首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
离子型稀土矿尾砂地植被恢复障碍因子研究   总被引:3,自引:1,他引:3  
以江西省赣州市定南县不同废弃时间的离子型稀土矿尾砂地为研究对象,通过植被调查、土壤理化性质、微生物和酶活性分析,探讨稀土矿尾砂地植被恢复的障碍因子。结果表明,尾砂地植被覆盖度随着废弃时间增加而增加,在废弃10年后植被覆盖度达到72%,但其群落组成仍相对简单(仅3种);尾砂地土壤黏粒含量(6.00%~9.66%)和土壤有机质含量(0.5~1.5 g kg-1)均远低于周边正常植被区,而尾砂地土壤容重(1.26~1.43 g cm-3)则明显高于周边正常植被区。废弃1年的尾砂地土壤电导值显著高于废弃3~10年的尾砂地土壤和对照区土壤,土壤铵态氮和碱解氮含量则高达400 mg kg-1和500 mg kg-1,但废弃3~10年后碱解氮和铵态氮含量已趋于痕量,且在所调查的废弃3年和6年的尾砂地0~100 cm剖面内土壤铵态氮含量也极低,表明尾砂地土壤铵态氮在废弃3年内已流失殆尽,严重的水土流失及其导致的土壤氮素等营养匮乏也是尾砂地植被恢复的主要障碍之一;尾砂地土壤微生物生物量碳(26.7 mg kg-1)、土壤脲酶活性(29.9NH3-Nmg kg-1h-1)、土壤酸性磷酸酶活性(7.10 phenol mg kg-1h-1)均显著低于周边正常植被区土壤,表明尾砂地土壤氮、磷循环受到抑制。本研究表明,废弃3~10年内离子型稀土矿尾砂地的土壤理化生性质并未得到明显改善,尾砂地土壤面临土壤重建的问题,需要引入合适的人工干预如土壤改良才能加快尾砂地植被恢复。  相似文献   

2.
为阐明不同材质植被毯覆盖对干旱地区露天煤矿土壤养分及酶活性的影响,以宁夏贺兰山自然保护区大峰矿为研究对象,分析秸秆、椰丝及秸秆-椰丝3种不同材质植被毯覆盖后矿区土壤有机碳、全氮、全磷、脲酶、蛋白酶、碱性磷酸酶和过氧化氢酶及生态化学计量比特征。结果表明:1)植被毯覆盖增加土壤表层有机碳和总氮含量且最大值为椰丝植被毯覆盖土壤,总磷含量无明显变化,10~20 cm土壤有机碳、总氮、总磷含量无明显变化;2)植被毯覆盖增加C/P、N/P且最大值同样为椰丝植被毯覆盖土壤,C/N无明显变化;3)植被毯覆盖土壤脲酶和碱性磷酸酶活性显著高于裸地,且0~10 cm大于10~20 cm,蛋白酶活性无显著变化,过氧化氢酶活性仅有椰丝植被毯的0~10 cm显著高于10~20 cm;4)土壤酶活性与环境因子的相关性和冗余分析结果显示:土壤TP、C/N是制约酶活性的主要影响因子,而N/P、TN是驱动酶活性的主要因子。三种植被毯覆盖后,土壤表层养分含量增加,同时增加了土壤表层的C/P和N/P,且促进表层土壤酶活性。此外,4种酶活性之间也存在显著正相关关系(P<0.01)。相对于秸秆、秸秆-椰丝植被毯,椰丝植被毯...  相似文献   

