首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Passler, N. H., Chan, H.-M., Stewart, A. J., Duran, S. H., Welles, E. G., Lin, H.-C., Ravis, W. R. Distribution of voriconazole in seven body fluids of adult horses after repeated oral dosing. J. vet. Pharmacol. Therap . 33 , 35–41.
The purpose of this study was to assess safety and alterations in body fluid concentrations of voriconazole in normal horses on days 7 and 14 following once daily dose of 4 mg/kg of voriconazole orally for 14 days. Body fluid drug concentrations were determined by the use of high performance liquid chromatography (HPLC). On day 7, mean voriconazole concentrations of plasma, peritoneal, synovial and cerebrospinal fluids, aqueous humor, epithelial lining fluid (ELF), and urine were 1.47 ± 0.63, 0.61 ± 0.22, 0.70 ± 0.20, 0.62 ± 0.26, 0.55 ± 0.32, 79.45 ± 69.4, and 1.83 ± 0.44 μg/mL respectively. Mean voriconazole concentrations in the plasma, peritoneal, synovial and cerebrospinal fluids, aqueous humor, ELF and urine on day 14 were 1.60 ± 0.37, 1.02 ± 0.27, 0.86 ± 0.25, 0.64 ± 0.21, 0.68 ± 0.13, 47.76 ± 45.4 and 3.34 ± 2.17 respectively. Voriconazole concentrations in the bronchoalveolar cell pellet were below the limit of detection. There was no statistically significant difference between voriconazole concentrations of body fluids when comparing days 7 and 14. Results indicated that voriconazole distributes widely into body fluids.  相似文献   

2.
Background: Measurement of concentrations of acute-phase proteins (APPs) is used as an aid in the diagnosis of a variety of diseases in animals.
Objective: To determine the concentration of APPs in dogs with steroid responsive meningitis-arteritis (SRMA) and other neurologic diseases.
Animals: One hundred and thirty-three dogs with neurologic diseases, 6 dogs with sepsis, and 8 healthy dogs were included in the study. Thirty-six dogs had SRMA (31 of which had monitoring), 14 dogs had other meningoencephalitides (ME), 32 had disk disease (IVDD/DLSS), 26 had tumors affecting the central nervous system (TCNS), and 25 had idiopathic epilepsy (IE).
Methods: Prospective, observational study: C-reactive protein (CRP), α2-macroglobulin (AMG), and albumin concentrations were determined in the serum or plasma. CRP was also measured in the cerebrospinal fluid.
Results: Serum CRP was significantly higher in dogs with SRMA (     = 142 μg/mL ± 75) and sepsis (     = 114 μg/mL ± 67) in comparison with dogs with other neurologic diseases (     = 2.3–21 μg/mL; P < .001). There was no significant difference detected in AMG between groups. Serum albumin concentration was significantly lower ( P < .01) in dogs with SRMA (     = 3.2 g/dL ± 0.41) than in other groups (     = 3.6–3.9 g/dL). Serum CRP concentration of SRMA dogs correlated with alkaline phosphatase levels ( r = 0.515, P = .003).
Conclusions and Clinical Importance: CRP concentrations in serum are useful in diagnosis of dogs with SRMA. Serum CRP could be used as a monitoring parameter in treatment management of these dogs.  相似文献   

3.
Antibiotic distribution to interstitial fluid (ISF) and pulmonary epithelial fluid (PELF) was measured and compared to plasma drug concentrations in eight healthy calves. Enrofloxacin (Baytril® 100) was administered at a dose of 12.5 mg/kg subcutaneously (SC), and tilmicosin (Micotil® 300) was administered at a dose of 20 mg/kg SC. PELF, sampled by two different methods—bronchoalveolar lavage (BAL) and direct sampling (DS)—plasma, and ISF were collected from each calf and measured for tilmicosin, enrofloxacin and its metabolite ciprofloxacin by HPLC. Pharmacokinetic analysis was performed on the concentrations in each fluid, for each drug. The enrofloxacin/ciprofloxacin concentration as measured by AUC in DS samples was 137 ± 72% higher than in plasma, but in BAL samples, this value was 535 ± 403% (< .05). The concentrations of tilmicosin in DS and BAL samples exceeded plasma drug concentrations by 567 ± 189% and 776 ± 1138%, respectively. The enrofloxacin/ciprofloxacin concentrations collected by DS were significantly different than those collected by BAL, but the tilmicosin concentrations were not significantly different between the two methods. Concentrations of enrofloxacin/ciprofloxacin exceeded the MIC values for bovine respiratory disease pathogens but tilmicosin did not reach MIC levels for these pathogens in any fluids.  相似文献   

