首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
‘Sylgard® 309’ organosilicone surfactant is a very effective adjuvant for broadleaf weed control with a number of herbicides. It is also effective in providing rainfastness lo these post-emergence herbicide applications. To elucidate the basis for herbicide activity enhancement and rainfastness, the absorption of [14C]acifluorfen, [14C]bentazone and [14C]‘Sylgard 309’ were studied. Non-ionic surfactants and crop oil concentrates were used as adjuvants with [14C]acifluorfen and [14C]bentazone, respectively, for purposes of comparison. Maximum absorption of [14C]acifluorfen and [14C]bentazone was obtained within 15 min after herbicide application with the organosilicone, versus ≥ 24 h with the convenlional adjuvants. [14C]-Organosilicone absorption closely paralleled that of the [14C]-herbicides. The organosilicone appears to exert its action by increasing greatly herbicide absorption. The enhancement effect did not appear to be a function of reduced surface tension. Rainfastness appeared to be a result of greatly accelerated herbicide penetration through the leaf cuticle in the presence of the organosilicone.  相似文献   

2.
Excised shoots from apple trees and cell suspension cultures were used as model systems to study the metabolism of [3,5-14C]amitrole in Malus domestica Borkh. Significant differences in the metabolism of the compound applied were observed with excised shoots, cultured cells and whole apple trees. The major metabolite in excised shoots was aminotriazolylalanine which occurred both in the free form and as conjugates. The major metabolite from whole plants. triazolylalanine, was detected in shoots in minor amounts only. In cell suspension cultures, the type of metabolism strongly depended on the concentration of amitrole when initially applied. At 10 ?3 m or lower, mainly aminotriazolylalanine was formed. Depending on the concentration of the active ingredient, this metabolite predominantly occurred in free form or as glycosides. At concentrations above 5 × 10?4 M a new metabolite, 3,5-dihydroxytriazole, was detected which was the only metabolite found at 5 × 10?3M. Significant amounts of nonmetabolized amitrole remained in the medium.  相似文献   

3.
Soils which have been pretreated with carbofuran can degrade the insecticide more rapidly than untreated soils, with a consequent loss of efficacy. In laboratory studies, soils pretreated with carbofuran were found to degrade the chemical more rapidly than soils which were not so pretreated. When pretreated soils were sterilised, the rate of carbofuran degradation was much reduced, indicating that most of it was due to microbial action. Incubation of pretreated soil with [phenyl-U-14C]carbofuran led to the rapid disappearance of the parent compound (3 % left after seven days). Most of the 14C was accounted for as bound residue after seven days, whilst smaller amounts were recovered as carbon dioxide, 3-hydroxycarbofuran, 3-ketocarbofuran, and an unknown metabolite. Incubation of pretreated soil with [carbonyl-14C]carbofuran led to rapid loss of the parent compound and the recovery of 73% of 14C as carbon dioxide by five days. Most of the bound 14C (>90%) arising from [phenyl-U-14C]carbofuran treatment of pretreated soil was extracted by 1 M sodium hydroxide and about half of the extracted 14C was precipitated with ‘humic acids’ after acidification. These and other results suggest that the major metabolic route for carbofuran in pretreated soils involves hydrolysis of the ester bond leading to (1) release of carbofuran phenol which rapidly binds to soil organic matter and, (2) release of the carbonyl moiety which quickly degrades to generate carbon dioxide.  相似文献   

4.
The degradation of the wild oat herbicide flamprop-methyl [methyl DL -N-benzoyl-N-(3-chloro-4-fluorophenyl)alaninate] in four soils has been studied under laboratory conditions using 14C-1abelled samples. The flamprop-methyl underwent degradation more rapidly than its analogue flamprop-isopropyl. However, similar degradation products were formed, namely the corresponding carboxylic acid and 3-chloro-4-fluoroaniline. The latter compound occurred mainly as ‘bound’ forms although evidence was obtained of limited ring-opening to give [14C]carbon dioxide. The time for depletion of 50% of the applied herbicide was approximately 1-2 weeks in sandy loam, clay and medium loam soils and 2-3 weeks in a peat soil.  相似文献   

