首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 14C-labelled benzoic acids, chosen to permit assessment of the role of pKa and lipophilicity in determining movement in plants of these herbicide analogues, was synthesised and their phloem translocation investigated. Following application of substituted benzoic acids to castor bean, Ricinus communis L., by injection into the petioles, the compounds of intermediate lipophilicity (2-fluoro-, 4-chloro- and 3,4-dichlorobenzoic acids) gave highest concentrations in phloem exudates; 4-methyl-2,3,5,6-tetrafluoro- and pentafluorobenzoic acids were less well translocated, perhaps because their pKa values are much less than those of the other benzoic acids studied. The polar 4-ureidobenzoic acid and the lipophilic 3-(4-methylphenoxy)benzoic acid were much less efficiently translocated in phloem. These results are similar to those previously obtained for phenoxyacetic acids, and provide further support for the role of ionisation in the accumulation and retention of chemicals in phloem sieve tubes.  相似文献   

2.
The objective was to study CO2 fixation and photoassimilate partition in coffee (Coffea arabica) seedlings infested with the lesion nematode Pratylenchus coffeae. Seedlings infested with 0, 1000 and 8000 Pratylenchus coffeae nematodes were exposed to 14CO2 and the incorporation and distribution of radioactivity were followed in the roots, stems and leaves. Fresh mass, pigments, soluble sugars, sucrose and specific radioactivity of sucrose in the plant parts were determined. At the highest level of infestation almost all the parameters were significantly changed showing the carbon fixation in the leaves and partitioning to the roots were decreased. Since lesion nematodes are not sedentary and do not form feeding sites that could be characterised as metabolic sinks, it is suggested that their damage is more readily expressed by the leaves, through a reduction in photosynthesis and phloem transport.  相似文献   

3.
The phloem translocation of an homologous series of ω-(1-[1-4C]naphthoxy)alkanoic acids relative to that of applied [6,6′-3H] sucrose was measured in Ricinus communis var. Gibsonii. Relative phloem mobility decreased with increase in octan-l-ol/water partition coefficients. However, non-ionisable compounds with partition coefficients similar to the readily translocated acids were not phloem mobile. These results are explained in terms of an ion-trap mechanism subject to limitations on the partition coefficients of the acids and possibly their anions.  相似文献   

4.
Carrot psyllid Trioza apicalis was recently found to carry the plant pathogenic bacterium ‘Candidatus Liberibacter solanacearum’ (CLs). To confirm the transmission of bacteria by the psyllids and to dissect the symptoms caused in carrot plants by psyllid feeding and CLs infection, a greenhouse experiment with single psyllids feeding on separate plants was performed. A positive correlation was found between the amount of CLs bacteria in the psyllids and in the corresponding plants exposed to feeding, indicating CLs transmission. The female psyllid feeding caused more severe damage than male feeding, and resulted in a substantial decrease in the root weight. Female psyllid feeding also significantly reduced the carrot leaf weight and increased the number of curled leaves. The number of curled leaves was also increased by the nymphs when their number exceeded 10 per plant. A high titre of CLs bacteria significantly reduced root weight, while not affecting the weight or number of the leaves. However, the amount of CLs correlated with the number of leaves showing discolouration symptoms. Microscopy of infected carrot plants revealed that the phloem tubes throughout the whole plant, from leaf veins to the root tip, were colonized by bacteria. The bacterial cells appeared to be long and thin flexible rods with tapering ends and a transversally undulated surface. Microscopy also revealed collapsed phloem cells in the infected carrots. Damage in the phloem vessels is likely to reduce the sucrose transport from source leaves to the root, explaining the observed leaf discolouration and reduction in root weight.  相似文献   

5.
Translocation of 2,4-D, asulam and amitrole in water hyacinth   总被引:1,自引:0,他引:1  
In glasshouse experiments foliar application or 14C-labelled herbicides to water hyacinth plants at the 4-leaf stage indicated that amilroie transport from the treated leaf blade was faster and greater than 2.4-D. but a little less than asulam. From the treated leaf 14·2, 25·9. 39·7. 44·5 and 51·8% of the recovered 14CNamitrole was translocated at intervals of 6 h. and 1. 3. 6 and 12 day., respectively. Both xylem and phloem transport of asulam and amitrole was evident, whereas 2.4-D moved only from ‘source to sink’. Movement of the herbicides from the mother to the connected daughter plant or vice versa was dependent upon the size of the latter. Maximum transport of these herbicides in either direction took place at the 2-leaf stage of daughter plants. With any increase or decrease in the number of leaves on daughter plants, the transport of herbicides was reduced. As an exception, daughter plant to mother plant movement of amilroie was maximum at the 1-leaf stage. After extraction, fractionation and TLC separation of foliage applied 14C-2.4-D 76–4 and 72·1% of the radioactivity was detected in the chloroform phase of the leaf extract at 3 and 6 day intervals, respectively. In another pot culture experiment, it was observed that after spraying the mother plants with 2.4-D-amine at 0–75 kg/ha the connected daughter plants at 1 to 4-leaf stages werckilled if the culture solution was contaminated while spraying, or by dying leaves. When contamination was totally avoided, the connected but unsprayed daughter plants at 3 to 4-feaf stages survived.  相似文献   