4.
Nine male dogs (10.3–13.5 kg body weight) were randomly assigned to three groups of three dogs each and administered ceftiofur sodium subcutaneously as a single dose of 0.22, 2.2, or 4.4 mg ceftiofur free acid equivalents/kg body weight. Plasma and urine samples were collected serially for 72 h and assayed for ceftiofur and metabolites (derivatized to desfuroylceftiofur acetamide) using high-performance liquid chromatography. Urine concentrations remained above the MIC 90 for Escherichia coll (4.0 μg/mL) and Proteus mirabilis (1.0 μg/mL) for over 24 h after doses of 2.2 mg/kg (8.1 μg/mL) and 4.4 mg/kg (29.6 μg/mL), the interval between treatments for ceftiofur sodium in dogs, whereas urine concentrations 24 h after dosing at 0.22 mg/kg (0.1 mg/Ib) were below the MIC 90 for E.coli and P. mirabills (0.6 μg/mL). Plasma concentrations were dose-proportional, with peak concentrations of 1.66 ± 0.0990 μg/mL, 8.91 ± 6.42 μg/mL, and 26.7 ± 1.07 μg/mL after doses of 0.22, 2.2, and 4.4 mg/kg, respectively. The area under the plasma concentration versus time curve, when normalized to dose, was similar across all dosage groups.  相似文献   

5.
OBJECTIVE: To determine concentrations of marbofloxacin in alveolar macrophages (AMs) and epithelial lining fluid (ELF) and compare those concentrations with plasma concentrations in healthy dogs. ANIMALS: 12 adult mixed-breed and purebred hounds. PROCEDURE: 10 dogs received orally administered marbofloxacin at a dosage of 2.75 mg/kg every 24 hours for 5 days. Two dogs served as nontreated controls. Fiberoptic bronchoscopy and bronchoalveolar lavage procedures were performed while dogs were anesthetized with propofol, approximately 6 hours after the fifth dose. The concentrations of marbofloxacin in plasma and bronchoalveolar fluid (cell and supernatant fractions) were determined by use of high-performance liquid chromatography with detection of fluorescence. RESULTS: Mean +/- SD plasma marbofloxacin concentrations 2 and 6 hours after the fifth dose were 2.36 +/- 0.52 microg/mL and 1.81 +/- 0.21 microg/mL, respectively. Mean +/- SD marbofloxacin concentration 6 hours after the fifth dose in AMs (37.43 +/- 24.61 microg/mL) was significantly greater than that in plasma (1.81 +/- 0.21 microg/mL) and ELF (0.82 +/- 0.34 microg/mL), resulting in a mean AM concentration-to-plasma concentration ratio of 20.4, a mean AM:ELF ratio of 60.8, and a mean ELF-to-plasma ratio of 0.46. Marbofloxacin was not detected in any samples from control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Marbofloxacin concentrations in AMs were greater than the mean inhibitory concentrations of major bacterial pathogens in dogs. Results indicated that marbofloxacin accumulates in AMs at concentrations exceeding those reached in plasma and ELF The accumulation of marbofloxacin in AMs may facilitate treatment for susceptible intracellular pathogens or infections associated with pulmonary macrophage infiltration.  相似文献   