5.
l-[U-14C]sucrose accumulation by phloem sieve tube members (PSTM) of wheat (Triticum aestivum L. ‘Holley’) and sorghum (Sorghum bicolor L. ‘G522 DR’) was inhibited by the nonpermeant sulfhydryl inhibitor p-chloromercuribenzenesulfonic acid (PCMBS), and this inhibition was reversed by the permeant sulfhydryl protectants dithiothreitol (DTT) and dithioerythritol (DTE). S-Ethyl dipropylthiocarbamate (EPTC) (≤0.1 mM) did not inhibit [14C]sucrose accumulation by wheat or sorghum PSTM. N-N-Diallyl-2-chloroacetamide (CDAA) (1 mM) inhibited [14C]sucrose accumulation by sorghum but not by wheat PSTM. The inhibition of [14C]sucrose accumulation in sorghum PSTM by the membrane permeant CDAA was reversed by DTT. Sorghum growth was inhibited by <1 μM CDAA. Membrane permeant 2-chloroallyl diethyldithiocarbamate (CDEC) (0.1 mM) inhibited [14C]sucrose accumulation by PSTM of sorghum but not wheat. The inhibition of sucrose accumulation in sorghum PSTM by 0.1 mM CDEC was reversed by DDT.  相似文献   

6.
Seedlings of Solanum scabrum Mill. and Solanum ptycanthum Dun. were treated with [14C]ethalfluralin (N-ethyl-α,α,α-trifluoro-N-(methylallyl)-2,6-dinitro-p-toluidine) and [14C]trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) supplied in nutrient solution to determine the basis for differences in response by these two species to these two herbicides. Plants of S. scabrum absorbed more [14C]ethalfluralin and [14C]trifluralin than plants of S. ptycanthum. During the first 24 h, S. scabrum seedlings, but not S. ptycanthum seedlings absorbed more [14C]ethalfluralin than did plants treated with [14C]trifluralin. More [14C]ethalfluralin than [14C]trifluralin was found in the shoots of plants of both species. Seventy-two hours after treatment with [14C]herbicides, the conversion to water-soluble metabolites was greater for [14C]ethalfluralin than for [14C]trifluralin. In the shoots of plants from both species an average of nearly 55% of the 14C recovered was found in the water-soluble fraction following [14C]ethalfluralin treatment whereas an average of only 40% was found in the water-soluble fraction following [14C]trifluralin treatment.  相似文献   

7.
The distribution resulting from the drenching of soil with a suspension concentrate of [14C]metazoxolon was studied in the laboratory and the field. Penetration of soil columns was increased by (a) increasing the drench volume from 1 to 7.8 litres m?2, (b) changing the original soil moisture content from air-dry to field-capacity, and (c) including 1 % of ‘Renex 30’ surfactant in the drench. Penetration was greatest in soils containing large pores and was reduced when aggregates were broken down by sieving. Leaching the column with 1.56 cm of ‘rain’, 15 h after treatment, did not increase the penetration by metazoxolon. In all experiments, the maximum concentration of metazoxolon occurred in the top 2 cm of soil. Equivalent effects were found when metazoxolon was applied to a poorly-structured sandy clay loam in the field.  相似文献   