6.
Phytotoxic activity of several middle-chain fatty acids, especially pelargonic acid (C9 acid) was investigated. C9–C11 acids caused strong non-selective damage to plants such as crabgrass, cucumber, velvetleaf, and tobacco, while C6 and C14 fatty acids had almost no activity. Middle-chain fatty acids caused a strong and rapid electrolyte leakage. They reached highest conductivity in 3 h in the case of cucumber cotyledons. Middle-chain fatty acids caused a decrease of the amount of polar lipids, particularly MGDG and PG, and chlorophylls. They also caused an increase of free fatty acids in 24 h after treatment. These results suggested that middle-chain fatty acids caused severe damage to cell membranes and thylakoid membranes of treated leaves. C6 volatile compounds such as cis-3-hexenal, trans-2-hexenal, and cis-3-hexenol were generated in less than 1 h after spraying pelargonic acid to tobacco leaves. The application of pelargonic acid was thought to be the trigger for linolenic acid degradation in the thylakoid membranes.  相似文献   

7.
Huanglongbing (HLB) is a systemic disease of citrus caused by phloem‐limited bacteria ‘Candidatus Liberibacter’ spp. with ‘Ca. Liberibacter asiaticus’ (Las) the most widespread. Phloem‐limited bacteria such as liberibacters and phytoplasmas are emerging as major pathogens of woody and herbaceous plants. Little is known about their systemic movement within a plant and the disease process in these tissues. Las movement after initial infection was monitored in leaves and roots of greenhouse trees. Root density, storage starch content, and vascular system anatomy in relation to Las presence in field and greenhouse trees, both with and without symptoms, showed the importance of root infection in disease development. Las preferentially colonized roots before leaves, where it multiplied and quickly invaded leaves when new foliar flush became a sink tissue for phloem flow. This led to the discovery that roots were damaged by root infection prior to development of visible foliar symptoms and was not associated with carbohydrate starvation caused by phloem‐plugging as previously hypothesized. The role of root infection in systemic insect‐vectored bacterial pathogens has been underestimated. These findings demonstrate the significance of early root infection to tree health and suggest a model for phloem‐limited bacterial movement from the initial insect feeding site to the roots where it replicates, damages the host root system, and then spreads to the rest of the canopy during subsequent leaf flushes. This model provides a framework for testing movement of phloem‐limited bacteria to gain greater understanding of how these pathogens cause disease and spread.  相似文献   

8.
天然产物吩嗪-1-羧酸(PCA,申嗪霉素)及其衍生物吩嗪-1-甲酰肼具有独特的化学结构和优良的杀菌等生物活性,但均没有韧皮部输导性。本文以具有抑菌活性的吩嗪-1-羧酸和具有韧皮部输导性的马来酰肼为先导化合物,将马来酰肼中的双酰肼结构引入到吩嗪-1-羧酸中,设计、合成了17个新化合物,其结构均经过核磁共振氢谱、高分辨质谱及X-射线单晶衍射分析确证。初步生物活性测试表明:大部分目标化合物在50 mg/L下对水稻纹枯病菌Thanatephorus cucumeris表现出中等偏上的抑制活性,其中化合物6m的抑制率达92%。但输导性研究结果显示,目标化合物没有明显的韧皮部输导性。  相似文献   

