首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cultivated wheat, (Triticum aestivum L.), is one of the most important food crops in the world. The Aegilops L. genus is frequently utilized by plant breeders for improving the current wheat cultivars due to their close relationships. Therefore, understanding the phylogenetic relationships among the species of these genera is not only valuable for plant taxonomy, but also for plant breeding efforts. The presented phylogenetic analysis was based on the sequences of trnT-F chloroplast DNA containing three non-coding sub-regions. Twelve genotypes belonging to four species of Triticum L. genus and twenty-four genotypes belonging to eight species of Aegilops genus were used in the current study. The results postulated a close genetic relationship between diploid Aegilops species containing the BB genome and polyploid Triticum species. With the exception of Aegilops cylindrica Host (CCDD), all other Aegilops species having the CC genome were alienated from Aegilops speltoides Tausch (BB) and clustered together. These two clusters joined by a third cluster including the AA genome containing diploid Triticum species.  相似文献   

2.
Here, we investigated the transferability of 60 microsatellite markers characterized for cultivated rice Oryza sativa L. in three wild Oryza species representing different genome types: O. rufipogon Griff. (AA), O. officinalis Wall. et Watt. (CC), and O. granulate Nees et Arn. ex Watt. (G). The results indicate the 60 rice SSR loci tested produced homologous amplification products to different extents in O. rufipogon (100%), O. officinalis (90%) and O. granulata (73.3%). Proportions of polymorphism for successfully amplified loci ranged from 0.983 via 0.667 to 0.364 in O. rufipogon, O. officinalis and O. granulata, respectively. The utility of these microsatellite markers was tested for the characterization of genetic diversity in 117 genotypes of these four Oryza species. The values of genetic diversity in cultivated rice are higher than the other two wild species O. officinalis and O. granulata, suggesting microsatellites tend to have more variability in the focal species than in non-focal species to which they are applied. However, much lower levels of genetic variation were observed in rice than in its wild progenitor O. rufipogon, which indicates severe loss of genetic variation may reflect the ‘domestication bottleneck’ through which rice passed. The observation that most of the rice microsatellites are able to detect allelic polymorphisms at different extent in Oryza species suggest that rice microsatellite loci should be useful for the analysis of genetic diversity and inter- and intra-specific relationships in the genus. Therefore, high rates of successful cross-amplification of rice microsatellites among Oryza species with different genome types will offer excellent opportunities to investigate the population genetic structure of wild rice species and explore their conservation genetics.  相似文献   

3.
The direct ancestor of rice (Oryza sativa L.) is believed to be AA genome wild relatives of rice in Asia. However, the AA genome wild relatives involve both annual and perennial forms. The distribution of the retrotransposon p-SINE1-r2, a short interspersed nuclear element (SINE) at the waxy locus was analyzed in diverse accessions of the AA genome wild relatives of rice (O. rufipogon sensu lato). Most annual wild rice accessions had this retrotransposon, while most perennial types lacked this element, contradicting results to the previous studies. Results presented here suggest that O. sativa has dual origin that lead to indica-japonica differentiation. Results suggest the indica line of rice varieties evolved from the annual genepool of AA genome and the japonica varieties from the perennial genepool of AA genome wild rice.  相似文献   

4.
Oryza granulata, an upland wild rice species, represents an unique germplasm for possessing abilities of tolerance to shade and drought, immune to bacterial blight and resistance to brown planthopper. Although low degree of genetic variability has been revealed within its populations, little genetic information at the species level is available in determining rational conservation strategies. Here we used dominant DNA marker random amplified polymorphism DNA (RAPD) to assess the genetic variability among 23 accessions of O. granulata that collected from main distribution areas worldwide. Twenty decamer primers generated a total of 243 bands, with 83.5% of them (203 bands) being polymorphic. Calculation of Shannon index of diversity revealed an average value of 0.42 ± 0.25, indicating that O. granulata maintains a relatively high degree of genetic diversity on the species level. Analysis of genetic dissimilarity (GD) showed that genetic differentiation occurred among studied accessions, which supports the feasibility of current ex situ conservation strategies. We also suggested that information based on population studies, which could be achieved by international co-operation, is needed to conserve this widespread germplasm more effectively.  相似文献   

