首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary The value of sewage sludge for improving the fertility and productivity of a degraded semi-arid grassland soil was tested by quantifying and describing the effects of surface application of sewage sludge on soil chemical properties and the soil microbial community. Three surface application rates (22.5, 45, and 90 Mg sludge ha–1) were tested over the course of two growing seasons. Most nutrient levels, including N, P, and K, increased linearly with increasing sludge application rates. Soil pH, however, declined linearly, from 7.8 to 7.4, with increasing sludge application rates. With the exception of Zn, heavy metals, including Cd, did not increase with the small decrease in pH or with increasing sludge application rates. Soil bacterial, fungal, and ammonium oxidizer populations increased linearly with increasing sludge application rates, and Streptomyces spp. populations remained relatively unchanged. The diversity of fungal groups declined initially with increasing sewage sludge rates but rebounded to near pretreatment levels under the low and intermediate application rates within 1 year. High fungal populations and low fungal diversity were related to the high nutrient contents provided by sludge amendment. Mucor spp. and Penicillium chrysogenum dominated the sludge-amended soils, and their densities in the treated soils in the first growing season were almost directly proportional to the sludge application rates. The improvement in soil fertility of a degraded semi-arid grassland due to sludge application was reflected in populations, diversity, and composition of the soil microbial community.The research reported here was conducted in cooperation with the USDI Bureau of Land Management which furnished funds and field study locations  相似文献   

2.
Afforestation of grasslands can increase C sequestration and provide additional economic and environmental benefits. Pine plantations, however, have often been found to deplete soil organic C and trigger detrimental effects on soils. We examined soil characteristics under a 45-year-old Pinus radiata stand and under adjacent grassland on maritime dunes in temperate Argentina. Soil under the pine plantation had greater soil organic C (+93%), total N (+55%) and available P (+100%) concentrations than under grassland. Carbon was stored under the pinestand at an estimated mean accretion rate of 0.64 Mg ha?1 y?1. At 0- to 25-cm depth, soil C amounted to 61 Mg ha?1 under pine and 27 Mg ha?1 under grassland. Soil C accumulated more on dune slopes (35 Mg ha?1 y?1) than on ridges(29 Mg ha?1 y?1) and bottoms (12 Mg ha?1 y?1). Compared with the grassland, soil acidity, cation-exchange capacity, base losses (K > Ca = Mg) and C/N ratio increased under pine. Spatial heterogeneity in soil characteristics was greater under pine than under grassland. Such variability was non-systematic and did not support the ‘single-tree influence circle’ concept. Afforestation increased C in soil, forest floor and tree biomass in dunes with ustic climate regime.  相似文献   

3.
Abstract

Nitrogen applications to dallisgrass grown on Olivier silt loam, an Aquic Fragiudalf, increased forage yield, forage digestibility, nutrient concentrations and nutrient contents as N rates increased to 896 kg ha‐1. Expressing yield as a function of N application rate resulted in quadratic prediction equations that accounted for 75 to 98% of the variability in yield during five years. Eighty‐six percent of the maximum yield was obtained during the five years at 448 kg of N ha‐1. Plant concentrations of N, Ca and Mg were increased more than concentrations of the other macronutrients as N rates increased. Plant contents of N, Ca and Mg in the forage increased 4.0, 3.2 and 3.5‐fold as N rates increased to 448 kg ha‐1, while that of P, K and S increased 2.5 to 2.8‐fold. Residual N accumulations in the soil profile were apparent at the 896 kg ha‐1 rate at the end of the growing seasons but were not detected the following March, indicating N losses by leaching and/or denitrification occurred at that N rate. Phosphorus applications increased forage P concentrations but did not increase forage yield nor available P levels in the surface 15 cm of soil. Maximum yields were obtained at forage P concentrations and Bray No. 2 soil P levels as low as 2.0 g kg‐1 and 17 mg kg‐1, respectively.  相似文献   

