首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary

This paper describes the response of gas exchange rates and water use efficiency of rose plants, by means of the characterization in situ and the analysis of the response of photosynthesis, transpiration and water use efficiency of whole plants to CO2 enrichment under the irradiance conditions prevailing in greenhouses of southern France. Net CO2 assimilation (An) and transpiration (E) of whole rose plants (Rosa hybrida, cv. Sonia) were measured during winter and spring periods. The response of An to light and CO2 were fitted to a double hyperbola function (r2 = 0.84). Maximum net assimilation rate (Anmax), light and CO2 utilization efficiencies (α1, αc) as well as light and CO2 compensation points (Γ1 , Γc) were calculated for the whole plant and compared with leaf and canopy data in the literature. The whole-plant characteristics generally had values intermediate between those related to leaf and canopy. Light saturation at sub-ambient air CO2 concentration (Ca) was reached for relatively low PFFD values (300 µmol m?2 s?1), whereas at ambient and enriched Ca light saturation occurs for PPFD ≈ 1000 µmol m?2 s?1. Doubling Ca from 350 to 700 µmol mol?1 increased Anmax and α1 by respectively 40% and 30%, while reducing Γ1 by 27%. A threefold increase of Ca from 350 to 1050 µmol mol?1 induced a reduction of 20% of E. Instantaneous transpirational water use efficiency, WUE (=An/E), is relatively insensitive to PPFD, although a slight decrease with PPFD is observed at high CO2 concentration, but shows marked variations with Ca and leaf to air vapour pressure defiçit (D1). Increase of Ca from 350 to 1000 µmol mol?1 gave about 50% increase in WUE. Increase of D1 from 0 to 2 kPa induced 30% decrease in WUE at ambient Ca and 50% decrease at 1000 µmol mol?1.  相似文献   

2.
To study the effects of day and night temperature difference (DIF) on tomato growth, a controlled experiment using Solanum lycopersicum L., cv. Jinguan 5 was conducted. The daily mean temperature (Tm) was maintained at 18°C and 25°C, and the DIF was set at 0°C, 6°C, and 12°C. The results indicated that chlorophyll a (Chl a) and chlorophyll b (Chl b) gradually increased as DIF rose. At 18°C Tm, the carotenoid content reached a maximum at 12°C DIF. The Chl a/Chl b, net photosynthetic rate (PN), photosynthetic rate at irradiation saturation (Pmax), stomatal conductance (gs), intercellular CO2 concentration (Ci), stomatal limitation value, the maximum assimilation rate (Amax), apparent quantum efficiency (Aq), carboxylation efficiency (Ce), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), gibberellin A3 (GA3), and indole-3-acetic acid (IAA) were highest, while malondialdehyde (MDA) was lowest at 6°C DIF. At 25°C Tm, PN, Pmax, Amax, Aq, Ce, gs, Ci, CAT, POD, GA3, IAA, and zeatin reached the maximum under 6°C DIF, while SOD and MDA reached the maximum under 12°C DIF. Furthermore, the morphological index peaked at 6°C DIF under 18°C and 25°C Tm. The results suggested that 6°C DIF improved the growth and development of tomato during the flowering stage. ABBREVIATIONS: Aq – apparent quantum efficiency; Amax – the maximum assimilation rate; CAT – Catalase; Chl a(b) – chlorophyll a(b); Ca – ambient CO2 concentration; Ce – carboxylation efficiency; Ci – intercellular CO2 concentration; DIF – difference between day temperature (TD) and night temperature(TN); FM – fresh mass; gs – stomatal conductance; GA3 – gibberellin A3; IAA – indole-3-acetic acid; Ls – stomatal limitation value; MDA – malondialdehyde; Pmax – photosynthetic rate at irradiation saturation; PN – net photosynthetic rate; POD – peroxidase; ROS – reactive oxygen species; SOD – superoxidedismutase; Tm – daily mean temperature; ZT – zeatin.  相似文献   