6.
The pharmacokinetic properties of pradofloxacin and doxycycline were investigated in serum, saliva, and tear fluid of cats. In a crossover study design, six cats were treated orally with a single dose of pradofloxacin (Veraflox® Oral Suspension 2.5%) and doxycycline (Ronaxan® 100 mg) at 5 mg/kg body weight. Following administration, samples of serum, saliva, and tear fluid were taken in regular intervals over a period of 24 h and analysed by turbulent flow chromatography/tandem mass spectrometry. All values are given as mean ± SD. Pradofloxacin reached a mean maximum serum concentration ( C max) of 1.1 ± 0.5 μg/mL after 1.8 ± 1.3 h ( t max). In saliva and tear fluid, mean C max was 6.3 ± 7.0 and 13.4 ± 20.9 μg/mL, respectively, and mean t max was 0.5 ± 0 and 0.8 ± 0.3 h, respectively. Doxycycline reached a mean C max in serum of 4.0 ± 0.8 μg/mL after 4.3 ± 3.2 h. Whilst only at two time-points doxycycline concentrations close to the limit of quantification were determined in tear fluid, no detectable levels were found in saliva. The high concentrations of pradofloxacin in saliva and tear fluid are promising to apply pradofloxacin for the treatment of conjunctivitis and upper respiratory tract infections in cats. As doxycycline is barely secreted into these fluids after oral application the mechanisms of its clinical efficacy remain unclear.  相似文献   

7.
Tinidazole 15 mg/kg was administered to eight Beagle dogs with gingivitis or periodontitis twice daily for 3 days. Tinidazole concentrations in blood and gingival crevicular fluid (GCF) were measured 1,3,6 and 9 h after the morning dose each day. The concentration of tinidazole was determined by high performance liquid chromatography (HPLC). The mean concentration of tinidazole in GCF for each dog ranged from 6.05 to 9.32 αg/mL at different time points after the first dose, and on the first day the highest concentration was observed 6 h after the drug administration. Tinidazole concentrations were 34 ± 4%-72 ± 9% (mean ± SEM) of simultaneous plasma concentration. At steady-state, on the third treatment day, the mean tinidazole concentrations in GCF ranged from 6.68 to 13.1 μg/mL, i.e. 44 ± 6%-75 ± 25% of the corresponding concentrations in plasma. Tinidazole concentration in GCF exceeded the MIC values for putative path-ogenic periodontal bacteria and it is concluded that, when indicated, tinidazole could be used for chemotherapy of periodontitis in dogs.  相似文献   

8.
The purpose of this study was to measure the concentrations of enrofloxacin and its metabolite ciprofloxacin following intravenous administration of enrofloxacin in the plasma and ear tissue of dogs with chronic end-stage otitis undergoing a total ear canal ablation and lateral bulla osteotomy. The goals were to determine the relationship between the dose of enrofloxacin and the concentrations of enrofloxacin and ciprofloxacin, and determine appropriate doses of enrofloxacin for treatment of chronic otitis externa and media. Thirty dogs were randomized to an enrofloxacin-treatment group (5, 10, 15 or 20 mg kg−1) or control group (no enrofloxacin). After surgical removal, ear tissue samples (skin, vertical ear canal, horizontal ear canal, middle ear) and a blood sample were collected. Concentrations of enrofloxacin and ciprofloxacin in the plasma and ear tissue were measured by high performance liquid chromatography. Repeated measures models were applied to log-transformed data to assess dosing trends and Pearson correlations were calculated to assess concentration associations. Ear tissue concentrations of enrofloxacin and ciprofloxacin were significantly ( P  < 0.05) higher than plasma concentrations. Each 5 mg kg−1 increase in the dose of enrofloxacin resulted in a 72% and 37% increase in enrofloxacin and ciprofloxacin concentrations, respectively. For bacteria with an minimal inhibitory concentration of 0.12–0.15 or less, 0.19–0.24, 0.31–0.39 and 0.51–0.64 µg mL−1, enrofloxacin should be dosed at 5, 10, 15 and 20 mg kg−1, respectively. Treatment with enrofloxacin would not be recommended for a bacterial organism intermediate or resistant in susceptibility to enrofloxacin since appropriate levels of enrofloxacin would not be attained.  相似文献   

