共查询到20条相似文献,搜索用时 15 毫秒
1.
A screening tool for vulnerability assessment of pesticide leaching to groundwater for the islands of Hawaii, USA 总被引:1,自引:0,他引:1
This paper describes an updated version of a screening tool for groundwater vulnerability assessment to evaluate pesticide leaching to groundwater, based on a revised version of the attenuation factor. The tool has been implemented in a geographical information system (GIS) covering the major islands of the state of Hawaii, USA. The Hawaii Department of Agriculture currently uses the tool in their pesticide evaluation process as a first-tier screening tool. The basic soil properties and pesticide properties necessary to compute the index, and estimates of their uncertainty, are included in the GIS. Uncertainties in soil and pesticide properties are accounted for using first-order uncertainty analysis. Classifications of pesticides as 'likely', 'uncertain' or 'unlikely' to leach are made on the basis of the uncertainty and a comparison of the revised attenuation factor with values and uncertainties of two reference chemicals. The reference chemicals represent what are considered to be a 'leachable' and a 'non-leachable' pesticide under Hawaii conditions. It is concluded that the tool is suitable for screening new and already used pesticides for the islands of Hawaii. However, the tool is associated with uncertainties that are not accounted for, so a conservative approach with respect to interpretation of the results and selection of pesticide parameters used in the tool is recommended. 相似文献
2.
BACKGROUND: For the registration of pesticides in the European Union, model simulations for worst‐case scenarios are used to demonstrate that leaching concentrations to groundwater do not exceed a critical threshold. A worst‐case scenario is a combination of soil and climate properties for which predicted leaching concentrations are higher than a certain percentile of the spatial concentration distribution within a region. The derivation of scenarios is complicated by uncertainty about soil and pesticide fate parameters. As the ranking of climate and soil property combinations according to predicted leaching concentrations is different for different pesticides, the worst‐case scenario for one pesticide may misrepresent the worst case for another pesticide, which leads to ‘scenario uncertainty’. RESULTS: Pesticide fate parameter uncertainty led to higher concentrations in the higher percentiles of spatial concentration distributions, especially for distributions in smaller and more homogeneous regions. The effect of pesticide fate parameter uncertainty on the spatial concentration distribution was small when compared with the uncertainty of local concentration predictions and with the scenario uncertainty. CONCLUSION: Uncertainty in pesticide fate parameters and scenario uncertainty can be accounted for using higher percentiles of spatial concentration distributions and considering a range of pesticides for the scenario selection. Copyright © 2010 Society of Chemical Industry 相似文献
3.
土壤传递函数模型的研究进展 总被引:3,自引:0,他引:3
研究评述了线性回归、非线性回归、神经网络等方法构建土壤传递函数模型的优缺点,介绍了传递函数模型及其应用不确定性分析中常用的Bootstrap analysis、改进的Monte Carlo、最小二乘法等方法,探讨了输入数据、模型结构和参数对传递函数及其应用不确定性的影响,并指出今后可借鉴分析法里的格林函数法和耦合去耦等方法开展土壤传递函数及其预测不确定性的研究,明确传递函数模型不确定性的主要来源,提高模型的应用效率。 相似文献
4.
The objective of this study was to investigate the interactions between compound properties and macropore flow effects on pesticide leaching. To this end, the dual‐porosity MACRO model was used to simulate leaching of 60 hypothetical compounds with widely differing sorption and degradation characteristics using a pre‐calibrated scenario from Lanna, south‐west Sweden, representing a structured clay soil. The model predicts that, in the worst case, macropore flow increases leaching by more than four orders of magnitude for moderately to strongly sorbed compounds with relatively short half‐lives. However, it was also notable that leaching of some very mobile compounds is actually reduced by macropore flow. For pesticides leaching between 0.0001 and 10% of the applied dose (without macropore flow), the impact of pesticide properties on leaching is markedly reduced. This suggests that reductions in applied dose become a relatively more attractive and effective means of decreasing leaching from structured soils. © 2000 Society of Chemical Industry 相似文献
5.