9.
Summary. 14CO2 together with autoradiographic techniques was used to stuy the movement of labelled carbon within wheat plants at different stages in their development. Movement of 14C about the plain was found to be extensive in the early stages, gradually bccoming more localized until at a stage after ear emergence there was little transference of labelled carbon between tillers within a 24-hour period.
In the early stages of development 14C from leaves on the main shoot was transported throughout the plant but accumulated in greatest amounts in the meristematic regions. Assimilates produced by the leaves of newly formed tillers were distributed mainly to the meristematic regions of those tillers although labelled carbon was moved in into the rest of the plant. In the later stages of development of each tiller the labelled assimilate was restricted to the tiller itself and to any very young tillers associated with it. After car emergence the pattern of distribution of the labelled carbon from the youngest and second youngest leaves was found to differ. Movement was predominantly towards the ear from the flag leaf and towards the root system from the leaf below the flag.
It was noticed that mature leaves accumulated some labelled material and the possibility that this occurred via the transpiration stream following migration from phloem to xylem, as is the case with some of the case with some of the translocated herbicides, was investigated, but no indication of xylem transference was obtained.
The possible application of these studies to investigations into the relationship between the movement natural assimilates and of translocated herbicides is discussed.  相似文献   

10.
The penetration of two model seed oil compounds, [14C]triolein (TRI) and [14C]methyl oleate (MEO) through plant cuticles and their effects on the penetration of [14C]quizalofop-ethyl and [14C]fenoxaprop-ethyl were investigated. Experiments were carried out using isolated cuticles from rubber plant (Ficus elastica Roxb.) leaves and from tomato (Lycopersicon esculentum Mill,) and pepper (Capsicum annuum L.) fruits. Chemicals were deposited in droplets on to cuticle discs maintained on agar blocks under controlled conditions. TRI and MEO were used at 1% (V/V). The transfer of radiolabel through cuticles was negligible for TRI and varied from 6 to 13% after 72 h, according to species, for MEO, The penetration results obtained for quizalofop-ethyl (0.084 mg mL-1) and fenoxaprop-ethyl (0.189 mg mL-1) were very similar and varied according to species. The greatest diffusion intoagar was observed for pepper (12.8% and 10.7% after 72 h, for quizalofop-ethyl and fenoxaprop-ethyl respectively), the lowest for rubber plant cuticles (1.4 and 1.3% respectively). Addition of MEO produced significant increases in the penetration of quizalofop-ethyl and fenoxaprop-ethyl through rubber plant and tomato cuticles. TRI had an enhancing effect on the two herbicides only with rubber plant cuticles. Results are discussed with particular consideration of the variations between plant species and the possible mode of action of seed oil adjuvants.  相似文献   

11.
BACKGROUND: Cycloate inhibits the biosynthesis of very‐long‐chain fatty acids, the essential constituents of plant waxes and suberin. Fatty acids also serve as precursors of aliphatic carbon chains in resorcinolic lipids, which play a fundamental role in the plant defence system against fungal pathogens. In this study, the effect of cycloate on the biosynthesis of 5‐n‐alkylresorcinols in rye seedlings (Secale cereale L.) grown under various light and thermal conditions was examined. RESULTS: The content of alkylresorcinols biosynthesised in rye was generally increased by the herbicide in both green and etiolated plants. The presence of cycloate also affected patterns of alkylresorcinol homologues in plants grown at 15 and 22 °C; very‐long‐side‐chain compounds were less abundant, whereas both short‐chain saturated and unsaturated homologues were generally accumulated. No cycloate‐related effects caused by homologue pattern modifications were observed at elevated temperature. CONCLUSION: This study extends present understanding of the mode of action of thiocarbamate herbicides. Cycloate markedly affected the biosynthesis of very‐long‐side‐chain resorcinolic lipids in rye seedlings, confirming the existence of parallels in both fatty acid and alkylresorcinol biosynthetic pathways. The observed cycloate‐driven accumulation of 5‐n‐alkylresorcinols may improve the resistance of cereals to infections caused by microbial pathogens. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Kobori T  Osaki T  Ohki ST 《Phytopathology》2003,93(11):1445-1451
ABSTRACT A potential regulatory site for Cucumber mosaic virus (CMV, pepo strain) movement necessary to establish systemic infection was identified through immunological and hybridization studies on Tetragonia expansa, which was systemically infected by CMV at 36 degrees C but not at 24 degrees C. In inoculated leaves, cell-to-cell movement of CMV was enhanced at 36 degrees C compared with that observed at 24 degrees C. CMV was distributed in the phloem cells of minor veins as well as epidermal and mesophyll cells at both 36 and 24 degrees C. CMV was detected in the petioles of inoculated leaves, stems, and petioles of uninoculated upper leaves at 36 degrees C, whereas CMV was detected only in the petioles of inoculated leaves and in stems at 24 degrees C. CMV moved into the phloem and was transported to the stem within 24 h postinoculation (hpi) at 36 degrees C. However, it did not accumulate in the petioles of the upper leaves until 36 hpi. In petioles of inoculated leaves at 24 degrees C, CMV was detected in the external phloem but not in the internal phloem. From these results, we conclude that systemic infection is established after viral entrance into the phloem pathway in T. expansa at 36 degrees C.  相似文献   