4.
Abstract

Heavy metal accumulation in soil due to the application of sewage sludge may induce changes in its ionic retention capacity. In this work, sludge application effects on copper (Cu) and zinc (Zn) adsorption by the surface horizon of a calcareous soil in Southern Spain have been studied. Sludge from the urban waste water treatment plant in Cordoba was applied at rates of 0,40, and 80 Mg sludge ha‐1 for two consecutive years. Despite the low metal content of this sludge and the high amount of organic matter added, a decrease in the soil adsorption levels for both Cu and Zn was detected in the sludged samples. Differences were observed, though, in the behavior of each metal, relative to the main adsorption mechanism involved. Copper adsorption was related to carbonate surfaces in soil. Values up to 400 mmol adsorbed Cu kg‐1 soil were obtained for the three treatments, in equilibrium with 13.6, 16.7, and 17.4 mmol Cu m‐3 in solution for 0, 40, and 80 Mg sludge ha‐1, respectively, the first year, and 13.9, 21.2, and 52.2 mmol Cu m‐3 in solution the second year. However, an increase of soil Cu availability is not likely to arise during or after continuous application of these sludge doses, due to the high calcium carbonate content of this soil. In the case of Zn, adsorption took place in CEC sites, with values up to 40 mmol adsorbed Zn kg‐1 soil in the 0 and 80 Mg sludge ha‐1 samples, in equilibrium with 158.3 and 164.5 mmol Zn m3 in solution, respectively the first year, and 196.1 and 505.8 mmol Zn m3 in solution the second year, whereas in the 40 Mg sludge ha‐1 samples adsorption was below 25 mmol Zn kg‐1 soil, in equilibrium with 171.1 mmol Zn m3 in solution the first year, and 231.0 mmol Zn m‐3 the second year. As soil CEC values and its organic matter content are positively related, Zn availability in this soil could be expected to increase after the cessation of sludge applications, due to the mineralization of the organic matter added.  相似文献   

5.
A greenhouse experiment was conducted to evaluate the availability of metals from sewage sludge and inorganic salts, and the effect of pH and soil type on yield and metal (Zn, Cu, Cd and Ni) uptake by wheat (Triticum aestivum L. var. ‘holly’). Soils used in this study were Hartsells sandy loam (fine-loamy, siliceous Thermic Typic Hapludult) and Decatur silty clay loam (Clayey, kaolinitic, Thermic Rhodic Paleudult). Two treatments of sewage sludge containing metals were applied at the rate of 20 and 100 mt ha?1. Inorganic Salts of Zn, Cu, Cd, and Ni were applied (as sulfate salts) at concentrations equivalent to those found in the 20 and 100 mt ha?1 sludge. One treatment consisted of inorganic metals plus sewage at the 20 Mg ha?1 rate. Two soil pH levels, one at field pH (below 6.0) and another pH adjusted between 6.5 and 7.0 were used. Wheat plants were harvested four weeks after germination. Two more subsequent harvests were made at four week intervals. For each harvest, dry matter yield increased as the rate of sludge application increased for both soil types. The soil pH also influenced the dry matter yield. High yield was observed when the pH was adjusted between 6.5 to 7.0 for both soils. An increase in yield was also observed at each subsequent harvest for most of the treatments. Inorganic salt treatments produced lower dry matter yields when compared with the sludge. Both sludge application and metal salts increased plant tissue concentration of Zn, Cu, Cd, and Ni at field pH for both soils. However, increasing the pH of the soil for both sludge and inorganic salt treatments generally decreased the tissue concentration of the above metals.  相似文献   