Sensitivity analyses using a one-at-a-time approach were carried out for leaching models which have been widely used for pesticide registration in Europe (PELMO, PRZM, PESTLA and MACRO). Four scenarios were considered for simulation of the leaching of two theoretical pesticides in a sandy loam and a clay loam soil, each with a broad distribution across Europe. Input parameters were varied within bounds reflecting their uncertainty and the influence of these variations on model predictions was investigated for accumulated percolation at 1-m depth and pesticide loading in leachate. Predictions for the base-case scenarios differed between chromatographic models and the preferential flow model MACRO for which large but transient pesticide losses were predicted in the clay loam. Volumes of percolated water predicted by the four models were affected by a small number of input parameters and to a small extent only, suggesting that meteorological variables will be the main drivers of water balance predictions. In contrast to percolation, predictions for pesticide loss were found to be sensitive to a large number of input parameters and to a much greater extent. Parameters which had the largest influence on the prediction of pesticide loss were generally those related to chemical sorption (Freundlich exponent nf and distribution coefficient Kf) and degradation (either degradation rates or DT50, QTEN value). Nevertheless, a significant influence of soil properties (field capacity, bulk density or parameters defining the boundary between flow domains in MACRO) was also noted in at least one scenario for all models. Large sensitivities were reported for all models, especially PELMO and PRZM, and sensitivity was greater where only limited leaching was simulated. Uncertainty should be addressed in risk assessment procedures for crop-protection products. 相似文献
6.
Scorza Júnior RP Jarvis NJ Boesten JJ van der Zee SE Roulier S 《Pest management science》2007,63(10):1011-1025
Testing of pesticide leaching models against comprehensive field-scale measurements is necessary to increase confidence in their predictive ability when used as regulatory tools. Version 5.1 of the MACRO model was tested against measurements of water flow and the behaviour of bromide, bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2-dioxide] and imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] in a cracked clay soil. In keeping with EU (FOCUS) procedures, the model was first calibrated against the measured moisture profiles and bromide concentrations in soil and in drain water. Uncalibrated pesticide simulations based on laboratory measurements of sorption and degradation were then compared with field data on the leaching of bentazone and imidacloprid. Calibrated parameter values indicated that a high degree of physical non-equilibrium (i.e. strong macropore flow) was necessary to describe solute transport in this soil. Comparison of measured and simulated bentazone concentration profiles revealed that the bulk of the bentazone movement in this soil was underestimated by MACRO. Nevertheless, the model simulated the dynamics of the bentazone breakthrough in drain water rather well and, in particular, accurately simulated the timing and the concentration level of the early bentazone breakthrough in drain water. The imidacloprid concentration profiles and its persistence in soil were simulated well. Moreover, the timing of the early imidacloprid breakthrough in the drain water was simulated well, although the simulated concentrations were about 2-3 times larger than measured. Deep groundwater concentrations for all substances were underestimated by MACRO, although it simulated concentrations in the shallow groundwater reasonably well. It is concluded that, in the context of ecotoxicological risk assessments for surface water, MACRO can give reasonably good simulations of pesticide concentrations in water draining from cracking clay soils, but that prior calibration against hydrologic and tracer data is desirable to reduce uncertainty and improve accuracy. 相似文献
7.
Minghua Zhang Adrian Wadley Paul Hendley Mike Lane Sue Hayes 《Pest management science》1999,55(2):217-218
A Geographic Information System (GIS) has been combined with a simple leaching model to characterize the factors that influence pesticide leaching, and to identify the spatial distribution of these factors. The results were compared with those of a conventional simulation modeling approach, and a strong correlation was found for 40 selected sites in central and eastern USA. ©1999 Society of Chemical Industry 相似文献
8.
Lily Summerton Mark Greener David Patterson Colin D Brown 《Pest management science》2023,79(2):616-626
BACKGROUND
Tillage operations will change the distribution in soil for any pesticide residues still present from earlier applications. This redistributive effect of tillage has been neglected in the study of pesticide leaching behavior. This study reviews the literature to characterize this redistributive effect for different tillage operations and uses a pesticide leaching model to investigate the impact of redistribution on pesticide transport to subsurface drains which is a significant input route to surface water bodies.RESULTS
Inversion ploughing moves the majority of any residues of pesticide present at or near the soil surface into the bottom two-thirds of the plough layer, whereas non-inversion ploughing has only a limited redistributive effect. Incorporating this redistributive effect into model simulations resulted in large changes (typically 5–10-fold difference) in both the maximum concentration and total mass of pesticide transported to drains over the winter following cultivation. More intense cultivation decreased subsequent leaching for relatively mobile compounds (Koc ≤1000 mL g−1), but increased it for strongly sorbed pesticides (Koc ≥2000 mL g−1).CONCLUSION
The redistributive effect of soil tillage on pesticide residues can have a large effect on subsequent transport to subsurface drains. This effect has been neglected in the literature. Field research is required to validate the model simulations presented here, and consideration should be given as to whether the effect needs to be included within risk assessment procedures. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. 相似文献9.