3.
抚顺矿区不同复垦年限土壤的养分及有机碳特性研究   总被引:7,自引:0,他引:7  
以素有煤都之称抚顺矿区复垦土壤为例,对不同年限不同深度的土壤进行分析,揭示了抚顺煤矿区土壤养分的时空演变规律。结果表明,随着复垦年限的增加,与未曾复垦的矸石相比,矿山复垦土壤pH值逐年降低,pH值的变化范围在9.95~6.58之间,其最大值出现在未曾复垦的矸石,最小值出现在复垦60年的土壤中,其pH值已经达到适合植物生长的范围;全氮、有效磷、碱解氮等呈现逐年增加的趋势,土壤中钾含量较高,可以满足植被生长所需,矿山复垦土壤中由于排弃的矸石中含有一些含碳矿物和少量煤块的原因导致总有机碳含量较高;随着土层深度增加,pH值逐渐升高,全氮、有效磷、碱解氮等逐渐降低。短时间的矿区复垦土壤需要使用相应的肥料保证植物的正常生长。矿山复垦土壤中有机碳随着复垦年限的增加及自然、人为活动影响,碳黑、颗粒状碳趋向于减少,而易氧化碳的数量增加。  相似文献   

4.
Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover.High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste-contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine tailings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine tailings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.  相似文献   

5.
Soil pH influences the chemistry, dynamics and biological availability of phosphorus (P), but few studies have isolated the effect of pH from other soil properties. We studied phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg?1). Soil organic phosphorus represented a consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. However, organic phosphorus concentrations increased by about 20% in the most acidic soils (pH < 4.0), through an accumulation of inositol hexakisphosphate, DNA and phosphonates. The increase in organic phosphorus in the most acidic soils was not related to organic carbon, because organic carbon concentrations declined at pH < 4.0. Thus, the organic carbon to organic phosphorus ratio declined from about 70 in neutral soils to about 50 in strongly acidic soils. In contrast to organic phosphorus, inorganic phosphorus was affected strongly by soil pH, because readily‐exchangeable phosphate extracted with anion‐exchange membranes and a more stable inorganic phosphorus pool extracted in NaOH–EDTA both increased markedly as soil pH declined. Inorganic orthophosphate concentrations were correlated negatively with amorphous manganese and positively with amorphous aluminium oxides, suggesting that soil pH influences orthophosphate stabilization via metal oxides. We conclude that pH has a relatively minor influence on the amount of organic phosphorus in soil, although some forms of organic phosphorus accumulate preferentially under strongly acidic conditions.  相似文献   

6.
The metal content was determined in soil and vegetation around the eastern zone of the disused sulphur and copper mines at Avoca (southeast Ireland). A 250 m × 250 m grid survey was conducted covering a total area of 4 km2. The mining belt was in the centre of the investigated site and was sampled separately. Iron, Zn, Cu and Cd concentrations in soil and plant material were determined, in addition to soil organic matter content and soil pH. Soil samples taken from the spoil showed elevated Cu and Cd concentrations, and low soil pH and organic matter content. At least 50 per cent of the agricultural sites examined around the East Avoca Mine showed elevated soil Cu and Cd concentrations, whereas Zn and Fe soil concentrations were within the range for unpolluted soils. None of the vegetation analysed had elevated Zn, Cd, Fe or Cu concentrations. Overall there was no indication of serious metal contamination in either soils or vegetation surrounding the mine in spite of extensive dust deposition during open-pit mining activity 15–30 years ago. However, a plume of elevated Cu in the soil was identified, which originated from a large spoil heap and had been spread for some 2·0 km by the prevailing wind.  相似文献   

7.
To determine the importance of Al-availability for soil micro-organisms 95 forest soils from Tyrol/Austria with comparable topography, vegetation, climatic conditions, soil type and with low soil pH (median = 3.9) were investigated for their physical (percentage of stable aggregates, water holding capacity), chemical (pH, electrical conductivity, contents of organic matter, concentrations of easily extractable aluminium, calcium, potassium, magnesium and phosphorus) and microbiological characteristics (microbial biomass and respiration, metabolic quotient, content of ATP, activities of protease and CM-cellulase, cfu-values of total and Al-tolerant bacteria and fungi). A highly significant negative correlation was detected between concentrations of KCl-extractable aluminium and soil pH. By the application of multivariate statistical methods, the effect of the concentration of KCl-extractable aluminium on abundance and activities of soil micro-organisms could be revealed. Al turned out to be of great importance for micro-organisms and often outmatched the significance of other well known soil properties like organic matter, pH or water holding capacity. However, due to very healthy trees at the sites under investigation no effect of Al or soil acidification on forest decline could be detected.  相似文献   