8.
The uptake and translocation of [14C]asulam (methyl 4-aminophenyl-sulphonylcarbamate), [14C]aminotriazole (1-H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail), a weed of mainly horticultural situations. Under controlled-environment conditions, 21°C day/18°C night and 70% r. h., the test herbicides were applied to 2-month-old and 2-year-old plants. Seven days following the application of 0.07-0.09 °Ci (1.14mg) of the test herbicides to young E. arvense, the accumulation of 14C-label (as percentage of applied radioactivity) in the treated shoots, untreated apical and basal shoots was as follows: [14C]asulam, 13.2, 0.18 and 1.02%; [14C] aminotriazole, 67.2, 3.65 and 1-91%; [14C]glyphosate, 35.9, 0.06 and 0.11%. The equivalent mean values for the accumulation of 14C-label in 2-year-old E. arvense were [14C]asulam, 12.0, 1-15 and 1.74%; [14C]aminotriazole, 58.6, 9.44 and 4.12%; [14C]glyphosate, 33.1, 0.79 and 2.32%. In the latter experiment, test plants received 0.25-0.30 °Ci (4mg) of herbicide, they were assessed after a 14-day period and the experiment was carried out at 3-week intervals between 2 June and 25 August on outdoor-grown plants. Irrespective of test herbicide or time of application, very low levels of 14C-label accumulated in the rhizome system. Only 0.2% of the applied radioactivity was recovered in 2-year-old plants and 0.4% in 2-month-old plants. In the young plants [14C]asulam accumulated greater amounts and concentrations of 14C-label in the rhizome apices and nodes than [14C]aminotriazole or [14C]glyphosate treatments. Inadequate control of E. arvense under field conditions may be due to limited basipetal translocation and accumulation of the test herbicides in the rhizome apices and nodes.  相似文献   

9.
Metabolism of the substituted diphenylether herbicide, acifluorfen [sodium 5-(2-chloro-4-trifluoromethylphenoxy)-2-nitrobenzoate], was studied in excised leaf tissues of soybean [Glycine max (L.) Merr. ‘Evans’]. Studies with [chlorophenyl-14C]- and [nitrophenyl-14C]acifluorfen showed that the diphenylether bond was rapidly cleaved. From 85 to 95% of the absorbed [14C]acifluorfen was metabolized in less than 24 hr. Major polar metabolites were isolated and purified by solvent partitioning, adsorption, thin layer, and high-performance liquid chromatography. The major [chlorophenyl-14C]-labeled metabolite was identified as a malonyl-β- -glucoside (I) of 2-chloro-4-trifluoromethylphenol. Major [nitrophenyl-14C]-labeled metabolites were identified as a homoglutathione conjugate [S-(3-carboxy-4-nitrophenyl) γ-glutamyl-cysteinyl-β-alanine] (II), and a cysteine conjugate [S-(3-carboxy-4-nitrophenyl)cysteine] (III).  相似文献   

10.
The mobility of alachlor from alginate-encapsulated controlled-release (CR) formulations was investigated in two contrasting soil profiles. Two CR formulations of alachlor were prepared with the following components (1) base—sodium alginate+kaolin+‘Tween’ 20 (1+10+0·5 by mass) and (2) base+40 g kg−1 linseed oil. These were compared to technical grade alachlor and to a commercial alachlor EC formulation (‘Lasso’ 4EC). All herbicide treatments were labeled with [14C]alachlor and were applied to duplicate soil columns that were composed of a surface and a subsoil horizon. Each horizon was packed to a depth of 12·5 cm, giving a total column length of 25 cm. The columns were leached with 21 cm (420 ml) to 30 cm (600 ml) of 0·01M calcium chloride for a period of 7 to 10 days. Alachlor leaching from the EC formulations was the same as that from the technical material in both soils: 33% in the Evesboro and 10% in the Conover soil. The CR-Oil formulation leached 4 and 2% of the applied [14C]alachlor, compared to 12 and 3% for the CR-N formulation for the Evesboro and Conover soils, respectively. The CR-Oil formulation also increased the amount of [14C]alachlor retained in the soil surface horizon (105–114%), compared to CR-N (39–45%), technical material (14–23%) and EC (12–17%).  相似文献   