6.
Minesoils are characterized by low soil organic matter and poor soil physicochemical environment. Mine soil reclamation process has potential to restore soil fertility and sequester carbon (C) over time. Soil organic C (SOC) pool and associated soil properties were determined for reclaimed minesoils under grass and forest landuses of varied establishment year. Three grassland sites of 30, 9, and 1 years after reclamation (G30, G9, and G1) and two forest sites, 11 years after reclamation (RF) and undisturbed stand of 40 years (UF), were selected within four counties (Morgan, Muskingum, Noble, and Coshocton) of southeastern Ohio. Soil bulk density (BD) of reclaimed forest (RF) soil was significantly higher than undisturbed forest (UF) soils within 10–40 cm soil depth profile. Reclamation process increased soil pH from slightly acidic to alkaline and decreased the soil EC in both landuses. Among grassland soils, significant changes in SOC and total soil N contents were observed within 0–10 cm soil depth. SOC contents of G30 (29.7 Mg ha−1) and G9 (29.5 Mg ha−1) were significantly higher than G1 soils (9.11 Mg ha−1). Soil N content was increased from G1 (0.95 Mg ha−1) to G9 (2.00 Mg ha−1) site and then the highest value was found under G30 (3.25 Mg ha−1) site within 0–10 cm soil depth. UF soils had significantly higher SOC and total N content than RF soils at 0–10 and 10–20 cm soil depths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Summary A greenhouse study was conducted to examine the residual effects of sewage sludge on soybean Glycine max (L.) Merr., nodulation, and N fixation. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage in soils (Typic Paleudults) obtained from plots where heat-treated sludge had been applied in 1976 at rates equal to 0, 56,112, and 224 Mg ha–1 high (7.0) and low (6.2) soil pH regimes were established by CaCO3 additions. Sludge and soil pH treatments resulted in clearly defined differences in metal uptake by soybean shoots. Plant Zn, Cd, and Ni concentrations were greater on pH 6.2, sludge-amended soil than on the pH 7.0, amended soil. At low soil pH, soybean Zn and Cd concentrations, respectively, increased from 41 and 0.19 mg kg–1 (control) to 120 and 0.58 mg kg–1 at the 224 Mg hat sludge rate. At the high soil pH and 224 hg hat sludge rate, Zn and Cd concentrations were 45 and 0.15 mg kg–1, respectively.Symbiotic N fixation provided 90% of the total N accumulation. Total N accumulation, shoot N concentration, dry matter, and N fixation by nodulating soybeans exhibited a significant linear increase with sludge rate. Total N accumulation, dry matter, and N fixation were significantly greater at high soil pH. For high and low soil pH, respectively, N fixation increased from 422 and 382 mg N per plant (control) to 614 and 518 mg N per plant at the 224 Mg ha–1 sludge rate. While soybean nodulation also increased linearly on sludge-amended soil, a significant rate times pH interaction for nodule number indicated that nodulation was less strongly enhanced by sludge at low soil pH.  相似文献   

8.
Abstract

Three seasons of research that evaluated the effect of the land application of crushed gypsum wallboard waste (CW) for alfalfa were conducted at four Wisconsin locations having differing soil types and climatic conditions. Material was applied at rates up to 36.0 Mg ha‐1 preplant and 2.2 Mg ha‐1 topdress. The highest application of CW pre‐plant showed a positive trend for increased yield of alfalfa at three of the four locations, although this response was not statistically significant. Stand density was not affected with the exception of one year at one location for which the stand was lower where the highest rate Of CW was applied. The soil pH decreased slightly where high rates of CW were applied, presumably caused by an increase in soil solution hydrogen ions which were displaced from exchange sites. Soil calcium (Ca) and sulfur (S) usually increased, and soil test magnesium (Mg) usually decreased where the highest rate of CW was applied. There was no consistent effect of CW application on the soil test levels of other nutrients. Application of CW generally increased the Ca and S, and reduced the Mg concentrations in the harvested forage. Crushed wallboard appears to be as effective as commercial gypsum fertilizer, although this study did not compare equivalent rates of the two materials. No phytotoxic effects from the direct application of CW were noted. The land application of wallboard was found to have no substantial positive or negative agronomic effect on alfalfa production. This practice provides a reasonable alternative to land filling.  相似文献   

9.

A long-term experiment was conducted to determine the distribution of sludge-borne metals applied to a revegetated acidic dredge spoil disposal site. The initial soil was infertile and highly acidic (pH 2.4). Sewage sludge and lime were applied in 1974 at the rates of 100 and 23 mt ha?1, respectively, and tilled into the soil to a depth of 20 cm. In 1974 an adjacent site was also revegetated with topsoil and lime but without sludge. Soil and plants were sampled 2, 4 and 16 yr following seeding. After 16 yr the total and DTPA-extractable Cu, Zn, Cr, Pb, Ni and Cd decreased in soils to nearly the levels of the control soils. Concentrations of metals in plants also decreased. Decreases in tissue concentrations ranged from 40 to 70% for Cu, Cr, Pb, Ni and Cd and up to 90% for Zn. The results showed that a single 100 mt ha?1 application of sewage sludge containing high concentrations of metals was a cost-effective method for improving plant growing conditions on highly acidic soils.