3.
To determine whether fire spatial and temporal scales affect foraging behavior and grazing intensity by Bison (Bison bison), we burned three different patch sizes (225, 900, and 3600 m2) across an otherwise homogeneous grassland landscape. We then monitored grazing intensity for the succeeding 14 months. During the first 5 months after the burn (August–January), the Bison grazing intensity pattern was affected by whether a plot was burned and only marginally affected by plot size. During the next 5 months (January–June), grazing intensity was unaffected by plot size, but was greatest in the unburned 225 and 3600-m2 plots. The final 4 months (June–October), grazing intensity was unaffected by treatments other than being higher in the unburned 3600-m2 plots. By the final sampling date, biomass was significantly greater in the burned plots and grazing intensity appeared to be responding to the amount of biomass present and the total amount of N present. The pattern displayed within the first 5 months after the burn is congruent with the expectations of optimal foraging theory with overmatching in the smallest plot size of 225 m2 (BioScience 37 (1987) 789–799). The next two sampling periods displayed a matching aggregate response relative to biomass availability (Oecologia 100 (1999) 107–117) and total nitrogen mass (g m−2). The temporal shift that we found in Bison response to burn patch size is, to our knowledge, the first such examination of both spatial and temporal responses by Bison to landscape heterogeneity. We now have quantitative evidence of how native herbivores can alter their foraging responses to changes in landscape structure over time.  相似文献   

4.
The current land use system in the anthropogenic savannas (Espinales) of the Mediterranean climate region of Chile, has resulted in considerable heterogeneity at the landscape level which is associated with different covers of the legume tree, Acacia caven. The effects of landscape heterogeneity on the diversity and productivity of herbaceous plant communities were studied in 29 plots of 1000 m2, with a wide range of woody cover. A detrended correspondence analysis of the species × plots matrix explained 73% of the total variation and revealed the existence of two trends of variation in floristic composition: one associated with physiographic position (hillsides and flatlands) and the other related to the number of years since the last cutting, or coppicing, of A. caven. Despite the great majority of the original herbaceous species having disappeared as a result of the prevailing land use system, some native species have been able to survive especially on hillside areas with low grazing intensity. Woody cover was a good indicator of spatial heterogeneity and land use history. It was also correlated with stocking rate, above-ground biomass of herbaceous vegetation, and soil fertility (organic matter, nitrogen and phosphorus concentration), both on hillsides and flatlands. The relationship between woody cover and herbaceous plant species richness was significant and unimodal in flat land areas, and linear, and marginally significant, on hillsides. The consequences of land use changes on the conservation of the ecological and productive values of grasslands are analyzed.  相似文献   

5.
Effects of changing spatial scale on the analysis of landscape pattern   总被引:68,自引:6,他引:62  
The purpose of this study was to observe the effects of changing the grain (the first level of spatial resolution possible with a given data set) and extent (the total area of the study) of landscape data on observed spatial patterns and to identify some general rules for comparing measures obtained at different scales. Simple random maps, maps with contagion (i.e., clusters of the same land cover type), and actual landscape data from USGS land use (LUDA) data maps were used in the analyses. Landscape patterns were compared using indices measuring diversity (H), dominance (D) and contagion (C). Rare land cover types were lost as grain became coarser. This loss could be predicted analytically for random maps with two land cover types, and it was observed in actual landscapes as grain was increased experimentally. However, the rate of loss was influenced by the spatial pattern. Land cover types that were clumped disappeared slowly or were retained with increasing grain, whereas cover types that were dispersed were lost rapidly. The diversity index decreased linearly with increasing grain size, but dominance and contagion did not show a linear relationship. The indices D and C increased with increasing extent, but H exhibited a variable response. The indices were sensitive to the number (m) of cover types observed in the data set and the fraction of the landscape occupied by each cover type (P k); both m and P kvaried with grain and extent. Qualitative and quantitative changes in measurements across spatial scales will differ depending on how scale is defined. Characterizing the relationships between ecological measurements and the grain or extent of the data may make it possible to predict or correct for the loss of information with changes in spatial scale.  相似文献   

6.
The plant growth regulator CycocelTM [(2-chloroethyl)trimethylammonium chloride] can be used to produce drought tolerance in grapevine (Vitis vinifera L.) due to a reduction in the ratio between vegetative growth and fruit production. To evaluate the physiological responses of two grapevine cultivars to drought and CycocelTM treatment, a factorial experiment was conducted in a greenhouse. The factors included irrigation frequency (at 5-, 10-, or 15-day intervals corresponding to no, mild, or severe drought stress), CycocelTM concentration (0, 500, or 1000 mg l1), and cultivar (‘Rasheh’ or ‘Bidane-Sefid’). Stomatal conductance (gs) the net rate of CO2 assimilation (Anet), the rate of transpiration (Tr), and chlorophyll a and b concentrations decreased in plants exposed to mild or severe water-deficit stress, whereas carotenoid, proline, and total soluble sugar concentrations increased compared to plants with no drought stress. The relative water content (RWC) of leaves declined only under severe drought stress. A reduction in intercellular CO2 concentrations (Ci) occurred under mild drought stress; however, under severe drought stress, Ci values increased. Under mild drought stress, the reduction in the net rate of photosynthesis was related to stomatal closure, whereas under severe drought stress, non-stomatal factors were dominant. Water-use efficiency (WUE) improved under mild drought stress relative to non-stressed plants, but under severe drought, it declined. Foliar applications of CycocelTM resulted in increased Anet, gs, Tr, and WUE values, as well as proline and soluble sugar concentrations. ‘Rasheh’ was more tolerant to drought stress than was ‘Bidane-Sefid’. Foliar applications of CycocelTM, particularly at 1000 mg l1, mitigated the negative effects of drought stress by increasing Anet, WUE, RWC, compatible solute concentrations, such as proline, soluble sugar, and chlorophyll a and b concentrations.  相似文献   