11.
Intact mitochondria, isolated from red coxal muscle of the American cockroach (Periplaneta americana L.), were incubated in the presence of 1,1,1-trichloro-2,2-bis(4-chloro[14C]phenyl)ethane ([14C]DDT) to isolate a suspected binding site for DDT in the membrane sector of the mitochondrial ATPase. The requirements for the binding of DDT were compared with those for the binding of dicyclohexyl[14C]carbodi-imide([14C]DCCD), a potent inhibitory probe of mitochondrial ATPase activity. [14C]DDT appeared to bind to a proteolipid of the membrane sector, which also binds [14C]DCCD. Exchange experiments, with [14C]DCCD, [14C]DDT and unlabelled DDT at different concentrations, indicated that DDT and DCCD may be acting on a similar protein. This protein may act as the energy transducing protonophore required for the synthesis and hydrolysis of ATP in coupled mitochondria. Inhibition of mitochondrial ATPase activity may be a consequence of DDT and DCCD binding to this proteolipid protonophore, resulting in the disruption of energy transduction in muscle and nerve.  相似文献   

12.
The mechanism of differential response of wheat cultivars to chlorsulfuron   总被引:1,自引:0,他引:1  
Wheat (Triticum aestivum L.) cultivars showed differential tolerance to chlorsulfuron. Cultivar Kotare showed no injury symptoms following foliar applications of chlorsulfuron at 15 or 60 g a.i. ha?1, while cultivars Rongotea and Lancer showed early damage in pot and field experiments at both rates of chlorsulfuron. Cultivars Abele and Jasper were intermediate in their response. The number of spikelets per ear was the only yield component affected by chlorsulfuron and was reduced in Lancer and Rongotea. Retention, uptake and transiocation of chlorsulfuron were not different between Kotare and Ron-gotea. Within 48 h of application, Kotare metabolized 92–2% of [14C]chlorsulfuron, while Lancer and Rongotea metabolized only 43–5% and 63% of the herbicide, respectively. The concentration of chlorsulfuron in young tissues of Kotare, Lancer and Rongotea, 48 h after application was calculated as 1.2, 31.9 and 15.6 ng g?1 dry weight, respectively. It is concluded that differential rates of metabolism are the main reason for differences in sensitivity to chlorsulfuron between the wheat cultivars tested. Le mécanisme des différences de tolérance au chlorsulfuron entre variétés de blé Des variétés de blé (Triticum aestivum L.) ont montré des différences de tolérance au chlorsul-furon. On n'a aucun symptôme de phytotoxicité sur la variété‘Kotare’ après une application foliaire de chlorsulfuron à 15 ou 60 g m.a. ha?1, alors que les variétés ‘Rongotea’ et ‘Lancer’ présentaient des symptômes précoces aux deux doses, dans des expériences en pot et au champ. La réponse des variété‘Abele’ et ‘Jasper’était intermédiaire. Le nombre de grains par épillet était la seule composante du rendement affectée parle chlorsulfuron et était réduit chez Lancer et Rongotea. La rétention, la pénétration et la migration de chlorsulfuron n'était pas différentes entre Kotare et Rongotea. Quarante huit heures après le traitement, Kotare avait metabolise 92,2% du [14C]chlorsulfuron, alors que Lancer et Rongotea ne métabolisaient que respectivement 43,5 et 63% de l'herbicide. La concentration de chlorsulfuron dans les tissus jeunes de Kotare, Lancer et Rongotea 48 h après la traitement a étéévaluée à respectivement 1,2,31,9 et 15,6 ng g?1 de matière sèche. Il est conclu que des différences de vitesse de métabolisation sont la raison principale des différences de sensibilité au chlorsulfuron observées chez les variétés de blé testées. Mechanismen der unterschiedlichen Reaktion von Weizensorten auf Chlorsulfuron-Behandlun-gen Es wurde eine unterschiedliche Toleranz bei Weizensorten (Triticum aestivum L.) gegenüber Chlorsulfuron-Behandlungen beobachtet. Bei der Sorte ‘Kotare’ traten nach Behandlungen mit 15 oder 60 g AS ha keine Schadsymtome auf, während die Sorten ‘Rongotea’ und ‘Lancer’ sowohl in Topfals auch in Freilandversuchen bei beiden Dosen frühe Schädigungen erlitten; die Sorten ‘Abel’ und ‘Jasper’ reagierten mittelstark. Unter den Ertragskomponenten war nur die Zahl der Ährchen pro Ähre betroffen, sie war bei ‘Lancer’ und ‘Rongotea’ reduziert. Aufnahme und Translokation des Wirkstoffs waren bei ‘Kotare’ und ‘Rongotea’ gleich. Bei ‘Kotare’ war [14C]Chlorsulfuron 48 h nach der Applikation zu 92,2 % metabolisiert, bei ‘Rongotea’ zu 63 % und bei ‘Lancer’ zu 43,5 %. In jungen Geweben dieser Sorten lagen die Chlor-sulfuron-Konzentrationen 48 h nach der Anwendung bei 1,2, 15,6 und 31,9 ng g?1 TM. Die unterschiedlichen Metabolisierungsraten bei den untersuchten Weizensorten wurden für den Hauptgrund für die Toleranzunterschiede gegenüber Chlorsulfuron gehalten.  相似文献   