9.
Salivary output in sheep is large enough to be considered a physiologic body fluid compartment. The hypothesis for this work was that pharmacokinetics of sulfamethazine in saliva was similar to that in plasma. A reliable technique was developed to measure parotid salivary output. Mean output of saliva was 3.18 ± 1.04 L from a single parotid gland per day with a mean flow of 2.21 ± 0.43 mL/min. Using concentrations of sulfamethazine in parotid saliva made it possible to calculate the total passage of sulfamethazine to parotid saliva, which was calculated to be 3.5% of the total dose. Pharmacokinetic variables obtained for sulfamethazine in plasma and in saliva were closely related ( AUC 1408 μg.h/mL and AUC 1484 μg.h/mL; V darea 0.434 L/kg and V d area 0.374 L/kg; t ½β 4.30 h and 3.46 h, respectively) and no substantial differences were observed. The convenience of using salivary concentrations of sulfamethazine for drug monitoring is discussed.  相似文献   

10.
The intramuscular (i.m.), oral (p.o.), and bath immersion disposition of enrofloxacin were evaluated following administration to a cultured population of red pacu. The half-life for enrofloxacin following i.m. administration was 28.9 h, considerably longer than values calculated for other animals such as dogs, birds, rabbits, and tortoises. The 4 h maximum concentration ( C max) of 1.64 μg/mL following a single 5.0 mg/kg dosing easily exceeds the in vitro minimum inhibitory concentration (MIC) for 20 bacterial organisms known to infect fish. At 48 h post i.m. administration, the mean plasma enrofloxacin concentration was well above the MIC for most gram-negative fish pathogens. The gavage method of oral enrofloxacin administration produced a C max of 0.94 μg/mL at 6–8 h. This C max was well above the reported in vitro MIC. A bath immersion concentration of 2.5 mg/L for 5 h was used in this study. The C max of 0.17 μg/mL was noted on the 2 hour post-treatment plasma sample. Plasma concentrations of enrofloxacin exceeded published in vitro MIC's for most fish bacterial pathogens 72 h after treatment was concluded. Ciprofloxacin, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the red pacu using p.o., i.m., and bath immersion administration. The i.m. route is the most predictable and results in the highest plasma concentrations of the drug.  相似文献   

11.
Voriconazole is a new antifungal drug that has shown effectiveness in treating serious fungal infections and has the potential for being used in large animal veterinary medicine. The objective of this study was to determine the plasma concentrations and pharmacokinetic parameters of voriconazole after single-dose intravenous (i.v.) and oral administration to alpacas. Four alpacas were treated with single 4 mg/kg i.v. and oral administrations of voriconazole. Plasma voriconazole concentrations were measured by a high-performance liquid chromatography method. The terminal half-lives following i.v. and oral administration were 8.01 ± 2.88 and 8.75 ± 4.31 h, respectively; observed maximum plasma concentrations were 5.93 ± 1.13 and 1.70 ± 2.71 μg/mL, respectively; and areas under the plasma concentration vs. time curve were 38.5 ± 11.1 and 9.48 ± 6.98 mg·h/L, respectively. The apparent systemic oral availability was low with a value of 22.7 ± 9.5%. The drug plasma concentrations remained above 0.1 μg/mL for at least 24 h after single i.v. dosing. The i.v. administration of 4 mg/kg/day voriconazole may be a safe and appropriate option for antifungal treatment of alpacas. Due to the low extent of absorption in alpacas, oral voriconazole doses of 20.4 to 33.9 mg/kg/day may be needed.  相似文献   

12.
Intravenous (IV) levetiracetam (LEV) is available for humans for bridge therapy when the oral route is unavailable. We investigated the safety and pharmacokinetics of LEV administered intramuscularly (IM), IV, and orally to dogs.
Six Hound dogs received 19.5–22.6 mg/kg of LEV IM, IV and orally with a wash-out period in between. All dogs received 500 mg LEV orally and 5 mL of 100 mg/mL LEV IM. Three dogs received 500 mg of LEV IV and three dogs received 250 mg LEV IV with 250 mg given perivascularly to approximate extravasation. Safety was assessed using a pain scale at time of IM administration and histopathological examination 24 h to 5 days after injection.
Intravenous LEV half-life was 180 ± 18 min. Bioavailability of IM LEV was 100%. Mean time to Tmax after IM was 40 ± 16 min. The mean Cmax IM was 30.3 ± 3 μg/mL compared to the C0 of 37 ± 5 μg/mL for IV. Mean inflammation score (0–4 scale) for IM LEV was 0.28 and for saline 0.62. Extravasation did not cause tissue damage.
Parenteral LEV is well tolerated and appears safe following IM and IV injections in dogs. Parenteral LEV should be evaluated for use in dogs with epilepsy.  相似文献   