5.
The gene pool of cultivated Asian rice consists of wild rice (Oryza rufipogon Griff.), cultivated rice (O. sativa L.) and a weedy form (O. sativa f. spontanea). All three components are widespread in Thailand, frequently co-occurring within fields and providing the opportunity for gene flow and introgression. The purpose to this study is to understand the on-going evolutionary processes that affect the gene pool of rice by analysis of microsatellite variation. Results indicate that O. rufipogon, the wild ancestor of rice, has high levels of genetic variation both within and among populations. Moreover, the variation is structured predominantly by annual and perennial life history. High levels of variation are detected among cultivars indicating Thai cultivated rice has a broad genetic base with only a 20 % reduction in diversity from its wild ancestor. The weedy rice populations reveal varying levels of genetic variation, from nearly as high as wild rice to near zero. Weedy rice is genetically structured into 2 groups. Some populations of invasive weedy rice are the result of hybridization and gene flow between local wild rice and local cultivated rice in the regions of co-occurrence. Other populations of weedy rice are genetically nearly identical to the local cultivated rice. The diversity analysis indicates that the rice gene pool in Thailand is a dynamic genetic system. Gene flow is ongoing among its three main components, first between cultivated and wild rice resulting in weedy rice. Weedy rice in turn crosses with both cultivated varieties and wild rice.  相似文献   

6.
The objective of the current research was to investigate the status of rice genetic resources in post-war Sierra Leone using both morphological and amplified fragment length polymorphism (AFLP) data. Specifically, we aimed at investigating farmers’ rice genetic resources for homogeneity and differentiation, and at examining the genetic identity of similarly named varieties, including varieties within Sierra Leone, and between Sierra Leone and Guinea. This research was also motivated by the assumption that genetic erosion might have occurred as a result of the civil war. To determine the level of diversity and genetic relationships among farmers’ varieties of rice recently collected in Sierra Leone, two methods were used using subsets of the collected samples: (1) Using morphological data, 74 samples of 29 different varieties were analysed to investigate the relationship between (a) varieties grown in two districts in Sierra Leone, and (b) the two main cultivated species, Oryza sativa and Oryza glaberrima. A dendrogram largely clustered the varieties according to region and to the species to which the varieties belonged. (2) Using AFLP data, three separate investigations were conducted: (a) 33 samples of 10 varieties were investigated to evaluate diversity within and between varieties. The results indicated that the rice varieties possess different levels of intra-variety variation, whereas inter-variety diversity was high enough to distinguish one variety from the other. In particular, an AMOVA analysis revealed that 38 % of the total variation occurred within varieties, and 62 % between varieties. (b) 37 samples of 18 different varieties were investigated to determine the consistency of naming of varieties by farmers. The results showed that there was consistency in the naming by farmers of traditional varieties, but inconsistency in the naming of newly acquired varieties and cultivars. (c) 12 samples were investigated to check the identity of varieties carrying identical names collected in two separate regions, Sierra Leone and the neighbouring country of Guinea. The results indicated no close genetic relationships between the varieties found in Sierra Leone and Guinea despite similarities in the names given to these varieties by farmers, indicating the influence of different cultivation practices in the two countries.  相似文献   

7.
Rice genetic resources conservation and evaluation is crucial to ensure germplasm sources for further crop breeding. We conducted a wide collection of Oryza species in Niger and characterize its diversity with microsatellites (or simple sequence repeats, SSR). The aims of this research were to get a better understanding of the extent of genetic diversity, its structure and partition within rice eco-geographical zones of Niger. There were 264 accessions found in farmers’ and other fields: 173 O. sativa (Asia’s rice), 65 O. glaberrima (Africa’s rice), 25 O. barthii, and 1 O. longistaminata (weedy perennial rice), which were genotyped with 18 SSR. A total of 178 alleles were detected, with a mean of 9.89 alleles per locus. The polymorphism information content was 0.65 and heterozygosity was estimated as 0.14. Two main well-differentiate genotypic groups, which correspond to Asian and African rice species, were identified. The SSR set divided the Asia’s rice group (solely indica) into irrigated and floating rice, with rainfed lowland rice in between. The African rice species group was composed of O. glaberrima, O. longistaminata and O. barthii accessions, but without any clear genetic differentiation among them likely due admixtures within the samples of O. barthii. Five accessions that could be natural interspecific hybrids were too admixed for assigning them to any of the two well-differentiated groups. The partitioning of the overall diversity showed that maximum variation was within genotypic groups and subgroups or cropping ecologies, rather than between eco-geographical zones. The eco-geographical distribution of the diversity suggests germplasm exchange in Niger. Next-steps for conserving rice and crop wild relatives in Niger could be taken using the findings of this research.  相似文献   