13.
A laboratory study was conducted to determine the degradation rates and identify major metabolites of the herbicide metsulfuron-methyl in sterile and non-sterile aerobic soils in the dark at 20°C. Both [phenyl-U-14C]- and [triazine-2-14C]metsulfuron-methyl were used. The soil was treated with [14C]metsulfuron-methyl (0.1 mg kg−1) and incubated in flow-through systems for one year. The degradation rate constants, DT50, and DT90 were obtained based on the first-order and biphasic models. The DT50 (time required for 50% of applied chemical to degrade) for metsulfuron-methyl, estimated using a biphasic model, was approximately 10 days (9–11 days, 95% confidence limits) in the non-sterile soil and 20 days (12–32 days, 95% confidence limits) in the sterile soil. One-year cumulative carbon dioxide accounted for approximately 48% and 23% of the applied radioactivity in the [phenyl-U-14C] and [triazine-2-14C]metsulfuron-methyl systems, respectively. Seven metabolites were identified by HPLC or LC/MS with synthetic standards. The degradation pathways included O-demethylation, cleavage of the sulfonylurea bridge, and triazine ring opening. The triazine ring-opened products were methyl 2-[[[[[[[(acetylamino)carbohyl]amino]carbonyl]amino] carbonyl]-amino]sulfonyl]benzoate in the sterile soil and methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate in the non-sterile soil, indicating that different pathways were operable. © 1999 Society of Chemical Industry  相似文献   

14.
Perfusion of 14C-(ring)-parathion or 14C-(ring)-paraoxon with blood through isolated, intact rat livers resulted in the rapid degradation of these insecticides. Degradation was negligible in the absence of rat liver (controls), thus demonstrating the capacity of the liver per se to effectively degrade these compounds. Of the total radiocarbon recovered after liver perfusion with [14C]parathion, 33 % could be attributed to unchanged [14C]parathion (similarly distributed between the liver and the blood) while 67.9 % was degraded to water soluble compounds and 2.5% was converted to organic soluble paraoxon and traces of p-nitrophenol. Nearly all of the [14C]paraoxon, however, was degraded by the intact rat liver, resulting in water soluble products that amounted to 98.5% of the total radiocarbon recovered. Unexplained losses of radiocarbon with the perfusion apparatus used were lower in the presence of rat liver which degraded the insecticides to more water soluble compounds. The water soluble degradation products produced from [14C]parathion and [14C]paraoxon were non-toxic to mosquito larvae (Aedes aegypti L.). These ring-labelled products were found to be conjugated p-nito-phenol. Nearly all of the water soluble radiocarbon was located in the perfused blood, while only small amounts (1.8 to 3.0% of recovered) were excreted via the bile or were associated with the liver tissue (1.3 to 1.8 % of recovered).  相似文献   

