zn. The applied techniques were consistent in that dry deposition would accountfor the throughfall fluxes of NO3 -, Cl-,Cu and Zn. Potassium and Mn would derive mostly from leaching and their fluxes were strongly related with the holm oak flower growth. ForMg2+ and SO4 2- either leaching or impaction of small particles or gases (for SO4 2-) could account forthe recovered fluxes. Also for Na+ and Ca2+ the experiments did not produce conclusive results. Ammonium, F, Pb,Co, and Na were under the detection limit of analyticaltechniques in the plate-wash. The exposed site presented higherleaf-wash and plate-wash fluxes for all elements. This wasattributed to its higher exposure to pollutants, and forleaching-derived elements, to its higher site fertility.  相似文献   

12.
Simeng LI  Gang CHEN 《土壤圈》2020,30(3):352-362
Overuse of nitrogen (N) fertilizers may lead to many environmental issues via N leaching into groundwater and agricultural runoff into surface water. Biochar, a sustainable soil amendment agent, has been widely studied because of its potential to retain moisture and nutrients. However, recent studies have shown that biochar has a very limited ability to improve the retention of negatively charged nitrite (NO2-) or nitrate (NO3-). Although positively charged ammonium (NH4+) can be better held by biochar, it is usually susceptible to nitrification and can be easily transformed into highly mobile NO2-and/or NO3-. In practice, dicyandiamide (DCD) has been used to inhibit nitrification, preserving N in its relatively immobile form as NH4+. Therefore, it is likely that the effects of DCD and biochar in soils would be synergistic. In this study, the influences of biochar on the effectiveness of DCD as a nitrification inhibitor in a biochar-amended soil were investigated by combining the experimental results of incubation, adsorption isotherm, and column transport with the simulated results of different mathematical models. Biochar was found to stimulate the degradation of DCD, as the maximum degradation rate slightly increased from 1.237 to 1.276 mg kg-1 d-1 but the half-saturation coefficient significantly increased from 5.766 to 9.834 mg kg-1. Considering the fact that the availability of DCD for nitrification inhibition was continuously decreasing because of its degradation, a novel model assuming non-competitive inhibition was developed to simulate nitrification in the presence of a decreasing amount of DCD. Depending on the environmental conditions, if the degradation of DCD and NH4+ in biochar-amended soil is not significant, improved contact due to the mitigated spatial separation between NH4+ and DCD could possibly enhance the effectiveness of DCD.  相似文献   

13.
The nutrient fluxes of nitrate, ammonium, phosphorus and potassium in runoff and sediments were evaluated over a two-year period (1999–2000) on the taluses of terraces, in a zone of intense subtropical orchard cultivation (SE Spain). The erosion plots were located on a terrace of 214% (65°) slope, at 180 m in altitude and with 16 m2 (4 × 4 m) in area. Shrubby covers were tested for effectiveness in controlling the nutrient fluxes caused by runoff and sediments. Covers of Thymusserpylloides Bory sbsp. Gadorensis and Salvia officinalis L. reduced the NO3 - runoff losses by 53 and 48%, with respect to the bare soil without natural vegetation, the NH-4 + 61 and 56%; the PO4 -3 65 and 56%; and K+ 58 and 46%, respectively. A greater proportion of NO3 -, NH-4 + and K+ were transported in runoff than in sediments. Thyme and sage with respect to the control reduced NO3 - loss in sediments by 74 and 65%, NH-4 + by 71 and 62%, P by 72 and 67%, and K by 69 and 61%, respectively. The total loss (runoff and sediments) in the bare-soil plot for NPK was 260, 39 and 888 mg m-2 yr-1, in the sage plot 119, 15 and 460 mg m-2 yr-1, and in the thyme plot 105, 12 and 360 mg m-2 yr-1, respectively. The results show the importance of the plant covers in soil conservation and in the recycling of nutrients on terrace slopes. This has far-reaching implications in the sense that the control of pollution from erosion is vital in reducing the eutrophication of both surface waters and groundwater located in lowlands.  相似文献   