13.
14.
Levels of individual phenolic acids were examined in primary leaves of wheat (Triticum aestivum) after inoculation with avirulent and virulent strains of the leaf rust fungus (Puccinia recondita f. sp. tritici) at stages when previous work had shown fungal and host cells to be affected by expression of the Lr20 or Lr28 alleles for resistance. The predominant phenolic acid, ferulic acid, as well as p-coumaric and syringic acids were detected in primary leaves in both unbound and bound forms. They were not detected in germinating urediniospores of either rust strain. Levels of unbound phenolic acids changed little in response to infection. In Lr28-bearing leaves inoculated with an avirulent strain, increased concentrations of bound phenolic acids and three other unidentified compounds were observed about 4 h after many single or small groups of cells had undergone hypersensitive collapse. In an Lr20-bearing cultivar, levels of bound phenolic acids fell in leaves inoculated with either a virulent or avirulent rust strain. Coniferyl aldehyde and coniferyl alcohol were not detected in healthy or inoculated leaves of either wheat cultivar. Attempts to affect expression of resistance by application of inhibitors of phenylalanine ammonia-lyase were not successful and both wheat cultivars remained resistant to avirulent rust strains. The bound phenolic acids which accumulate in cells undergoing a hypersensitive response may play a role in resistance of Lr28-bearing wheat to the leaf rust fungus.  相似文献   

15.
The protective activity of a crude extract prepared from the green macroalga, Ulva armoricana, previously shown to induce plant defence responses, was evaluated on three plant species, common bean, grapevine and cucumber, cultivated in the greenhouse and inoculated with three powdery mildew pathogens Erysiphe polygoni, E. necator and Sphareotheca fuliginea respectively. Chemical analyses showed that the extract was enriched in ulvans, which are green algae polysaccharides essentially composed of uronic acid and sulphated rhamnose. Weekly applications were performed by spraying of the green algal extract at various dilutions on bean, grapevine and cucumber leaves. A significant effect (50% protection) was observed using a dilution corresponding to about 3 g l−1 dry matter and up to 90% reduction of symptom severity was obtained for the highest concentration (1/9 dilution, 6 g l−1 dry matter) for the three plant species. To study the natural variability of the protective activity, five extracts prepared from algae batches harvested at different year periods were evaluated. Although polysaccharide composition varied among batches, all extracts elicit a reporter gene regulated by a defence-gene promoter in a transgenic tobacco line, and protect cucumber plants against powdery mildew infection. Together, these data demonstrate that U. armoricana is a reproducible source of active compounds which can be used to efficiently protect crop plants against powdery mildew diseases.  相似文献   

16.
Alterations in some physiological processes in source leaves of sugar beet—such as chlorophyll and carbohydrate concentrations, stomatal conductance, rate of net photosynthesis and transpiration, and activity of the photosynthetic apparatus during root interaction with Aphanomyces cochlioides, were investigated. The influence of time of infection on plant health, yield quality and quantity was also examined. Plants were infected at different times of their growth period: on the sowing day and 4 or 8 weeks after sowing. A variation treatment, with non-pelleted seeds infected on the sowing day, was also analyzed. The experiment showed that development of disease symptoms depends on the time of infection and seed protection. A significant root yield decrease was observed in case of late infection, as compared to the yield of plants infected on the sowing day. The fresh weight of leaves was significantly increased where there was late infection. The infected plants showed a lower content of K+, Na+ and α-amino-N than did the controls. Infection by A. cochlioides induced chlorophyll degradation mostly in older leaves with the occurrence of natural senescence processes. Chlorophyll fluorescence parameters indicated that the photosynthetic apparatus of younger leaves was more sensitive to pathogen infection, when compared to older ones. The photochemical efficiency of photosystem II was reduced in young leaves mainly due to disturbance of the water-splitting system. In plants grown from non-pelleted seeds a strong impairment of PSII was observed only in those leaves which developed during early pathogen infection. In young leaves of plants infected in the fourth week after sowing, inhibition of the rate of net photosynthesis was correlated with the increase in intercellular CO2 concentration, indicating some disturbance in the carbon assimilation phase. In mature leaves of late infected plants the reduction of photosynthesis net rate was associated with a decrease of stomatal conductance and an increase of diffusion resistance to CO2 and H2O, which was also the cause of the transpiration rate inhibition. When the leaves developed during early infection, an increase of specific leaf weight and accumulation of carbohydrates was observed. In mature leaves of non-protected plants infected on the sowing day, the recovery of all physiological processes was observed together with a diminution of disease symptoms.  相似文献   