13.
The purpose of this study was to establish the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in the plasma and interstitial fluid (ISF) following subcutaneous (s.c.) administration of enrofloxacin. Ultrafiltration probes were placed in the s.c. tissue, gluteal musculature, and pleural space of five calves. Each calf received 12.5 mg/kg of enrofloxacin. Plasma and ISF samples were collected for 48 h after drug administration and analyzed by high pressure liquid chromatography. Plasma protein binding of enrofloxacin and ciprofloxacin was measured using a microcentrifugation system. Tissue probes were well tolerated and reliably produced fluid from each site. The mean +/- SD plasma half-life was 6.8 +/- 1.2 and 7.3 +/- 1 h for enrofloxacin and ciprofloxacin, respectively. The combined (ciprofloxacin + enrofloxacin) peak plasma concentration (Cmax) was 1.52 microg/mL, and the combined area under the curve (AUC) was 25.33 microg/mL. The plasma free drug concentrations were 54% and 81% for enrofloxacin and ciprofloxacin, respectively, and free drug concentration in the tissue fluid was higher than in plasma. We concluded that Cmax/MIC and AUC/MIC ratios for free drug concentrations in plasma and ISF would meet suggested ratios for a targeted MIC of 0.06 microg/mL.  相似文献   

14.
Background: Thyroid hormone concentrations were found to be different in Greyhounds and Whippets compared with nonsight hound dogs.
Hypothesis: In Sloughis, thyroid hormone concentration is lower than in nonsight hounds and comparable to Greyhounds.
Animals: Fifty-one Sloughis with no evidence of disease and a mean age of 4 years (range, 1–12 years).
Methods: Thyroid profiles consisting of total thyroxine (tT4), free thyroxine (fT4), free thyroxine after equilibrium dialysis (fT4 after ED), canine thyroid stimulation hormone (cTSH), and thyroglobulin antibodies as well as CBC and serum biochemistry results of Sloughis were compared with those of normal dogs. In 8 Sloughis, TSH stimulation tests were performed.
Results: In Sloughis, tT4 concentrations and fT4 concentrations measured by chemiluminescence were lower than those of controls (1.13 ± 0.65 μg/dL compared with 2.9 ± 0.8 μg/dL, P < .0001 and 11 ± 4.3 pmol/L compared with 16.7 ± 5.2 pmol/L, P < .0001, respectively). Concentrations of fT4 after ED and TSH were increased in Sloughis, when compared with controls (41.3 ± 26.9 pmol/L compared with 20.98 ± 10.29 pmol/L, P < .0001 and 0.22 ± 0.15 pmol/L compared with 0.15 ± 0.13 pmol/L, P = .0138, respectively). T4 concentration after TSH stimulation increased from 1.5 μg/dL (range, 0.2–2.7 μg/dL) to 2.7 μg/dL (range, 1.2–4.7 μg/dL); the recommended post-TSH T4 concentration was achieved by only 3 of 8 Sloughis. Hemoconcentration was found in 84.3% and hypoglobulinemia in 80.3%.
Conclusions and Clinical Importance: When evaluating Sloughis for hypothyroidism, veterinarians should be aware that these dogs have different thyroid hormone concentrations than nonsight hound dogs.  相似文献   

15.
Pharmacokinetic parameters of fosfomycin were determined in horses after the administration of disodium fosfomycin at 10 mg/kg and 20 mg/kg intravenously (IV), intramuscularly (IM) and subcutaneously (SC) each. Serum concentration at time zero (CS0) was 112.21 ± 1.27 μg/mL and 201.43 ± 1.56 μg/mL for each dose level. Bioavailability after the SC administration was 84 and 86% for the 10 mg/kg and the 20 mg/kg dose respectively. Considering the documented minimum inhibitory concentration (MIC90) range of sensitive bacteria to fosfomycin, the maximum serum concentration (Cmax) obtained (56.14 ± 2.26 μg/mL with 10 mg/kg SC and 72.14 ± 3.04 μg/mL with 20 mg/kg SC) and that fosfomycin is considered a time-dependant antimicrobial, it can be concluded that clinically effective plasma concentrations might be obtained for up to 10 h administering 20 mg/kg SC. An additional predictor of efficacy for this latter dose and route, and considering a 12 h dosing interval, could be area under the curve AUC0-12/MIC90 ratio which in this case was calculated as 996 for the 10 mg/kg dose and 1260 for the 20 mg/kg dose if dealing with sensitive bacteria. If a more resistant strain is considered, the AUC0-12/MIC90 ratio was calculated as 15 for the 10 mg/kg dose and 19 for the 20 mg/kg dose.  相似文献   