8.
Mined areas are a continuing source of heavy metals and acidity that move off site in response to erosion. Revegetation of the mine tailings could limit the spread of these heavy metals and acidity. This study was conducted to evaluate, at four tailings on opencast mines of Galicia (Touro: copper mine; and Meirama: lignite mine, NW Spain), the chemical and physical soil quality indicators and limiting edaphic factors concerning forest production. Selected zones were: (1) The tailings formed by the waste materials from the depleted Touro mine; (2) the decantation site of deposited sludge coming from the copper extraction in the flotation stage; (3) and (4) tailings of 3 and 10 years old of the Meirama lignite mine. The main physical limitations of the mine soils are the low effective depth (<50 cm), high stoniness (>30 per cent) and high porosity (>60 per cent); which make them vulnerable to soil erosion and seriously interferes with the forest production. Soils coming from the decantation site of copper mine do not have physical limitations. The main chemical limitations of mine soils are their acidity (pH from 3·62 to 5·71), and aluminium saturation (>60 per cent in copper mine soils, and >20 per cent in lignite mine soils), low CECe (from 5·34 to 9·47 cmol(+) kg−1), organic carbon (from 0·47 to 7·52 mg kg−1) and Ca2+ and Mg2+ contents, and imbalance between exchange bases. Mine soils coming from the decantation site of copper mine soils are strongly limited by the high Cu content (1218 mg kg−1). Lime and organic amendments are the most important factors in providing a suitable medium for plant growth. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Mine tailing soils created from the copper extraction in Touro Mine (Northwest Spain) are very degraded both physically and chemically. Three plots in this mine tailing were amended with Technosols in different proportions in each one to know if this mixture improved the physico-chemical characteristics of the mine soil and contaminated it with heavy metals. The Technosols were made of organic wastes, including mussel residues, wood fragments, sewage sludges and paper mill ashes. An unamended area was used as a control soil. Pseudototal and diethylenetriaminepentaacetic acid (DTPA)-extractable contents of Al, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in soil samples. The untreated soil had significant limitations for vegetation growth. All the Technosols improved the properties of the mine soil by increasing organic carbon and pH value, but they added Ni, Pb or Zn to the soil. It is advisable to check whether the heavy metal concentrations of the wastes are hazardous or not before adding to soils. It is also necessary to study the effect of these wastes over time and in more areas to conclude if they are actually favourable to restore degraded mine soils.  相似文献   

10.
Various properties capable of neutralizing environmental pollution (aggregate stability, buffer capacity and ion adsorption capacity) were determined in spoil from a lignite mine in Galicia (northwest Spain) and in mine soils of four and seven years age developed from this spoil. Buffer capacity and the adsorption of copper, cadmium and phosphate increased markedly with soil age, whereas the dispersion ratios of both macro- and micro-aggregates decreased sharply. These changes are attributed to the known increase in organic matter and extractable iron and aluminium. These components aid interparticle binding and create both exchange sites and specific adsorption sites. The ultimate causes are thought to be the successful establishment of an active field plant cover, the considerable colloid content of the parent material, the management of the mine soils and the climatic conditions of the area, which favour both the accumulation of soil organic matter and the weathering of the parent material.  相似文献   