  相似文献   

10.
Soil acidification limits livestock production in many parts of the world. Two experiments were carried out to investigate the effect of aluminium (Al) on pasture yield and animal production. In experiment 1, the effect of raising soil pH (in water) from 5.1 (acid soil, A) to 5.6 (corrected soil, C) was tested on forage and animal production. In experiment 2, Friesian calves were individually fed either silage with or without the addition of 2000 mg kg?1 of Al as aluminium sulphate. Al, P, Ca and Mg concentrations were measured in forage, and in animal blood and faeces. Live weight gain (LWG) was also measured. Soil acidification resulted in a 36% overall reduction in pasture yield in the A treatment (9.4 ± 0.31 and 14.7 ± 0.47 t ha?1 year?1 for the A and C treatments respectively) and in 15% reduction of the protein concentration in the herbage. No significant differences were found for the individual daily LWG (P > 0.05). Direct Al intake reduced animals daily LWG by 14% (P ≤ 0.05). The correction of soil acidification increased livestock production by 125% when stocking rate was strictly adjusted to grassland production.  相似文献   

11.
Abstract

Long‐term effects on plant and soil‐profile chemical composition imposed by a residential sewage sludge were studied on an Oxisol from Hawaii. Sludge was applied at 0, 45, 90, and 180 Mg/ha in 1983. An NPK‐fertilized treatment was included for comparison. Sudangrass (Sorghum bicolorL. Moench) was grown as a test crop in the 1983–84 and 1986–87 seasons. Soil samples for chemical analysis were taken in 1987 at three depths: 0–23 cm, 23–46 cm, and 46–69 cm.

Beneficial effects of sludge, measured 3 years after application (beginning of the 1986's planting), were evident by large yield increases on sludge‐amended soils relative to the unamended and the NPK‐fertilized soils. The first cutting produced approximately 5 Mg/ha of dry matter from the sludge treatments, regardless of rate, as compared with 3 and 1.5 Mg/ha from the NPK and the 0 treatments. Regrowths showed similar effect, though less dramatic; average yields were 2.6 Mg/ha with sludge and 1.6 Mg/ha without.

Heavy‐metal concentrations in plants were generally unaffected by sludge applications; probably because (i) heavy‐metal contents of the sludge were low, and (ii) soil pH was increased by sludge.

Remarkable increases in pH, exchangeable Ca and extractable P, and resultant decreases in exchangeable Al, in all three soil layers of sludge‐amended soils suggest that surface application of a low heavy‐metal sludge could serve to correct subsoil acidity and enhance subsoil P availability.  相似文献   

12.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

13.
Abstract

The objective of this study was to determine the effects of nitrogen fertilizer sources of ammonium sulphate and municipal sewage sludge on yield, N content and uptake of the maize (Zea mays L.). Nutrient and heavy metals were determined in soil and plant. The experiment with three sludge rates (256, 513 and 1026 kg total N ha?1 or 9.5, 18.0 and 38.1 t ha?1 sludge), two nitrogen rates (80 and 160 kg N ha?1) and zero-N control were conducted on a clay loam soils under irrigated conditions in Eastern Anatolia region in Turkey. Treatments were arranged in a randomized complete block design with four replications. Yield, N content and total N uptake of maize increased significantly with sludge application. 9.5 t and 19.0 t ha?1 sewage sludge applications did not significantly affect heavy metal content of leaf and grain. However, 38.1 t ha?1 sludge applications increased leaf Pb and Zn. DTPA-extractable Cd, Cu, Fe, Pb and Zn concentrations of the soil increased at applications of 38.1 t ha?1 sewage sludge, whereas applications of 9.5 t and 19.0 t ha?1 sludge only resulted in elevated levels of Cu and Zn, We conclude that if sewage sludge is to be used in production of maize, applications rate up to 19 t ha?1 could be accepted. However, this means also that the N requirement of maize crop is not covered by the sludge; therefore, the rest of nitrogen could be supplied as inorganic N.  相似文献   