Hansen M 《Pest management science》2002,58(1):54-56
Sensitivity analyses of pesticide leaching often involve a large range of simulations based on nearly identical set-ups. Using RunMACRO it is possible to make large numbers of simulations with a minimum of exertion. Running many nearly identical model set-ups is tedious and might introduce errors in selecting the correct values from a long range of parameter files that are appropriate to the model set-up. RunMACRO makes the task easier and minimises the risk of errors in the generation of parameter files and model executions. Using RunMACRO, it is possible to create a suite of MACRO simulations based on a single parameter file where the range or a list of values for one to three parameters is specified. RunMACRO then creates a parameter file for each of the simulations and runs the simulations one by one. RunMACRO can easily be modified to be used with other simulation programs that use ASCII-based parameter files and can be started from a command prompt. RunMACRO is available free to use and modify from the Geological Survey of Denmark and Greenland's home page. 相似文献
10.
The Root Zone Water Quality Model (RZWQM) and Pesticide Root Zone Model (PRZM) are currently being considered by the Office of Pesticide Programs (OPP) in the United States Environmental Protection Agency (US EPA) for Tier II screening of pesticide leaching to groundwater (November 2005). The objective of the present research was to compare RZWQM and PRZM based on observed conservative tracer and pesticide pore water and soil concentrations collected in two unique groundwater leaching studies in North Carolina and Georgia. These two sites had been used previously by the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) Environmental Model Validation Task Force (EMVTF) in the validation of PRZM. As in the FIFRA EMVTF PRZM validation, 'cold' modelling using input parameters based on EPA guidelines/databases and 'site-specific' modelling using field-measured soil and hydraulic parameters were performed with a recently released version of RZWQM called RZWQM-NAWQA (National Water Quality Assessment). Model calibration was not performed for either the 'cold' or 'site-specific' modelling. The models were compared based on predicted pore water and soil concentrations of bromide and pesticides throughout the soil profile. Both models tended to predict faster movement through the soil profile than observed. Based on a quantitative normalised objective function (NOF), RZWQM-NAWQA generally outperformed or was equivalent to PRZM in simulating pore water and soil concentrations. Both models were more successful in predicting soil concentrations (i.e. NOF < 1.0 for site-specific data, which satisfies site-specific applicability) than they were at predicting pore water concentrations. 相似文献
11.
Calibration of pesticide leaching models may be undertaken to evaluate the ability of models to simulate experimental data, to assist in their parameterisation where values for input parameters are difficult to determine experimentally, to determine values for specific model inputs (e.g. sorption and degradation parameters) and to allow extrapolations to be carried out. Although calibration of leaching models is a critical phase in the assessment of pesticide exposure, lack of guidance means that calibration procedures default to the modeller. This may result in different calibration and extrapolation results for different individuals depending on the procedures used, and thus may influence decisions regarding the placement of crop-protection products on the market. A number of issues are discussed in this paper including data requirements and assessment of data quality, the selection of a model and parameters for performing calibration, the use of automated calibration techniques as opposed to more traditional trial-and-error approaches, difficulties in the comparison of simulated and measured data, differences in calibration procedures, and the assessment of parameter values derived by calibration. Guidelines for the reporting of calibration activities within the scope of pesticide registration are proposed. 相似文献
12.
13.
Integrated modeling environment for statewide assessment of groundwater vulnerability from pesticide use in agriculture 总被引:1,自引:0,他引:1
Atrazine, a herbicide widely used for corn production in the Midwest, has been detected in groundwater of several states, and has been identified as a possible human carcinogen. With the widespread use of pesticides in crop production, and the frequent detection of these chemicals in groundwater, large-scale risk assessments would help water resource managers to identify areas that are more susceptible to contamination and implement practices to ameliorate the problem. This paper presents an integrated, visual and interactive system for predicting potential environmental risks associated with pesticide contamination at spatial scales ranging from fields to landscapes and regions. The interactive system extends the predictive ability of the Pesticide Root Zone Model Release 2.0 (PRZM-2) to a landscape and statewide scale through integration with a geographic information system (GIS), graphical user interface and environmental databases. Predictions of statewide (Iowa) vulnerability of groundwater from atrazine leaching below the unsaturated zone were made to demonstrate the utility of the system, and the results were used in risk assessment. In the example application, atrazine fate and transport were evaluated using long-term climatic data (1980--1989) in combination with several environmental databases (eg STATSGO soils database) and exposure risks were expressed in terms of the probability of the predicted pesticide concentrations exceeding the maximum contaminant level (MCL) for drinking water. The results indicate that the predicted pesticide concentrations were significantly lower than the EPA-established MCL. In addition to providing an interactive environment for landscape-level assessment of potential risks from pesticide leaching, the system significantly reduces the time and resources needed to organize and manipulate data for use with PRZM-2, and provides an analytical framework for evaluating groundwater-leaching impacts of pesticide management practices. 相似文献
14.
15.