7.
To investigate the effect of varying the light intensity on the photosynthate distribution, cherry tomato (Solanum lycopersicum L.) seedlings were grown under different light intensities. It was found that the seedlings under 300 μmol m–2 s–1 had a significantly higher dry weight and health index (Health index = Stem diameter/Stem height × Dry weight) than seedlings receiving other light treatments. On the contrary, the biomass, specific leaf mass and health index values of seedlings exposed to 50 μmol m–2 s–1 and 550 μmol m–2 s–1 were the lowest among all of the treatments. In terms of 14C-labelled photosynthate translocation, the seedlings under 300 μmol m–2 s–1 had lower remaining 14C-labelled photosynthate (31.45%) compared with other treatments, after 14CO2 was supplied for 2 days. The seedlings under 150 μmol m–2 s–1 had 36.97% of 14C-labelled photosynthate in the labelled leaves and transported the obviously higher 14C-labelled photosynthate to new shoot than others. Together, our results indicate that the photosynthate distribution was the most rational in cherry tomato seedlings at 300 μmol m–2 s–1, which enhanced leaf photosynthesis and plant growth.  相似文献   

8.
In direct seeded tomato density experiments with constant rectangularity of 1.0 carried out at Preston and Simcoe Research Stations, Ontario, Canada in 1971, the effect of increasing plant density from 4.2 to 62.1 plants/m2 was to increase total plant weight, total fruit weight and ripe fruit weight per unit area. The proportion of ripe fruit to total fruit increased with increased density, and ripe fruit yields from a single harvest of up to 14 kg/m2 were obtained.Using the reciprocal yield-density equation (when W is the mean weight per plant (or plant part) at density , A and B are constants, and density is the only variable) to analyse the experiments, showed that both the A and B constants were influenced by cultivar while the A constant was influenced more by fertilizer application than was the B constant. In general the effect of increased fertilizer was to increase the yield potential ( ) for total plant weight and total fruit weight, but this effect was not so marked for ripe fruit weight.  相似文献   

9.
Vegetatively propagated plants of Pelargonium × hortorum ‘Radio’ were grown at 8 combinations of irradiance and temperature levels; 4 or 22 W m?2 combined with 12, 15, 18 or 21°C. Increase in leaf number, leaf area, shoot and number of inflorescences per plant were all greater at 22 W m?2 than at 4 W m?2. At 22 W m?2, increase in temperature affected leaf number, leaf area and shoot number, but not inflorescence number. However, at 4 W m?2, number of inflorescences — but not leaf or shoot number — was affected by temperature. When effects of temperature differences were observed, the highest temperature resulted in the greatest number of leaves and shoots and the largest leaf area, but the lowest number of inflorescences per plant. The results indicate that photosynthesis or energy metabolism is of importance to floral initiation in Pelargonium × hortorum.  相似文献   

10.
Scaevola aemula is a popular ornamental crop cultivated as a bedding plant or for hanging baskets. We characterized gas exchange properties of S. aemula ‘New Wonder’ in response to photosynthetically active radiation (PAR), carbon dioxide concentration, and leaf temperature. Net CO2 assimilation rate (A) was responsive to CO2, exhibiting a saturation when intercellular CO2 concentration (Ci) was greater than 600 μmol mol−1. Net CO2 assimilation rate and dark respiration rate (Rd) were 23.1 and 2.3 μmol m−2 s−1, respectively, at 25 °C and PAR = 1500 μmol m−2 s−1. Net CO2 assimilation rates were similar at leaf temperatures between 20 and 30 °C but significantly reduced at 15 °C. These gas exchange results were used to test the extendibility of a coupled gas exchange model previously developed for cut-roses. Utilizing the gas exchange data measured at 25 °C leaf temperature, several model parameters were independently determined for S. aemula. Model predictions were then compared with observations at different leaf temperatures. The model predicted the rates of net CO2 assimilation and transpiration of S. aemula reasonably well. Without additional calibration, the model was capable of predicting the temperature dependence of net CO2 assimilation and transpiration rates. Applying the model to predict the effects of supplemental lighting and CO2 enrichment on canopy photosynthesis and transpiration rates, we show that this model could be a useful tool for examining environmental control options for S. aemula production in the greenhouse.  相似文献   