15.
Water penetrated through isolated leaf cuticles of dwarf orange (Citrus mitis Blanco, ?Calamondin’?) as undissociated molecules because both [18O] water (1H218O) and HTO (1H3H16O) permeated at the same rate. HTO penetrated to 3 to 21% of the theoretical equilibrium value (TEV) in an unstirred system within 10 days for astomatous cuticles and 50 to 60% of TEV for stomatous cuticles. The permeability coefficient (k) of HTO through astomatous cuticles at 25°C was 6.8 × 10?7 cm s?1. Two highly water-soluble 14C-labelled compounds, trichloroacetic acid (TCA) and 1,2,4-triazol-3-ylamine [aminotriazole (BSI) or amitrole (ISO)], and two nearly water-insoluble 14C-labelled compounds, 1-naphthyl methylcarbamate (carbaryl) and 2,6-dichloro-4-nitroaniline (dicloran), were compared to HTO as a reference standard in permeation studies. All four organic molecules permeated without decomposing. The relative k values for TCA, aminotriazole, carbaryl, HTO and dicloran were 0.32, 0.47, 0.71, 1.0, and 1.5 respectively. Although this suggested that the permeation of organic molecules may be inversely related to water solubility, this could not be established with certainty due to large variations in the data. The k values were obtained for 12 other organic compounds through a variety of biological and model membranes or were calculated from the literature. Any relationships between k and various molecular characteristics were unclear because a wide variety of cuticle sources and experimental design was used by different investigators working in this area. The calculation of k is considered essential in all permeability studies so that comparisons can be made between laboratories.  相似文献   

16.
In unwounded soybean hypocotyls, pulse labelled with [14C]phenylalanine and inoculated with Phytophthora megasperma f.sp. glycinea, rates of [14C]-incorporation and glyceollin I accumulation were higher in resistant than in susceptible responses throughout the time-course of the experiment. This distinction was masked in hypocotyls that were wounded and inoculated. In such hypocotyls, high rates of [14C]-incorporation developed that were similar for the first 11 h in resistant and susceptible responses, although much more glyceollin I accumulated in the former. High rates of [14C]-incorporation also developed in uninoculated wounded hypocotyls but only small amounts of glyceollin I of high specific radioactivity were detected. Estimates of phenylalanine ammonia-lyase activity indicated that the metabolic flux through phenylalanine was limited in wounded controls but potentially very high in resistant responses. Differences in rates of [14C]-incorporation and in specific radioactivity of accumulated glyceollin I presumably indicate differences in the relative contributions of mobile internal pools and externally applied phenylalanine, in addition to rates of biosynthesis. Rapid decline in [14C]-glyceollin I was demonstrated in wounded controls in pulse-ch0ase experiments with phenylalanine as chase, but not in inoculated hypocotyls, due to continued [14C]-incorporation during the chase period. Rapid metabolism was demonstrated in all interactions and in wounds when cinnamic acid was used as the chase, but there was no evidence that differences in glyceollin I accumulation were due to differential rates of metabolism. Additional evidence for metabolic activity was provided by pulse feeding with [14C]glyceollin I. It is concluded that the stimulus of wounding or infection induces a metabolic pathway in which glyceollin I is not an end product. The accumulation of higher levels of glyceollin I in resistant than in susceptible responses appears to be due to earlier initiation and subsequently higher rates of biosynthesis in the former.  相似文献   

17.
The bacterium Azospirillum lipoferum is able to survive in high concen-trations of the organochlorine acaricide dicofol [1,1-bis-(4-chlorophenyl)-2,2,2-trichloroethanol]. It accumulates this chemical in the cell envelope where it is protected against hydrolysis. We investigated the nature of cell envelope molecules with which [14C]dicofol is associated; no indication of [14C]dicofol–saccharide bonds was found. We concluded that about 80% of the total [14C]dicofol found in the cells was associated with lipids and the remaining 20% with proteins. Electrophoresis did not indicate any correlation of a specific protein band with [14C]dicofol radioactivity peaks. After Folch partition, [14C]dicofol distribution in TLC analysis showed 60% of [14C]dicofol–lipid bonds related to neutral lipids, 20% to phospholipids and the remaining 20% of the bonds associated with other lipids. Experimental results suggested that [14C]dicofol associates mainly with membrane domains near proteins and that this association influences membrane fluidity as well as enzymatic activity. © 1998 SCI  相似文献   