11.
Restoration of sites degraded by industry to species-rich semi-natural vegetation communities is difficult; it usually involves the addition of soil ameliorants but excessive fertility may favour dominance by competitive species. In a field-experiment we tested the establishment of a biodiverse mesotrophic grassland community using different compost types (comprising of mixtures of waste materials), application rates and seeding (with species in the target community). Compost addition to the alkaline sandy substrate increased soil organic matter, nutrient content and water holding capacity (WHC), whilst decreasing pH. Over the first two growing seasons compost addition, (especially at a higher rate) increased total vegetation cover (from <20% to a maximum of 67%), although the cover of the target community remained below 20%. Seeding with target species greatly increased their establishment on compost-treated plots, demonstrating its value for restoration of mesotrophic grassland communities in such sites lacking a local seed source. Five soil properties accounted for 46% of the variation in target species density: negative correlations with soil pH and %N, and positive correlations with electrical conductivity (EC), %C, and WHC. For this mesotrophic grassland community, high EC and WHC and low pH were most important for forb species and high %C for grasses. Overall, %C was the soil property that best explained variation in the early restoration success of different compost types and application rates; pH and EC were also correlated with the rate of vegetation establishment and available-P was linked to plant community composition. While a longer time period is needed to judge the sustainability of the outcome, this demonstrates the potential to refine compost properties for restoration of biodiversity.  相似文献   

12.
Soil and foliage samples were collected from 136 sample sites in forested areas of the Dhulikhel Watershed, Nepal. Analyses showed that the soils have small values for pH, base saturation, total nitrogen, carbon and available phosphorus. Sample sites were stratified on the basis of aspect and elevation, soil type, forest type and management and the strata were compared to determine the influence of site factors on forest soil fertility. Soils on south-facing slopes at low elevation contained significantly less total nitrogen and organic carbon compared with soils from north-facing slopes at high elevation. Foliage of both sal (Shorea robusta Gaertn.) and chir pine (Pinus roxburghii Sargent) growing on red soils (Rhodustults and Haplustults) contained significantly less phosphorus compared with non-red soils (Ustochrepts and Dystrochrepts). Soils under stands of sal have the poorest soil fertility levels in comparison with chir pine and hardwood sites. The continuous removal of base-rich litter from sal sites may account for the poor fertility conditions. Soil fertility levels are greater on sites which have been protected from biomass removal for at least 15 years relative to sites which have come under protection in the past 7 years.  相似文献   

13.
Soil fertility is the basis for production of high green mass, which has numerous essential benefits in urban areas. This study aimed to investigate the soil fertility of urban land. This was done by comparing soils from a vegetable garden and its surrounding arable land. A local brickwork dump was included. The soils were Hortisols, slightly stagnogleyic Luvisols, and a Regosol from sandy loamy silt. The location of the study was in the center of one of the world’s largest urban, hard-coal mining and heavy industry areas, the Ruhr area in Germany. The investigations for identifying the characteristic features of the soil fertility involved determination of the profile horizons, texture, pH, bulk density, C/N ratio, content and stocks of organic carbon, total nitrogen, available phosphorus and potassium, and soil water by field capacity. As they are expected to become construction land, the sites were already in a derelict state. The results show that all three soil types had high fertility characteristics. However, the fertility of the garden soils was much greater than that of the local arable land. This was due to the strong and deep accumulation of organic carbon due to compost application. The available phosphorus and potassium contents and field capacity were also distinctly increased in the garden soils. The spatial distribution and distribution with depth of pH, bulk density, organic carbon, nitrogen, available phosphorus, and potassium were extremely heterogeneous among the individual garden soils. In contrast, in the arable land, they were uniform. The organic carbon accumulation in the dump was in the range of that of the garden soils, but the nutrient contents were lower. These results show that the diversity of properties of urban soils is much higher than that of arable soils. The dereliction of arable, garden, and dump soil and vegetation by bushes and trees also affect the soil properties. There should be greater awareness of the high fertility of urban soils, such as vegetable garden soils. Vegetable garden soils have a high potential for contributing to solving urban problems by producing high volumes of biomass and storing water. Therefore, it should be demanded that vegetable garden soils receive a high protection status, and they should not be used for the establishment of construction.  相似文献   