8.
Summary An analysis of the amplification fragments polymorphism of DNA coming from different accessions of germplasm belonging to species and cultivars of the genus Vitis, was carried out using 40 primer decamers of arbitrary sequence. The RAPD profiles showed a great intraspecific diversity. In many cases a single primer produced a unique pattern for each species. A phylogram tree based upon presence/absence data of the principal DNA bands divided the species according to their geographical origins. The intraspecific polymorphism of DNA fragments was not sufficient for an unambiguous identification of Vitis vinifera cultivars but the RAPD profiles turned out to be highly reproducible. The high capacity of this technique to generate DNA markers offers a new possibility for the study of the genetic relationships in the genus Vitis.Abbreviations PCR Polymerase chain reaction - RAPD Random amplified polymorphic DNA  相似文献   

9.
Sainfoin (Onobrychis viciifolia Scop.) is a perennial forage legume that possesses beneficial properties in the context of sustainable agriculture. In order to initiate a pre-breeding programme, we have assembled a germplasm collection of O. viciifolia from many geographic regions, as well as a collection of Onobrychis species that might be crossed with O. viciifolia to improve its biological and agronomic properties. The objective of this study was to obtain DNA sequences from a representative sample of these accessions in order to characterise their genetic diversity and to assess the robustness of the Onobrychis taxonomy. Because of potential problems with copurification of tannins and polyphenols from Onobrychis leaf tissue, three methods for DNA extraction were assessed and the most appropriate one identified. DNA sequences were obtained for the nuclear internal transcribed spacer region and the trnH-psbA and trnT-trnL intergenic spacers of the chloroplast genome. Neighbour joining trees were constructed and accessions were assigned to operational taxonomic units. The results indicated that there is substantial genetic diversity among Onobrychis species. Redundancies in species nomenclature were identified, as well as possible overlap between some of the sections into which the Onobrychis genus has been divided. A genetic distinction was apparent between O. viciifolia accessions from western Europe and those from eastern Europe and Asia, reflecting a similar division based on agronomic properties. Recognition of these different though related germplasms will be valuable in the design of breeding programmes for the rational improvement of sainfoin as a forage crop for sustainable agriculture.  相似文献   

10.
Weedy rice is a complex of Oryza morphotypes widely distributed in commercial rice fields, which interfere with rice cultivation, seed production, industrial processing and commercialization of this crop in several countries. The objective of this study was to characterize the weedy rice complex of Costa Rica by comparing it with the cultivated and wild rice species found in the country. A collection of weedy rice accessions, representative of the morphotypes found in the country, was established and characterized. Their morphometric relationships were established by comparing 27 morphological traits with commercial rice cultivars, landraces and wild Oryza species and by performing a multivariate analysis. Twenty-one weedy rice morphotypes were identified among 735 weedy accessions by using a three-digit code based on seed characters. Three principal components (PCs) explained 66.25% of the variation observed. The first PC accounted for 36.21% of the variation and separated CCDD genome type Oryza latifolia and O. grandiglumis from AA genome species O. sativa, O. glumaepatula, O. rufipogon and O. glaberrima. The second (18.9%) and third (11.14%) PCs separated the weedy morphotype groups from the AA genome species O.sativa, O. glaberrima and O. rufipogon. The weedy morphotypes were scattered between the indica commercial rice varieties, the cluster landraces–glaberrima and O. rufipogon. Additionally, a group of morphotypes showed intermediate characteristics between O. sativa and O. rufipogon, suggesting that hybridization could have taken place in the past between these species. None of the morphotypes collected in Costa Rica clustered with the allotetraploids CCDD species or O. glumaepatula.  相似文献   