11.
Landscape structure can influence the fine-scale movement behavior of dispersing animals, which ultimately may influence ecological patterns and processes at broader scales. Functional grain refers to the finest scale at which an organism responds to spatial heterogeneity among patches and extends to the limits of its perceptual range. To determine the functional grain of a model insect, red flour beetle (Tribolium castaneum), we examined its movement behavior in response to experimental flour landscapes. Landscape structure was varied by manipulating habitat abundance (0%, 10%, 30%, and 100%) and grain size of patches (fine-2 × 2 cm, intermediate-5 × 5 cm, and coarse-10 × 10 cm) in 50 × 50 cm landscapes. Pathway metrics indicated that beetles used a similar proportion of all landscape types. Several pathway metrics indicated a graded response from the fine to the coarse grain landscape. Lacunarity analysis of beetle pathways indicated a non-linear change in space use between the fine and intermediate landscapes and the coarse-grained landscape. Beetles moved more slowly and tortuously (with many turns), and remained longer in both the overall landscape and individual patches, in fine-grained compared to coarse-grained landscapes. Our research demonstrates how detailed examination of movement pathways and measures of lacunarity can be useful in determining functional grain. Spatially explicit, organism-centered studies focusing on behavioral responses to different habitat configurations can serve as an important first step to identify behavioral rules of movement that may ultimately lead to more accurate predictions of space use in landscapes.  相似文献   

12.
Blueberry can readily be shaded as a bush type plant, maybe affecting its growth and photosynthesis. Growth and photosynthetic characteristics of ‘Bluecrop’ blueberry grown under various shade levels were investigated to understand acclimation under shade conditions and to determine the optimal light conditions for agricultural purpose. Shade decreased the number of shoots per shrub, but increased shoot length. However, shade did not affect the number of leaves on the main axis. With increasing shade level, leaf length, width and area increased, but leaf thickness decreased. However, there was no obvious tendency in leaf length/width ratio with increasing shade level. Shade leaves had less dense stomata than sun leaves, but stoma was bigger in shade leaves than in sun leaves. With increasing shade level, non-photochemical quenching in blueberry leaves increased and the values were higher at low photosynthetic photon flux densities (PPFDs) in shade leaves than in sun leaves, resulting in the decreases in quantum yield, electron transport rate and net CO2 assimilation rate (An). The maximum An at 31, 60, 73 and 83% shade levels was 11.8, 11.0, 8.4 and 7.5 μmol m−2 s−1, respectively. Following the slight decrease up to 100 μmol m−2 s−1 PPFD, stomatal conductance (gs) linearly increased up to 600 μmol m−2 s−1 PPFD and became saturated at all shade levels. The leaves of the shrubs grown under the 83% shade level had a significantly lower gs as compared to the leaves of the shrubs grown under the 31, 60 and 73% shade levels. Transpiration rate (E) linearly increased up to 600 μmol m−2 s−1 PPFD and was saturated at the 73 and 83% shade levels. However, E increased linearly at both 31 and 60% shade levels with increasing PPFD. The reproductive growth characteristics such as number of flowers, fruit set rate per flower bud and fruit yield also significantly decreased with increasing shade level. For agricultural purpose, therefore, shade level above approximately 60% of full sunlight must be avoided for optimal photosynthesis and growth of the ‘Bluecrop’ blueberry.  相似文献   