14.
密云水库作为北京地区最重要的地表饮用水水源地,其水质优劣直接关系到首都的社会经济发展,开展密云水库水污染监测和治理研究具有重要的现实意义。以密云水库上游流域为研究区,通过不同尺度流域水体营养物质监测,分析了水库上游河流水体营养物质现状;通过分割流量过程线,划分了水体营养物质来自点源和非点源污染的比例。研究结果表明,依据标准(GB3838-2002)要求,密云水库上游河流水体TN含量几乎全部超标,且15.9%样本的TP含量超标。密云水库的营养物质平均40.3%来自点源污染,59.7%来自非点源污染;入库水体中50.1%的TN,49.1%的NO3--N,39.0%的NH4+-N,26.5%的TP和36.8%的CODMn来自点源污染;49.9%的TN,50.9%的NO3--N,61.0%的NH4+-N,73.5%的TP和63.2%的CODMn来自非点源污染。  相似文献   

15.
An apparatus is described consisting of a combination of an electrolytic respirometer and a leaching tube. This allows determination in the same soil sample of O2 uptake, CO2 release, and N release as NO3?, NH4+, and NH3 Release of other water soluble components can also be followed. Unlike other electrolytic respirometers the apparatus measures O2 uptake directly, the O2 being replaced periodically by electrolysis. Fluctuations in electrolyte level due to changes in atmospheric temperature and pressure are compensated for using a control apparatus with a volume equal to the air space in the experimental apparatus. The simplicity of the apparatus allows ready replication.  相似文献   

16.
为探究微塑料输入与秸秆添加对农田土壤氮淋溶的影响,以潮土和黄棕壤为研究对象,每种土壤各设置8个处理,包括对照(CK)、低量微塑料(PE1)、中量微塑料(PE2)、高量微塑料(PE3)、秸秆(S)、秸秆+低量微塑料(S+PE1)、秸秆+中量微塑料(S+PE2)、秸秆+高量微塑料(S+PE3),研究了添加秸秆与不添加秸秆条件下,不同微塑料输入量对土壤氮淋溶的影响。结果表明,仅添加微塑料条件下,与对照(CK)相比,潮土PE1、PE2、PE3处理总氮(TN)淋溶量均无显著差异,黄棕壤仅PE1处理显著增加了TN淋溶量。在添加秸秆(S)处理中,与对照(CK)相比,潮土添加秸秆后显著降低了硝态氮(NO3--N)、铵态氮(NH4+-N)、TN淋溶量,分别降低了31.15%、13.45%、15.26%,黄棕壤添加秸秆后显著增加了TN淋溶量,增加了22.56%。添加秸秆处理相较于不添加秸秆处理,潮土各浓度微塑料输入下NO3--N、NH4+-N、TN的累计淋溶量呈降低趋势,而黄棕壤低量微塑料输入降低了TN淋溶量,高量微塑料输入增加了TN淋溶量。偏最小二乘路径模型(PLS-PM)分析表明,在潮土中添加秸秆主要通过影响淋溶液pH和NO3--N淋溶量影响氮素淋溶,微塑料添加量对氮淋溶无显著影响;在黄棕壤中添加秸秆主要通过影响淋溶液NO3--N、NH4+-N淋溶量影响氮淋溶,微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶。研究结果可为农田土壤微塑料污染风险的管控及减少土壤氮素的淋失提供依据。  相似文献   

17.
不同肥料结构对红壤稻田氮素迁移的影响   总被引:14,自引:3,他引:14  
不同肥料结构对红壤稻田淹水层、不同深度渗漏水、外排水和土壤剖面中氮素的含量、形态及其动态变化的影响研究结果表明 ,各处理淹水层、外排水和渗漏水中NH4+-N含量明显高于NO3--N。淹水层中N的含量 ,水稻生育前期以单施化肥的高 ,约相当于配施有机肥的 1.18~ 1.20倍 ,而水稻生育后期 ,后者为前者的 1.11~ 1.2 1倍。各处理外排水中N素的输出量均以苗期最高 ,单施化肥明显大于配施有机肥。土壤剖面中NH4+-N向下迁移比碱解N更为明显 ,且配施有机肥的远高于单施化肥的 ,而NO3--N则相反。不同深度渗漏水中NO3--N的比例 ,上层 (30cm)低于下层 (50cm) ,随水逸出的N量各处理渗漏水均小于外排水 ;随水输入的N量远低于随水输出的N量 ,且以单施化肥的N亏损最大。水稻未利用的N量也以单施化肥的最大 ,约为配施有机肥的 1.0 9倍。  相似文献   