11.
基于RAPD标记的福建省稻曲病菌遗传多样性分析   总被引:3,自引:0,他引:3  
为了解福建省稻曲病菌群体的遗传多样性和遗传组成,应用随机扩增多态性RAPD (random amplified polymorphic DNA)技术分析了来自福建省不同水稻种植区的102个稻曲病菌(Ustilaginoidea virens)的遗传多样性.从100条随机引物中筛选出10条扩增带清晰、重复性好的引物进行稻曲病菌多态性扩增,共扩增出157条带,多态性条带比率为82.17%,遗传距离变化范围为0.02~0.67.遗传多样性分析表明,福建省稻曲病菌具有丰富的遗传多样性,相对于其它地区而言,福建闽西地区分离的菌株遗传多样性水平最高PPB=76.43,H=0.2212,I=0.3383),晚稻分离的菌株群体遗传多样性(PPB=91.08,H=0.2402,I=0.3655)高于早稻群体(PPB=63.06,H=0.1892,I=0.2870).聚类分析显示,在遗传距离0.349水平上,供试的所有菌株可被划分成7个遗传聚类组(R1~R7),聚类组R1为优势聚类组,包含有80个菌株,其内又存有一些亚组.这些菌株的聚类与菌株的地理来源及水稻品种无明显相关性.但是在遗传距离0.330水平上,来自宁化的10个菌株可被明显划分成早稻群体和晚稻群体.初步分析认为菌株的地理来源、水稻品种及其生长季节是影响福建省稻曲病菌遗传多样性的主要因素,在稻曲病菌的遗传变异以及该病的发生和流行中可能起重要的作用.  相似文献   

12.
Indicajaponica variation represents the most significant genetic differentiation in Asian cultivated rice (Oryza sativa L. subsp. indica Kato or subsp. japonica Kato). Understanding the differentiation and distribution patterns of cultivated rice along altitude gradients will facilitate strategic utilization and conservation of rice germplasm from mountainous regions. In this study, we analyzed 203 varieties and 14 wild accessions of rice collected from localities across an altitude gradient between 450 and 2,350 m above sea level in Yunnan, China, applying the “InDel molecular index” developed recently. Results from PCA of the InDel data demonstrated significant genetic differentiation of rice varieties from Yunnan into indica and japonica types. A few cultivars and nearly all wild rice accessions showed only moderate or no differentiation. Further analyses demonstrated a clear distribution pattern of the rice varieties in the mountainous region: indica varieties were grown across the entire altitude gradient in the sampling areas, but most japonica varieties were found above 1,400 m. These results clearly indicated that indica rice could be cultivated in areas at much higher altitudes than those categorized by the traditional methods. The knowledge opens a new dimension for introducing indica rice varieties to mountainous regions at higher altitudes and for selecting rice germplasm in these regions. In addition, the pattern of significant indicajaponica differentiation in rice varieties from Yunnan suggested the exotic origin of cultivated rice, which did not support the hypothesis that Yunnan is a part of the center of origin of rice, although it is certainly one of the centers of genetic diversity for rice.  相似文献   

13.
The genetic diversity of taro (Colocasia esculenta (L.) Schott.) accessions growing naturally in Andaman Islands was analysed using morphological and DNA markers. Twenty one representative samples of C. esculenta from different parts of Islands in addition to three commercial varieties as reference genotypes were used in study. About 63% phenotypic variation was observed in C. esculenta A total number of 491 amplified fragments were obtained of which 347 showed polymorphic banding patterns. The accessions were grouped into two major clusters with both RAPD and ISSR markers with 56 and 57% diversity, respectively. The reference genotypes were grouped into one group and island population in other cluster. Both marker systems divided population into two sub clusters and showed correlation with morphological parameters. The diversity pattern observed in present study showed rich genetic diversity of C. esculenta in Andaman Islands provided simple strategy for reducing repeatability of taro germplasm in gene banks. The study also suggested pre-evaluation of germplasm using molecular and morphological markers to enhance efficiency of exploration trips.  相似文献   

14.
Fluorescence in situ hybridization was used to investigate the physical location of oligo-Am1 and (TTG)6 trinucleotide repeats in the metaphase chromosomes of seven diploid species (AA or CC genomes), seven tetraploid species (AABB or AACC genomes), and two hexaploid species (AACCDD genomes) belonging to the genus Avena. The oligo-Am1 probe produced signals that were particularly enriched on almost whole C-genome chromosomes, whereas the (TTG)6 probe was located in the pericentromeric (M), and, occasionally, their telomeric (T) chromosome regions, but showed low matching to C genome. All the species possessed (TTG)6 loci in M regions, and the CC, AABB, and AACCDD species also possessed (TTG)6 loci in T regions. The (TTG)6 signal number is constant in both the AA and CC species but slightly differs in signal intensity, whereas the (TTG)6 signal pattern shows wide diversity in the AABB, AACC and AACCDD species. The probe hybridization results provide key information that can be used in the physical assignment of genome sequences to chromosomes.  相似文献   