17.
A total of 60 compounds of known structure, comprising sugars, sugar alcohols, fatty acids, amino acids, organic acids, phenols and sterols were identified in stem extracts of groundnut using GC-MS. Sugars and fatty acids were predominant in stem extracts as compared to other metabolites. Distinguished metabolite patterns were observed in control and 96 h after infection (h.a.i.). Succinic acid, pentitol, scopolin, D-glucose and D-turanose, myo-inositol, fructose and mannitol were observed to be higher in control plants, whereas, D-ribopyranoside, thymol, pentadecanoic acid and octadecanoic acid increased at 24 hai than that of control. Interestingly, phenol related compounds such as phenol, hydroquinone, guaicol-.beta.-d-glucopyranoside, scopolin were also found lower in non-infected stems of TG37A. Moreover, tolerant genotypes (CS 319 and CS 19) had higher content of Thymol-.beta.-d-glucopyranoside, pentitol, D-glucose, D-turanose, scopolin and hydroquinone than that of moderately tolerant and susceptible genotypes. Sugar profiles using Ion chromatography revealed that glucose content decreased in moderately susceptible and susceptible genotype after S. rolfsii infection. Both constitutive and induced levels of cinnamic acid was observed higher in resistant genotypes than that of susceptible ones which was further supported by phenylalanine ammonia lyase activity. Thus, our study demonstrates the biological role of metabolites specifically sugars, phenolics and fatty acids in plant defense responses.  相似文献   

18.
Diflubenzuron was absorbed and metabolised relatively slowly by the two-spotted spider mite Tetrunychus urticae Koch. Diflubenzuron metabolites, tentatively identified by coincident chromatography with reference standards, included 4- chlorophenylurea, 2, 6-difluorobenzoic acid, 4-chloroformanilide, 2, 6-difluoro-benzamide, and two compounds monohydroxylated in the chloroaniline moiety. There was little absorption of diflubenzuron when applied topically to leaves of bean plants. However, there was translocation of radioactive material when diflubenzuron was injected into the stern. In this case, the radioactivity, which was confined largely to vascular tissue, apparently moved acropetally but exhibited very little or no basipetal movement. Bean plants metabolised injected diflubenzuron, and certain of the metabolites were similar to those isolated from mites.  相似文献   

19.
Transport of atrazine (ATR), 2,4-dinitrotoluene (DNT), and 1,2,3-trichlorobenzene (TCB) from roots to shoots via xylem of wheat and tomato seedlings was measured following a 24-h exposure of plant roots to hydroponic solutions of these organic compounds. Transport of the compounds from roots to shoots reached equilibrium within 24 h, consistent with an earlier finding. Low concentrations of TCB were detected in the final external solution and the xylem efflux of control wheat seedlings. This suggested that there was a fast foliar uptake of TCB and its downward movement via phloem of the wheat seedlings. Concentrations of DNT, ATR, and TCB in xylem effluxes of wheat and tomato increased significantly with increases of their external concentrations. The translocation stream concentration factors (TSCF), i.e., the ratios of the concentrations in xylem sap to those in external solution, of the compounds with tomato seedlings followed the order of ATR > DNT >> TCB, which was inversely correlated with the log Kow (the octanol–water partition coefficient) of the compounds. The observed xylem transports of DNT and TCB from roots to shoots with wheat seedlings were lower than those with tomato seedlings. ATR exhibited a high xylem transport with the two plant species, which resulted presumably from an atrazine–metal complex formation.  相似文献   

20.
The metabolism of cis- and trans-1,3-dichloropropene (1,3-D) was studied in soybean plants grown in soil treated 24 days prior to planting with [U-14C]E- and Z-1,3-dichloropropene at 380 liters ha?1. Isolation and identification of the 14C residue from soybean plants at 84 days (forage) and 176 days (mature) after application showed that no 1,3-dichloropropene or its putative metabolites, 3-chloroallyl alcohol and 3-chloroacrylic acid, could be detected in any of the tissues. The components of the 14C residue included major plant constituents (i.e. fatty acids, protein, pigments, organic acids, sucrose and other carbohydrates, and lignin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号