18.
In a forest in Flanders (Belgium), situated in a region of intensive livestock production, comparable stands of Corsican pine and silver birch were studied for (1) NH4 + and NO3 - concentrations in throughfall water and soil solution and (2) depositions and leaching of NH4 + and NO3 - to groundwater. In each stand, throughfall collectors and porous cup lysimeters at three depths (0.1m, 0.5m and 1m) were installed in three replicated sets. Throughfall concentrations of ammonium and nitrate were significantly different for both species as well as soil solution concentrations of nitrate at all depths. Under pine, nitrate concentrations of the soil solution at 1m depth clearly exceeded the Belgian critical level for drinking water (50 mg.1-1). Under birch, this level was only sporadically exceeded. During the sampling period, the depositions of NH4 +-N and NO3 --N reached respectively 21.6 kg/ha and 6.3 kg/ha under birch and 81.3 and 15.2 kg/ha under Corsican pine. Nitrate-N leaching under silver birch amounted 25.4 kg/ha whereas 56.4 kg/ha was measured under Corsican pine.  相似文献   

19.
坡缕石包膜对尿素氮行为的影响   总被引:2,自引:1,他引:2  
采用静态吸收和土柱淋溶试验方法,分析对比了3种不同用量坡缕石包膜尿素与普通尿素施入土壤后对尿素氮行为的影响,结果表明:在土壤中施用坡缕石包膜尿素较普通尿素减少10.38%~26.24%的氨挥发损失,减少5.88%~27.74%的氮素(NO3--N+NH4+-N)淋溶损失,20%的坡缕石包膜尿素能显著提高土柱土壤NH4+-N含量,3种坡缕石包膜尿素都能极显著提高土柱土壤NO3--N含量.坡缕石包膜后能减少尿素氨的挥发,降低NH4+-N和NO3--N的淋失,提高土壤NH4+-N和NO3--N含量,以20%的坡缕石包膜尿素的综合生态效应最好.  相似文献   

20.
聚天门冬氨酸钙盐对水稻田面水中三氮动态变化的影响   总被引:1,自引:3,他引:1  
利用桶栽试验探究不同浓度水平的聚天门冬氨酸钙盐(PASP-Ca)对水稻田面水中铵态氮(NH_4~+)、硝态氮(NO_3~-)和总氮(TN)浓度动态变化的影响。结果表明,施氮后,田面水中TN、NH_4~+和NO_3~-分别于第1,3,9天达到最大值,随后逐渐降低。NO_3~-/TN多在0.1以下,(NH_4~++NO_3~-)/TN多在0.5以上。因此,可以将NH_4~+和TN作为农田水污染防治的主要监测指标,NO_3~-作为辅助指标。添加一定浓度的PASP—Ca能对田面水中氮素浓度的变化起到缓释作用,其中0.3%浓度水平的PASP—Ca效果相对较好,田面水中NH_4~+和TN的下降速率分别为3.452,4.806mg/(L·d),与单施氮肥(CK)相比,分别降低了11.68%和16.25%;同时,NH_4~+的平均浓度为6.999mg/L,较CK低了3.88%;NO_3~-的平均浓度为0.396mg/L,较CK低了24.83%;TN的平均浓度为20.077mg/L,较CK提升了3.10%。施氮后田面水中TN浓度随时间呈对数递减,而NH_4~+浓度在施氮后3天内随时间呈对数增加,之后随时间呈对数递减趋势。施氮后的9天内是防止稻田田面水中氮素流失的关键时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号