14.
Soil and plant samples were collected from chlorotic plantations of Grand fir (Abies grandis) and Douglas-fir (Pseudotsuga menziesii) in Winter, 1989. The soils had been amended in 1981 with an average of 300 dry Mg ha?1 of municipal sewage sludge. The sludge amendment resulted in an N application rate of approximately 8000 kg ha?1. Foliage analysis indicated a severe Mg deficiency (0.25 g kg?1 in sludge-treated vs. 0.93 g kg?1 in untreated area) might be the cause of chlorosis. No other nutrient showed concentrations in the deficient or toxic ranges. Trace metal levels in foliage were elevated significantly for Ni, Cd and Cr in sludge-treated sites, but not toxic levels. Soil samples taken to a depth of 1.4 m indicated the potential for soil acidification (up to 0.9 pH unit) in soil surface horizons. In addition, exchangeable Ca, Mg and K may have been depleted in surface horizons. Exchangeable Al and Fe were greater in the surface of sludge-treated sites. These observations and the loss of much of the nitrogen added during the sludge amendment indicated that nitrification and cation leaching was likely the mechanism for acidification and depletion of exchangeable cations. Fertilization of the plantation with MgSO4 or dolomitic limestone was carried out in Spring 1990. New foliage collected in June, 1990 was non-chlorotic and significantly higher in Mg concentration than unfertilized foliage (1.1. vs. 0.7 g kg?1, respectively). Results of this study indicate that it is important to assess the potential for initiating a nutrient deficiency due to secondary effects of sludge application in forest systems.  相似文献   

15.

Sewage sludge from the city of Philadelphia has been used as a fertilizer and soil conditioner for twelve years to reclaim surface-mined land. Over 1,000 ha have been reclaimed using an application rate of 138 to 145 Mg ha?1 (d.w.). Each of 49 sites was monitored for up to 2 yr following sludge application. Extractable Zn, Cu, Cd, and Pb in minespoil were determined before and after sludge was applied. Spoil percolate water, groundwater, and vegetation were also analyzed for metal concentrations. Data indicate that metals were retained mostly in the plow layer in which the sludge was incorporated, but there was evidence of smaller increases in metal concentrations at the 15 to 30 cm depth. Percolate water and groundwater quality appeared to be unaffected by sludge application. Foliar metal concentrations were within tolerance levels for agronomic crops and domestic animal diets. Other studies have shown that concentrations of metals in small mammals and rabbits consuming the sludge-grown vegetation were generally the same as those in animals living on areas not amended with sludge. Surface application of sludge containing low to median metal concentrations should pose no threat to soil, water, crop quality, or the food chain, even when applied in amounts higher than typical agricultural rates.

  相似文献   

16.
The concentrations, solubility and mobility of Cr, Cu, Ni, Pb and Zn were measured over a four year period in soil from a site that had received over 1000 t ha-1 wet, undigested, sewage sludge (on average, 15% dry solids). The pH of this light-textured sandy soil was markedly reduced after sludge application (to ≤4 in some samples), presumably as a result of breakdown of the unstable organic matter, nitrification of the NH4 +-N and sulphide oxidation. As a consequence, soil solution concentrations of Cu, Ni, and especially, Zn were initially elevated, and this was reflected in high plant uptake of Zn and elevated levels of all three metals in some groundwater wells. An extensive liming programme resulted in soil pH values generally between 5 and 6, more normal for this soil, in the following years. Soil solution metal concentrations were substantially lower, e.g., Zn from a high of 27 mg kg-1 in 1995 to 0.04 mg kg-1 in the equivalent sample in 1999. Herbage Zn concentrations declined accordingly and overall there was a strong relationship between plant metal uptake and soil solution concentration of this element (R2 = 0.84), although not for any of the other metals. Our results suggested that, for this soil, pH was by far the greatest determinant of metal solubility and that the metal source, whether sewage sludge or geochemical, had little influence. Results from extractants that solubilise other metal phases, i.e., NaNO3, EDTA and HNO3, are also presented and discussed.  相似文献   

17.
Three rates of dried composted MSW (40, 80 and 120 Mg ha?1) were surface applied to a degraded semiarid shrubland site near Madrid in central Spain. Various soil and plant parameters were determined one year after its application. MSW amendment had an effect on soil chemistry and nutrient levels. Available P and K, concentration of N-NO3 and EC. increased significantly after the MSW application. The concentration of total soil heavy metals, Zn, Pb, Cd, Ni, Cr and Cu rose with the application of MSW as compared with the control plot, but these increases were only significant in total Zn, Pb and Cu. Zn and Cu amounts of DTPA-extractable soil were also significantly higher in the amended soil. Total plant cover increased significantly in the plots treated with low and intermediate MSW rates. Total biomass production increased as compost rates were added but this rise is not proportional to the amount of MSW added. The degraded soil used in this study may require MSW rates up to 80 Mg ha?1 to improve soil chemical properties as well as to produce minimal changes in the native vegetation.  相似文献   