14.
《Applied soil ecology》2005,28(2):125-137
Microbial properties such as microbial biomass carbon (MBC), arylsulfatase, β-glucosidase and dehydrogenase activities, and microbial heterotrophic potential, together with several chemical properties such as pH, CaCl2 soluble heavy metal concentrations, total organic carbon and hydrosoluble carbon were measured to evaluate changes in soil quality, after “in situ” remediation of a heavy metal-contaminated soil from the Aznalcóllar mine accident (Southern Spain, 1998). The experiment was carried out using containers, filled with soil from the affected area. Four organic amendments (a municipal waste compost, a biosolid compost, a leonardite and a litter) and an inorganic amendment (sugarbeet lime) were mixed with the top soil at the rate of 100 Mg ha−1. Unamended soil was used as control. Agrostis stolonifera L. was sown in the containers. The soil was sampled twice: one month and six months after amendment application. In general, these amendments improved the soil chemical properties: soil pH, total organic carbon and hydrosoluble carbon increased in the amended soils, while soluble heavy metal concentrations diminished. At the same time, higher MBC, enzyme activities and maximum rate of glucose mineralization values were found in the organically amended soils. Plant cover was also important in restoring the soil chemical and microbial properties in all the soils, but mainly in those that were not amended organically. As a rule, remediation measures improved soil quality in the contaminated soils.  相似文献   

15.
Carbon of humus acids (HSAC) and dissolved organic carbon (DOC) are the most active forms of soil organic carbon (SOC) and play an important role in global carbon recycling. We investigated the concentrations of HSAC, water-soluble organic carbon (WSOC), hot water-extractable organic carbon (HWOC) and SOC in soils under different vegetation types of four copper mine tailings sites with differing vegetation succession time periods in Tongling, China. The concentrations of HSAC, WSOC, HWOC and SOC increased with vegetation succession. WSOC concentration increased with the accumulation of SOC in the tailings, and a linearly positive correlation existed between the concentrations of HSAC and SOC in the tailings. However, the percentages of HSAC and DOC in the SOC decreased during vegetation succession. The rate of SOC accumulation was higher when the succession time was longer than 20 years, whereas the speeds of soil organic matter (SOM) decomposition and humification were slow, and the concentrations of HSAC and DOC increased slowly in the tailings. The percentage of carbon of humic acid (HAC) in HSAC increased with vegetation succession, and the values of humification index (HI), HAC/carbon of fulvic acid, also increased with the accumulation of HSAC and SOC in soils of the tailings sites. However, the HI value in the each of the tailings was less than 0.50. The humification rate of SOM was lower than the accumulation rate of SOM, and the level of soil fertility was still very low in the tailings even after 40 years of natural restoration.  相似文献   

16.
[目的]揭示断陷盆地石漠化生态修复区土壤养分、酶活性特征,筛选修复效果较好的模式,为石漠化修复治理提供科技支撑。[方法]以典型断陷盆地云南省建水县为研究区,探究4种植被修复类型(云南松+银木荷人工混交林、柏木+银木荷人工混交林、干香柏人工纯林、自然植被恢复样地)的土壤碳、氮、磷含量和化学计量特征及酶活性特征(淀粉酶、脱氢酶、葡萄糖苷酶、酸性磷酸酶、FDA水解酶、脲酶)。[结果]土壤有机碳、全氮、全磷平均质量分数分别为25.81,1.89,0.41 g/kg,有机碳、全氮含量均为自然植被恢复下最高,全磷含量为干香柏纯林下最高;自然植被恢复下土壤C∶P与N∶P最高,C∶N最高的为柏木+银木荷混交林。土壤淀粉酶活性为干香柏人工纯林最高,自然恢复植被恢复下最低,其余酶活性均为自然植被恢复下最高。相关性分析表明,土壤有机碳、全氮、全磷、pH值会对土壤酶活性产生影响,且冗余分析结果显示影响土壤酶活性的最主要养分因子为全氮,解释了72.3%的土壤酶活性变异。[结论]不同植被修复模式下土壤养分及酶活性特征不同,经18 a植被修复后,自然植被恢复和干香柏人工纯林两种修复模式下土壤养分条件较好,是该地区较...  相似文献   