J. J. T. I. Boesten 《Pest management science》1991,31(3):375-388
The sensitivity of pesticide leaching to pesticide/soil properties and to meteorological conditions was assessed by calculations with an existing convection—dispersion model. The model assumes equilibrium sorption (Freundlich equation), first-order transformation kinetics and passive plant uptake. The extent of pesticide leaching was characterized by the percentage of the dose leached below 1 m depth. The calculations were carried out for a humic sand soil cropped with maize and exposed to Dutch weather conditions. In general, the percentage leached was found to be very sensitive to the sorption coefficient, the Freundlich exponent (describing the curvature of the isotherm) and the transformation rate. The percentage leached was moderately sensitive to weather conditions (wet/dry years), long-term sorption equilibration and the relationship between transformation rate and temperature. Sensitivity to the extent of plant uptake was only significant for pesticides with low sorption coefficients. Sensitivity to soil hydraulic properties was small. The effect of application in autumn instead of in spring was found to be very large for non-sorbing pesticides with short half-lives. The sensitivity to spatial variability in sorption coefficient and transformation rate was found to be substantial at low percentages leached. 相似文献
16.
我国有占世界19%的人口,但仅有占世界9%的耕地,因此保证国家粮食安全是头等大事。在确保生态环境安全的前提下,如何增加作物产量和保障农产品质量安全始终是我国农业快速发展面临的一大挑战。在高效、负责、透明的政府能力建设中,我国农业的绿色发展和高质量发展战略,我国农药管理的法制建设、市场监管、食品安全、环境监测、有害生物治理、应用技术服务及推广等都取得了显著进步。到2021年底,我国已经登记了740多个农药有效成分,41 433个农药产品。2021年,全国1 705家农药定点企业,共生产了化学农药原药249.8万t。不仅满足了国内有害生物防控的实际需要,还出口180多个国家和地区,农药出口额达到234亿美金。我国还有的10个高毒农药品种,已经控制在1.3%以下,且安排在未来5年内会陆续退市。本文还分析梳理了今后我国农药管理发展所面临的挑战。 相似文献
17.
七种农药在3种不同类型土壤中的吸附及淋溶特性 总被引:2,自引:3,他引:2
采用振荡平衡法和土柱淋溶法研究了2,4-滴酸、丁噻隆、毒草胺、炔草酸、氟环唑、甲基磺草酮和烯啶虫胺7种农药在江西红壤、太湖水稻土及东北黑土3种不同理化性质土壤中的吸附及淋溶特性,探讨了农药性质及土壤理化性质对供试农药在土壤中吸附、淋溶行为的影响。结果表明:农药的水溶性越大,其在土壤中的吸附性越弱,淋溶性越强;农药在土壤中的吸附性与土壤pH值、有机质含量以及阳离子交换量之间有较好的相关性。土壤pH值、有机质含量以及农药性质是影响农药在土壤中淋溶及迁移的主要因素。 相似文献
18.
19.
We describe the theory and current development state of the pesticide process module of the USDA-Agricultural Research Service Root Zone Water Quality Model, or RZWQM. Several processes which are significant in determining the fate of a pesticide application are included together in this module for the first time, including application technique, root uptake, ionic dissociation, soil depth dependence of persistence, volatilization, wicking upward in soil and aging of residues. The pesticide module requires a large number of parameters to run (as does the RZWQM model as a whole) and it is becoming clear that RZWQM will find most interest and use as part of a 'scenario' in which all data requirements are supplied and the predictions of the system compared with a real (usually partial) data set. Such a scenario may then be modified to examine the response of the system to changes in inputs. It also has significant potential as a technology transfer or teaching tool, providing detailed understanding of a specific agronomic system and its potential impacts on the environment. 相似文献
20.
基于点评估方法的渤海湾产区苹果中农药残留膳食暴露风险研究 总被引:2,自引:0,他引:2
为评估渤海湾产区苹果中主要农药的残留情况及其产生的风险,在山东、辽宁及河北3个主要省份的150个生产基地进行了苹果样品采集与测定分析,并对我国不同人群的膳食暴露风险进行了评估。结果表明:93.3%的苹果样品检出有低浓度农药残留,经最大残留限量值(MRL)判定后100%合格,82.0%的样品中农药残留种类在3种及以下;共检出17种农药残留,大多为低毒或无毒农药,无禁用和高毒农药。采用点评估方法,选择检出率在20%以上的多菌灵、毒死蜱、啶虫脒和戊唑醇进行不同消费人群暴露点评估。结果显示:4种农药的急性和慢性摄入风险均为儿童高于成年人,绝大多数女性人群的摄入风险高于男性;4种农药急性摄入风险均高于慢性摄入风险,风险水平由高到低为多菌灵毒死蜱戊唑醇啶虫脒,但点评估结果均远低于100%,说明通过食用苹果摄入的农药残留极其微量,不会对人体产生急性或慢性风险。 相似文献