15.
Triticum turgidum subsp. dicoccoides (Körn. ex Asch. et Graebn.) Thell. (AABB), the immediate progenitor of tetraploid and hexaploid wheats, is a species characterised by a wide range of protein polymorphism and by high protein content. Surveys on polymorphism and genetic control of the high molecular weight glutenin subunits (HMW-GS) present in this species, in two forms x- and y-type at the Glu-A1 and Glu-B1 loci, are still considered useful, both to improve technological properties of breeding varieties and to study the genome evolutionary process in wheats. Comparative Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoretic and Reversed Phase High Performance Liquid Chromatographic analyses (SDS-PAGE, RP-HPLC) of the HMW-GS present in several accessions of T. turgidum subsp. dicoccoides allowed the detection of new alleles of Glu-A1 and Glu-B1 loci, with x- and y-type glutenin subunits, apparently similar to those present in cultivated wheats in molecular weight, but different in surface hydrophobicity. In addition, changes in the number of x- and y-type subunits at the glutenin loci were also ascertained. The y-type subunits at the Glu-A1 locus, which are never expressed in cultivated bread and durum wheats, and single y-type expressed glutenin subunits at the Glu-B1 locus were also identified in several accessions. DNA extracted from samples, differing in number or type of HMW-GS and corresponding to x- and y-type genes at Glu-1 loci, were amplified using specific primers, two of which were constructed within the transposon-like sequence of Chinese Spring DNA and analysed by polymerase chain reaction. The results showed this insertion in some accessions of T. turgidum subsp. dicoccoides and also the presence of silent Ax, Bx and By type genes. The usefulness for breeding of these comparative analyses carried out on different HMW-GS alleles detected in Triticum turgidum subsp. dicoccoides, is discussed.  相似文献   

16.
Einkorn wheat is known as the donor of ‘A’ genome to cultivated wheat and source of many important genes. Therefore, genetic erosion in cultivated wheat provides a good reason to investigate genetic diversity in these species. In the present study, genetic diversity of 14 populations of Triticum urartu and Triticum boeoticum collected from west and north-west of Iran was examined by IRAP and REMAP markers. In total, 26 out of 36 IRAP and 41 out of 88 REMAP combinations amplified polymorphic and scorable banding patterns. IRAP and REMAP combinations produced 6.53 and 5.21 polymorphic bands per assay, respectively. Mean of polymorphism information content for IRAPs and REMAPs were 0.38 and 0.40 and marker index values for them were 2.60 and 2.09, respectively. Analysis of molecular variance based on IRAP and REMAP data revealed significant within and among population variances, although within population variance was higher than that of among population. Primer combinations based on Sukkula and Nikita retrotransposons produced the highest number of markers in the whole population. Cluster and principal coordinate analyses using REMAP data grouped the populations based on the species and geographical origin, but grouping based on IRAP could not separate the two species. However, based on both marker systems considerable diversity was observed among and within the studied populations.  相似文献   

17.
Genomic restructuring was detected in newly synthesized tritordeum by molecular and cytogenetic tools. Genomic stability is expected for advanced tritordeum lines (HchHchAABB; 2n = 42) with multiple generations of self-fertilization. This study intends to confirm or decline this hypothesis by characterizing three advanced tritordeum lines and their parental species using cytogenetics, inter-simple sequence repeat (ISSR) and retrotransposon-based markers. Mitotic chromosomes of each tritordeum line were hybridized with six synthetic oligonucleotide probes using non-denaturing fluorescence in situ hybridization. Polymorphic hybridization patterns and structural rearrangements involving SSR regions were detected. The same chromosome spreads were re-hybridized with genomic DNA of Hordeum chilense Roem. et Schult. and the 45S ribosomal DNA (rDNA) sequence pTa71. These FISH experiments allowed for parental genome discrimination, identification of nucleolar chromosomes, and detection of structural rearrangements, mostly involving rDNA loci. The chromosomes bearing SSR hybridization signals and/or chromosomes involved in structural rearrangements were identified. ISSR, retrotransposon-microsatellite amplified polymorphism, inter-retrotransposon amplified polymorphism and inter-primer binding site markers evidenced genomic reshuffling in all tritordeum lines relative to their parents. Line HT28 was considered the most genetically stable. This work demonstrated that cytogenetic and molecular monitoring of tritordeum is needed, even after several self-fertilization generations, to guarantee the selection of the most stable lines for improvement and sustainable agriculture.  相似文献   