17.
Feng Jiao  Zhong-Ming Wen  Shao-Shan An   《CATENA》2011,86(2):110-116
Soil fertility is important for vegetation growth and productivity. The relationship between vegetation and soil fertility is important for both scientific and practical reasons. However, the effects of soil fertility on vegetation development and succession are poorly documented on the Loess Plateau. In this study, we compared soil properties of the Yanhe Watershed in northern Shaanxi across five different land uses (shrubland, farmland, natural grassland, woodland and artificial grassland) and a chronosequence of soils undergoing restoration for 5, 10, 15, 20, 25, 30, 35, 40 and 45 years. We found that revegetation had a positive effect on soil bulk density decrease, total porosity and capillary porosity increase in the surface soil layers but not in the subsurface layer. Additionally, soil organic matter, total nitrogen, available nitrogen and available potassium were greater at shrubland and woodland sites compared with other land uses. Total phosphorus and available phosphorus were greater at farmland sites. Results of the study indicate that revegetation on eroded soil can produce important increases in soil fertility on older plantations and in areas with natural succession.  相似文献   

18.
Restoring the native vegetation is one of the most effective ways to control soil degradation in Mediterranean areas, especially in very degraded areas. In the initial months after afforestation, vegetation cover establishment and soil quality could be better sustained if the soil was amended with an external extra source of organic matter. The goal of this study was to test the effect of various organic amendments on select soil properties [soil organic carbon (SOC), pH, and electrical conductivity (EC)] over a 24‐month period. Four amendments were applied in an experimental set of plots: straw mulching (SM), mulch with chipped branches of Aleppo Pine (Pinus halepensis L.; PM), sheep manure compost (SH), and sewage sludge (RU). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha−1. Organic amendments helped maintain SOC over the initial 6 months after the afforestation. However, only the SM and PM treatments had increased SOC values after 24 months. Decreases in EC were found after the addition of SM, PM, and SH amendments. However, RU increased EC values 24 months after the afforestation. Variations in pH values were not sufficient to establish differences among the various treatments. Furthermore, the results show that forest soils with or without organic amendments responded similarly to the seasonal changes in Mediterranean conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
R. Mandal  A. Islam 《Geoderma》1979,22(4):315-321
Concentrations of inositol mono-, di- and tri-, tetra-, penta- and hexaphosphate ranged from 5.0 to 12.5, 10.0 to 27.6, 20.0 to 45.0, 22.5 to 64.6, and 20.0 to 275.4 ppm, respectively, in samples of soils that were poorly drained and mostly derived from alluvium. Multiple correlation suggested that the amounts of esters of inositol phosphate other than inositol monophosphate were significantly correlated with organic phosphorus, total phosphorus, organic carbon, total nitrogen, inositol phospate, clay, exchangeable iron and aluminium, and pH. Individually, inositol hexa-, penta-, and di- and triphosphates were significantly correlated with organic phosphorus, total phosphorus, organic carbon, total nitrogen, inositol phosphate, and exchangeable iron and aluminium; inositol tetraphosphate with organic carbon, total nitrogen, inositol phosphate, and exchangeable iron and aluminium; inositol monophosphate with none.  相似文献   

20.
[目的]探讨高寒矿区覆土处理对露天煤矿排土场植被恢复的影响,以评估覆土措施在露天煤矿排土场所达到的植被恢复效果,为高寒矿区生态保护和恢复提供技术依据.[方法]调查分析青海省木里煤田不同年限5个覆土处理和3个不覆土处理矿区排土场植被群落特征和土壤理化性质.[结果]在覆土处理下,随着建植年限的增加,木里煤矿排土场植被和幼苗...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号