13.
The effects of exogenous application of abscisic acid (ABA) on anti-oxidant enzyme activities and photosynthetic capacity in ‘Sultana’ grapevine (Vitis vinifera L.) were investigated under cold stress. When vines had an average of 15 leaves, 0 (control), 50, 100, or 200 µM ABA was sprayed to run-off on all leaves of each plant. Twenty-four hours after foliar spraying with ABA, half (n = 5) of the water-only control vines and half (n = 5) of each group of ABA-treated plants were subjected to 4°C for 12 h, followed by a recovery period of 3 d under greenhouse conditions (25°/18°C day/night). The remaining plants in each treatment group were kept at 24°C. Cold stress increased H2O2 and malondialdehyde (MDA) concentrations in vine leaves, whereas all foliar ABA treatments significantly reduced their levels. Chilled plants showed marked increases in their total soluble protein contents in response to each ABA treatment. ABA significantly increased the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase in cold-stressed grapevine leaves. In contrast, cold stress markedly decreased the rates of leaf photosynthesis (A) and evaporation (E), stomatal conductance (gs), and chlorophyll concentrations in leaves, but increased intercellular CO2 concentrations (Ci) in leaves. Treatment with all concentrations of ABA resulted in lower leaf A, E, and gs values, but higher Ci values at 24°C. However, following cold stress, ABA-treated vines showed higher leaf A, E, and gs values, but lower Ci values compared to control vines without ABA treatment. The application of 50–200 µM ABA allowed chilled vines to recover more quickly when re-exposed to normal temperatures, enabling the vines to resume their photosynthetic capacity more efficiently following cold stress. These results showed that, by stimulating anti-oxidant enzyme systems and alleviating cold-induced stomatal limitations, ABA reduced the inhibitory effect of cold stress on the rate of CO2 fixation in ‘Sultana’ grapevine plants.  相似文献   

14.
Summary

Shoot growth attributes, leaf anatomical changes and net photosynthetic rates were determined in young coffee plants fertilized at high and low levels and subjected to shade or full sunlight. High nitrogen supply increased plant height irrespective of the light level imposed during growth, and promoted a larger leaf area in plants of the shade treatment. Specific leaf weight was 15% higher in plants grown in full sunlight than in shaded plants, at both nitrogen levels. The number of leaves developed on the orthotropic stem increased significantly under full irradiance and high nitrogen availability. Leaves were 11% thicker ih unshaded plants than in shaded ones, because of the increased size of the palisade and spongy parenchyma tissues. More thylakoids per granum and more grana per chloroplast were observed in shade-grown plants, mainly in those given high nitrogen treatment. Total nitrogen content expressed on a leaf-area basis was higher in sun plants supplemented with nitrogen, whereas chlorophyll a and b and protochlorophyll contents increased in shade-grown plants. Net photosynthetic rate in high nitrogen plants reached 7.19 µmol CO2 m?2 s?1 in the full irradiance treatment, and 5.46 µmol CO2 m?2 s?1 in shaded plants. Maximum net photosynthetic rates in the low nitrogen plants were 5.28 and 4.90 µmol CO2 m?2 s?1 in sun and shade plants, respectively. Increased photosynthetic light saturation was observed in high irradiance plants (628 µmol m?2 s?1) relative to shade plants (359 µmol m?2 s?1) in the high nitrogen treatment. The same pattern was observed in low nitrogen plants. The apparent quantum yield of shade acclimated plants was 14% higher than in those grown in full sunlight. Our results indicate that coffee may be classified as a facultative shade species, exhibiting features of sun adapted plants coupled with shade acclimation attributes, this fairly high adaptive capacity to shade:sun transition being strongly influenced by the level of nitrogen nutrition given to the plants.  相似文献   

15.
ABSTRACT

The effects of combined infrared-vacuum drying parameters, including infrared power (300–400 W), pressure (5–25 kPa) and time (0–140 min) on the drying kinetics of grapefruit slices were investigated. Both the infrared lamp power and vacuum pressure influenced the drying time of grapefruit slices. The regression results showed that the quadratic model satisfactorily described the drying behavior with highest R and lowest SE values. The effective moisture diffusivity increases as power increases and range between 5.83 × 10–10 and 2.13 × 10–9 m2/s. The color scale parameters, including redness (a*), yellowness (b*) and lightness (L*) values of dried grapefruit slices increased during drying. The rise in infrared power has a negative effect on the color change intensity (?E) and with increasing in infrared radiation power it was increased. Different kinetic models were used to fit the experimental data and the results revealed that the power model was the most suitable to describe the ?E.  相似文献   

16.
Gas exchange of lettuce plants, pre-grown in growth chambers at different irradiances (18, 37, 70 W m?2) and temperatures (6, 14, 22°C) were measured in the range of 2–22°C. In weak light (18 W m?2) there was no increase in CO2 uptake above 2°C, and even in 70 W m?2 the highest rates were obtained at about 10°C only. The response of net photosynthesis of lettuce to temperature is diminished as a result of morphological plant adaptations, i.e. specific leaf area or top-to-root weight ratio. The temperature optimum for dry-matter production is much higher than that for CO2 uptake. Therefore, photosynthesis is an unsuitable criterion for temperature control in greenhouses.  相似文献   