16.
Background: Intravenous administration of human immunoglobulin G (hIVIgG) has been suggested to potentiate thromboembolism in dogs, but supportive scientific reports are lacking.
Objectives: To determine if hIVIgG therapy promotes hypercoagulability and inflammation in dogs.
Animals: Twelve healthy Beagle dogs.
Methods: Prospective, experimental trial. An hIVIgG/saline solution was infused IV at 1 g/kg BW over 8 hours to 6 dogs, and physiological saline was infused to the other 6 dogs. Blood samples were drawn before, during, and after infusion for serial measurement of indicators of coagulation and inflammation. Data were analyzed by 2-way repeated measures analysis of variance.
Results: Dogs administered hIVIgG developed mildly decreased blood platelet concentrations without thrombocytopenia (median, 200 × 103/μL; range, 150–302 × 103/μL; P < .01), leukopenia (median, 3.5 × 103/μL; range, 20–62 × 103/μL; P < .001), and mildly increased plasma total protein concentrations (median, 6.3 g/dL; range, 5.6–6.7 g/dL; P < .001). Administration of hIVIgG was also associated with increases in fibrin/fibrinogen degradation products in all dogs (either 5 μg/mL or 10 μg/dL), thrombin-antithrombin III complexes (median, 7.2 ng/mL; range, 4.9–14.2 ng/mL; P < .001), and C-reactive protein concentrations (median, 2.5 mg/dL; range, 0.5–4.3 mg/dL; P < .01).
Conclusion and Clinical Importance: Administration of hIVIgG to dogs promotes hypercoagulability and an inflammatory state. This should be further evaluated and considered when using hIVIgG in dogs with IMHA or other prothrombotic conditions.  相似文献   

17.
The purpose of the study was to compare the pharmacokinetics of amikacin administered i.v., to Greyhound and Beagle dogs and determine amikacin pharmacokinetics administered subcutaneously to Greyhounds. Amikacin was administered i.v. at 10 mg/kg to six healthy Greyhounds and six healthy Beagles. The Greyhounds also received amikacin, 10 mg/kg s.c. Plasma was sampled at predetermined time points and amikacin concentrations determined by a fluorescence polarization immunoassay (FPIA).
The volume of distribution was significantly smaller in Greyhounds (mean = 176.5 mL/kg) compared to Beagles (234.0 mL/kg). The C 0 and AUC were significantly larger in Greyhounds (86.03 μg/mL and 79.97 h·μg/mL) compared to Beagles (69.97 μg/mL and 50.04 h·μg/mL). The plasma clearance was significantly lower in Greyhounds (2.08 mL/min/kg) compared to Beagles (3.33 mL/min/kg). The fraction of the dose absorbed after s.c. administration to Greyhounds was 0.91, the mean absorption time was 0.87 h, and the mean maximum plasma concentration was 27.40 μg/mL at 0.64 h.
Significant differences in the pharmacokinetics of amikacin in Greyhounds indicate it should be administered at a lower dose compared to Beagles. The dose in Greyhounds to achieve a C max: AUC  ≥ 8 for bacteria (with an MIC  ≤ 4 μg/mL) is 12 mg/kg q24 h compared to 22 mg/kg q24 in Beagles.  相似文献   