18.
Here, we report the karyotypes and mean haploid idiograms of the ten Asian Corchorus species (2n = 2x = 14). Chromosomes were small, with a mean chromosome length of 2.30 μm. The largest chromosome was recorded in C. pseudo-olitorius (3.50 μm) and the shortest in C. pseudocapsularis (1.60 μm). The karyotypes of the two cultivated species (C. capsularis and C. olitorius) and C. pseudo-olitorius were the most diverse and specialized, whereas those of C. depressus and C. trilocularis were the least diverse. C. fascicularis had the most asymmetrical and C. urticifolius the most symmetrical karyotypes. An increase in genome size was accompanied by increasing karyotype diversity in terms of morphologically distinct chromosome types and interchromosomal asymmetry, with uneven distribution of additional DNA throughout the karyotype. A positive correlation between interchromosomal asymmetry and dispersion index suggested that size differences between chromosomes were mainly associated with karyotype asymmetry. Karyotypes of the Corchorus species became progressively asymmetrical in the course of evolution. Relationships among the ten Corchorus species were defined by using a neighbor-joining tree inferred from inter-simple sequence repeat data. C. fascicularis and C. pseudocapsularis, with shorter karyotypes and smaller genomes, were closely related to C. pseudo-olitorius and C. capsularis, respectively, which were characterized by relatively longer karyotypes and larger genomes. However, the two cultivated species with different levels of interchromosomal asymmetries, dispersion indices and genome sizes were distantly related. Taking this molecular evidence into consideration, we have discussed chromosomal evolution in relation to karyological data including genome size.  相似文献   

19.
Although root cap cells are an important substrate for microorganisms in the rhizosphere, little attention has been paid to the decomposition of sloughed root cap cells by microorganisms. This study used rice plant callus cells grown on medium containing 13C-labelled glucose as a model material for rice plant root cap cells. Harvested 13C-labelled callus cells (78 atom % 13C) were subjected to decomposition in an aerobic soil microcosm for 56 days. The low cellulose and lignin levels and the disaggregated nature of the callus cells indicated that these cells were an appropriate model material for root cap cells. DNA was extracted from a soil incubated with 12C- and 13C-callus cells and subjected to buoyant density gradient centrifugation to identify bacterial species that assimilated carbon from the callus cells. The stability of the total bacterial communities during the incubation was estimated. Many DGGE bands in light fractions of soil incubated with 13C-callus cells were weaker in intensity than those from soil incubated with 12C-callus cells, and those bands were shifted to heavier fractions after 13C-callus treatment. 13C-labelled DNA was detected from Day 3 onwards, and the DGGE bands in the heavy fractions were most numerous on Day 21. DGGE bands from heavy and light fractions were sequenced, revealing more than 70% of callus- C incorporating bacteria were Gram-negative, predominantly α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Sphingobacteria and Actinobacteria. These species were phylogenetically distinct from the bacteria reported to be present during plant residue decomposition and resident in rice roots. This study indicates that root cap cells are decomposed by specific bacterial species in the rhizosphere, and that these species augment the diversity of rhizospheric bacterial communities.  相似文献   

20.
Sugarcane, one of the most important tropical crops, belongs the genus Saccharum. This genus consists of six species, four cultivated and two wild. The domestication histories of the four cultivated Saccharum species is an interesting and important topic of study. Previous studies have categorized the four cultivated species into two groups, one consisting only of S. edule and the other comprising S. officinarum, S. sinense and S. barberi. All four species have inherited the genomic DNA of S. robustum, one of two wild relative species. Saccharum species have large genomes with complex structures, as evidenced by chromosomes with a high degree of polyploidy, alloploidy and aneuploidy. Miniature inverted-repeat transposable elements (MITEs) are class II (DNA) transposons that disperse throughout the plant genome. In this study, a Tourist family MITE sequence with 18/19-bp terminal inverted repeats and a 2-bp target site duplication was newly identified from genomic DNA of S. robustum. The abundant accumulation of this MITE sequence in the sugarcane genome enabled the application of inter-MITE polymorphism (IMP) analysis to Saccharum. IMP analysis revealed the genetic relationships among all six Saccharum species and the domestication histories of the four cultivated species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号