17.
The effects of planting densities on the development and yield of tulip bulbs were studied for the cultivar ‘Lustige Witwe’ (planting size 8–9 cm, type A) in two successive growing seasons. The total number of lifted bulbs decreased with increasing density due to shrivelling of certain buds. The shrivelling started at the time of anthesis, mainly in the buds in the axils of the outermost bulb scales.At densities between 5 × 5 and 12 × 12 cm plant?1 the relative growth rate (Rw) decreased with increasing density. A difference in the Rw values between the two seasons was probably partly caused by differences in the stocks used for the experiments. The highest weight increase was found at a density of 214 bulbs m?2 in 1969 and 229 bulbs m?2 in 1970.  相似文献   

18.
Summary

Nitric oxide (NO) is an active molecule involved in many physiological functions in plants. To characterise the roles of NO in the tolerance of eggplant (Solanum melongena L.) to salt stress, the protective effects of exogenous sodium nitroprusside (SNP), a donor of NO, applied at different concentrations (0, 0.05, 0.1, or 0.2 mM), on plant biomass, photosynthesis, and anti-oxidant capacity were evaluated. The application of SNP alleviated the suppression of growth in eggplant under salt stress, as reflected by a higher accumulation of biomass. In parallel with growth, the application of SNP to salt-stressed plants resulted in enhanced photosynthetic parameters such as the net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), and intercellular CO2 concentration (Ci), as well as an increased quantum efficiency of PSII (Fv/Fm), efficiency of excitation capture of open PSII centres (Fv’/Fm’), quantum yield of PSII ( psii) and photochemical quenching coefficient (qP). Furthermore, exogenous SNP also reduced significantly the rate of production of O2? – radicals and the concentrations of malondialdehyde (MDA) and H2O2. It also increased the activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in eggplant leaves grown under salt stress. The results indicated that the protective effects of NO against salt stress in eggplant seedlings were most likely mediated through improvements in photosynthetic performance and the stimulation of anti-oxidant capacity.  相似文献   

19.
ABSTRACT

Salinity is an important environmental problem, especially in arid and semiarid regions of the world. An experiment was conducted to evaluate the effects of water salinity on the initial development of pitaya (Hylocereus undatus)using five levels of irrigation water with electrical conductivity (ECw) levels: 0; 1.0; 2.0; 3.0 and 4.0 dS m_1. Salinity inhibited plant height, stem diameter, root length, number of additional stems and the dry weight of roots and shoots. Tissue collapse on the stems was also noted. At the end of the experiment it was observed that 50% of plants irrigated with ECw 4.0 dS mr 1 died. Roots of pitaya were as sensitive as shoots to saline effects.  相似文献   

20.
SUMMARY

Greenhouse tomato plants (Lycopersicon esculentum Mill. cv. Capello) were grown in a peal-moss based substrate and supplied with nutrient solutions of high (4.5 mS cm-1) or low (2.3 mS cm-1) electrical conductivity (EC) and under high (95 ± 5%) or low (55 ± 8% of capillary capacity) soil water content, to elucidate how EC and soil water status affect plant photosynthesis and related physiological processes. Two weeks after beginning the treatments, photosynthesis (Pn) was measured during changes of photo-synthetic photon flux (PPF) from 0 to 1200 u.mol m-2 s-1 using a gas exchange method. The rectangular hyperbolic model (Pn = Pmax KI (1-KI)-2 -r) provided a good fit for the photosynthetic light-response curve. High EC treatment changed the curve by increasing the initial slope (quantum yield) and decreasing photosynthetic capacity at high PPF. However, soil water deficit not only decreased the photosynthetic capacity, but also decreased quantum use efficiency. Depression of Pn was attributed to decreased stomatal (gs) and mesophyll (gm) conductances, but gs was depressed more than gm. The ratio of gm/(gm + gs), an indicator of water use efficiency and a measure of relative control of Pn by carboxylation and C02 supply, was higher for high-EC treated plants. Chlorophyll content was increased by high EC treatment, and was consistent with quantum yield. Leaf water potential was decreased by high EC and/or low soil water content and the decreases in leaf water potential ultimately accounted for the Pn depressions. The effects of high EC and soil water deficit were additive on photosynthesis and most related physiological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号