18.
The third generation cephalosporin cefovecin has been shown to have an exceptionally long elimination half-life in dogs and cats, making it suitable for antibacterial treatment with a 14-day dosing interval in these species. Pharmacokinetic parameters for cefovecin were investigated in juvenile hens and green iguanas, following subcutaneous injections with 10 mg cefovecin/kg bodyweight. Preliminary studies in eight additional species of birds and reptiles were performed and results were compared with the parameters found in hens and green iguanas. The kinetics were characterized by rapid absorption with peak plasma concentration of 6 ± 2 μg/mL in hens and 35 ± 12 μg/mL in green iguanas. The mean plasma half-life for cefovecin was 0.9 ± 0.3 h for hens and 3.9 h in green iguanas. Volume of distribution was 1.6 ± 0.5 L/kg for hens and 0.3 L/kg for green iguanas and clearance was 1252 ± 185 mL·h/kg for hens and 53 mL·h/kg for green iguanas. Results from preliminary studies did not differ notably from those seen in hens and green iguanas. Cefovecin is not suitable for the treatment of bacterial infections with a 14-day dosing interval in hens or green iguanas and seems not to be in a number of other bird and retile species either.  相似文献   

19.
Plasma pharmacokinetics and urine concentrations of meropenem in ewes   总被引:1,自引:0,他引:1  
The pharmacokinetics of meropenem was studied in five ewes after single i.v. and i.m. dose of 20 mg/kg bw. Meropenem concentrations in plasma and urine were determined using microbiological assay method. A two-compartment open model was best described the decrease of meropenem concentration in plasma after an i.v. injection. The drug was rapidly eliminated with a half-life of elimination ( t 1/2 β ) of 0.39 ± 0.30 h. Meropenem showed a small steady-state volume of distribution [ V d(ss)] 0.055 ± 0.09 L/kg. Following i.m. injection, meropenem was rapidly absorbed with a t 1/2ab of 0.25 ± 0.04 h. The peak plasma concentration ( C max) was 48.79 ± 8.83  μ g/mL was attained after 0.57 ± 0.13 h ( t max). The elimination half-life ( t 1/2el) of meropenem was 0.71 ± 0.12 h and the mean residence time ( MRT ) was 1.38 ± 0.26 h. The systemic bioavailability (F) after i.m. injection was 112.67 ± 10.13%. In vitro protein-binding percentage of meropenem in ewe's plasma was 42.80%. The mean urinary recoveries of meropenem over 24 h were 83% and 91% of the administered dose after i.v. and i.m. injections respectively. Thus, meropenem is likely to be efficacious in the eradication of many urinary tract pathogens in sheep.  相似文献   

20.
Pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in normal, febrile and probenecid‐treated adult goats after single intravenous (i.v.) administration of enrofloxacin (5 mg/kg). Pharmacokinetic evaluation of the plasma concentration–time data of enrofloxacin and ciprofloxacin was performed using two‐ and one‐compartment open models, respectively. Plasma enrofloxacin concentrations were significantly higher in febrile (0.75–7 h) and probenecid‐treated (5–7 h) goats than in normal goats. The sum of enrofloxacin and ciprofloxacin concentrations in plasma ≥0.1 μg/mL was maintained up to 7 and 8 h in normal and febrile or probenecid‐treated goats, respectively. The t1/2β, AUC, MRT and ClB of enrofloxacin in normal animals were determined to be 1.14 h, 6.71 μg.h/mL, 1.5 h and 807 mL/h/kg, respectively. The fraction of enrofloxacin metabolized to ciprofloxacin was 28.8%. The Cmax., t1/2β, AUC and MRT of ciprofloxacin in normal goats were 0.45 μg/mL, 1.79 h, 1.84 μg.h/mL and 3.34 h, respectively. As compared with normal goats, the values of t1/2β (1.83 h), AUC (11.68 μg ? h/mL) and MRT (2.13 h) of enrofloxacin were significantly higher, whereas its ClB (430 mL/h/kg) and metabolite conversion to ciprofloxacin (8.5%) were lower in febrile goats. The Cmax. (0.18 μg/mL) and AUC (0.99 μg.h/mL) of ciprofloxacin were significantly decreased, whereas its t1/2β (2.75 h) and MRT (4.58 h) were prolonged in febrile than in normal goats. Concomitant administration of probenecid (40 mg/kg, i.v.) with enrofloxacin did not significantly alter any of the pharmacokinetic variables of either enrofloxacin or ciprofloxacin in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号