18.
The β-D -glucoside conjugate of [14C]‘hydroxymonolinuron’, [phenyl-14C]-3-(4- chlorophenyl)-1-(hydroxymethyl)-1-methoxyurea-β-D -glucoside (HM-β-G) and its soil-bound residues, prepared as described, were used to estimate its bioavailability to earthworms and ryegrass plants. The results demonstrate that these bound residues were available to both earthworms and ryegrass. The concentration in the earthworms, expressed on a dry weight basis after 42 days of exposure, was equal to the surrounding soil. The earth worms were found to be more efficient in remobilising and absorbing soil-bound residues than ryegrass plants after 59 days of cultivation. Fractionation of the soil-bound residues showed that 29% of the radiocarbon was associated with fulvic acid, 20% with humic acid and 9% with the humin fraction. 4-Chlorophenylurea, a metabolite of HM-β-G proved to be a key compound in the formation of soil-bound residues. The amount of radioactivity (bound residues), recovered from soil through solubilisation by means of 0.5M -acid and alkali, seems to be a criterion for predicting the bioavailability of bound phenylurea residues. The half-life of soil-bound residues was estimated to be about 4.6 years.  相似文献   

19.
Bromoxynil octanoate labelled with 14C in the ring or in the cyano-group was applied to wheat seedlings at the two-leaf or fully-tillered stage and at rates equivalent to up to 16 oz a.i./acre. The plants were grown either in environmental chambers under controlled conditions for up to 28 days, or outdoors under field conditions for various periods up to harvest. Initially, elimination of radioactivity occurred more rapidly with bromoxynil-cyano-[14C]-octanoate than with bromoxynil-ring-[14C]-octanoate, indicating metabolic attack on the cyano group. Under outdoor conditions with ring-[14C]-herbicide applied at the two-leaf stage, only 12% of the radioactivity was retained after 28 days, principally in the treated leaves. When application was made at fully-tillered stage, about 33% of the 14C was retained after 56 days, almost entirely in the treated senescent leaves at the base of the plant. There was very little translocation of the herbicide or of any major metabolite. The level of radioactivity in harvested grain and in straw more than 7.5 cm above the ground was very low, even after very late application of ring-[14C]-labelled herbicide. The amount of bromoxynil octanoate, together with any metabolite retaining part of the aromatic ring, did not collectively exceed the equivalent of approx. 0.01 parts/million bromoxynil octanoate.  相似文献   

20.
Differential accumulation of [14C]imazalil and [14C]fenarimol by germlings of wild-type and DMI-resistant isolates ofPenicillium italicum was studied at various pH values. At pH 7 and 8 the low-resistant isolate E300–3 accumulated 22% and 35%, respectively, less imazalil than the wild-type isolate W5. Imazalil accumulation at pH 5 and 6 was similar. Isolate E300–3 also accumulated less fenarimol as compared with the wild-type isolate. This difference was much more obvious than for imazalil and was observed at all pH values tested. Differences in accumulation of both imazalil and fenarimol between low (E300–3), medium (H17) and high resistant (I33) isolates were not observed. These results suggest that decreased accumulation of DMIs is responsible for a low level of resistance only and that additional mechanisms of resistance might operate in isolates with a medium and high degree of resistance. With all isolates fenarimol accumulation was energy-dependent. This was not obvious for imazalil.The wild-type and DMI-resistant isolates had a similar plasma membrane potential as determined with the probe [14C]tetraphenylphosphonium bromide ([14C]TPP+). Various test compounds, among which ATPase inhibitors, ionophoric antibiotics and calmodulin antagonists, affected the accumulation of [14C]TPP+, [14C]imazalil and [14C]fenarimol. No obvious correlation between the effects of the test compounds on accumulation levels of the fungicides and [14C]TPP+ could be observed. These results indicate that the plasma membrane potential does not mediate the efflux of DMI fungicides byP. italicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号