18.
The objective of the investigation was to determine the effectsof sewage sludge application on nutrient concentrations in soil and plant biomass fractions in Scots pine forests (Pinus sylvestris, L.), situated on sandy soils with low pH, in a south to north temperature gradient in Sweden. Twenty tons dw ha-1 of sewage sludge was applied in 50 to 60 yr old pine forests at foursites from Brösarp in South Sweden to Jukkasjärvi in thenorthern parts of the country.Application of 20 ton dw ha-1 of sewage sludge significantlyincreased the concentrations of extractable N, P, K, Ca, Mg and Na, in both the mor layer and in the upper 10 cm of the mineral soil. Three years after sludge application K concentrations were only significantly increased in the upper 10 cm of the mineral soil. After 11 yr the concentrations of P were still at the samelevel in the mor layer as after three years. The concentrations of Ca, Mg and Na had slightly decreased only in the mor layer. There was, in most cases, a statistically significant positive correlation between the amount of applied sludge and nutrientconcentrations in the soil, as well as in pine needles and in leaves of Vaccinium vitis-idaea.In all sites, Mg concentrations in the mor layer was positivelyand significantly correlated with Mg concentrations in current-year pine needles. Similarly, concentrations of Ca, Mg,and P in the mor layer were correlated with concentrations of these elements in current-year shorts of Vaccinium vitis-idaea.  相似文献   

19.
Soil respiration is one of the major carbon (C) fluxes between terrestrial ecosystems and the atmosphere and plays an important role in regulating the responses of ecosystem and global C cycling to natural and anthropogenic perturbations. A field experiment was conducted between April 2005 and October 2006 in a semiarid grassland in northern China to examine effects of topography, fire, nitrogen (N) fertilization, and their potential interactions on soil respiration. Mean soil respiration was 6.0% higher in the lower than upper slope over the 2 growing seasons. Annual burning in early spring caused constant increases in soil respiration (23.8%) over the two growing seasons. In addition, fire effects on soil respiration varied with both season and topographic position. Soil respiration in the fertilized plots was 11.4% greater than that in the unfertilized plots. Water- and plant-mediation could be primarily responsible for the changes in soil respiration with topography and after fire whereas the positive responses of soil respiration to N fertilization were attributable to stimulated plant growth, root activity and respiration. The different mechanisms by which topography, fire, and N fertilization influence soil respiration identified in this study will facilitate the simulation and projection of ecosystem C cycling in the semiarid grassland in northern China.  相似文献   

20.
Abstract

We studied the effects of liming on dry matter production, nutrient composition, and grain yields of wheat in field experiments conducted on two soil types at three locations during the 1976–77 and 1977–78 growing seasons. Lime sources were commercial agricultural lime, finely divided stack dust, and dolomitic limestone (which contained 10.6% Mg). Lime applied at 2,800 kg/ha in the 1976–77 and 10,750 kg/ha in the 1977–78 experiments provided Mg from the dolomite at rates of 300 and 1,140 kg/ha, respectively.

Soil pH was significantly increased by liming, but Mg saturation percentages were significantly greater only at the 1,140 kg/ha rate. Forage dry matter and grain yields were not increased by lime applied at the lower rate, but significant increases were found in dry‐matter production in the late fall and spring samplings of the 1977–78 experiment. Those increases in plant growth and dry matter production were probably due to reductions in the soluble Mn and Al concentrations in the soil. Forage N and P concentrations were generally not influenced by liming. Potassium concentrations in forage from the limed plots were usually equal to or greater than those in forage from unlimed plots. Calcitic limestone sources generally increased forage Ca concentrations, but liming with dolomite more often than not depressed Ca concentrations below levels found in the check plots. Dolomite, when applied at the 1,140 kg/ha rate, effectively increased the forage Mg concentration, although the concentration exceeded 0.2% only during the early growth stages. Liming generally showed no significant reduction in the tetany potential of the wheat forage as predicted by the equivalent ratio K/(Ca + Mg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号