首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A field experiment was conducted during rainy seasons of 2009 and 2010 at New Delhi, India to study the influence of varieties and integrated nitrogen management (INM) on methane (CH4) emission and water productivity under flooded transplanted (FT) and aerobic rice (AR) cultivation. The treatments included two rice (‘PB 1’ and ‘PB 1121’) varieties and eight INM practices including N control, recommended dose of N through urea, different combinations of urea with farmyard manure (FYM), green manure (GM), biofertilizer (BF) and vermicompost (VC). The results showed 91.6–92.5 % lower cumulative CH4 emission in AR compared to FT rice. In aerobic conditions, highest cumulative CH4 emission (6.9–7.0 kg ha?1) was recorded with the application of 100 % N by organic sources (FYM+GM+BF+VC). Global warming potential (GWP) was significantly lower in aerobic rice (105.0–107.5 kg CO2 ha?1) compared to FT rice (1242.5–1447.5 kg CO2 ha?1). Significantly higher amount of water was used in FT rice than aerobic rice by both the rice varieties, and a water saving between 59.5 and 63 % were recorded. Under aerobic conditions, both rice varieties had a water productivity of 8.50–14.69 kg ha?1, whereas in FT rice, it was 3.81–6.00 kg ha?1. In FT rice, a quantity of 1529.2–1725.2 mm water and in aerobic rice 929.2–1225.2 mm water was used to produce one kg rice. Thus, there was a saving of 28.4–39.6 % total water in both the rice varieties under AR cultivation.  相似文献   

2.
Intermittent and prolonged dry spell during growth of transplanted rice is an important abiotic problem in north eastern region (NER). However, the productivity of rice in the region is very low, and this is mainly associated with reduced plant population, growth, and yield attributes with lower relative water content and leaf rolling with formation of soil cracks by erratic and aberrant rainfall. Keeping this in view, a field experiment on transplanted rice was conducted during two consecutive years 2011 and 2012 at NER of India, to evaluate the imposition of forced surface drainage (SD) at various growth stages (continuous drainage, SD at tillering, SD at panicle initiation, SD at booting, SD at flowering, SD at milking, and 15 days intermittent SD) and was compared with continuous flooding on growth and yield attributes, yield, relative water content, leaf rolling, and formation of soil cracks. Results revealed that continuous flooding has significant (p < 0.05) improved the plant population, growth and yield parameters, rice grain yield (3,406.7 kg ha?1) and straw yield (4,683.3 kg ha?1), relative water content maintained >90 %, no leaf roll, and soil crack. However, imposition of SD at tillering has lower tillers hill?1, but yield was compensated by improvement in yield attributes. As per the availability of water, growers of the region can utilize the water for scheduling of water and most critical stages can be avoided by moisture stress to obtain higher productivity.  相似文献   

3.
Conventional puddled transplanted rice (TPR) is a major source of greenhouse gas (GHG), particularly methane, causing global warming. Direct-seeded rice (DSR) is a feasible alternative to mitigate methane emission, besides saving water and labor. A 2-year field experiment was carried out to quantify GHG mitigation and water- and labor-saving potentials of the DSR crop compared to TPR in three villages in Jalandhar district of Punjab, India. The InfoRCT simulation model was used to calculate the emission of CO2 besides CH4 and N2O in different districts of Punjab, India. Total global warming potential (GWP) in transplanted rice in various districts of Punjab ranged from 2.0 to 4.6 t CO2 eq. ha?1 and in the DSR it ranged from 1.3 to 2.9 t CO2 eq. ha?1. Extrapolation analysis showed that if the entire area under TPR in the state is converted to DSR, the GWP will be reduced by 33 %, and if 50 % area is converted to DSR the GWP will be reduced by 16.6 % of the current emission. The DSR crop saved 3–4 irrigations compared to the transplanted rice without any yield penalty. Human labor use also reduced to 45 % and tractor use to 58 % in the DSR compared to TPR.  相似文献   

4.
Water management is known to be a key factor on methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) emissions from paddy soils. A field experiment was conducted to study the effect of continuous irrigation (CI) and intermittent irrigation (II) on these emissions. Methane, CO2, and N2O emissions from a paddy soil were sampled weekly using a semi-static closed chamber and quantified with the photoacoustic technique from May to November 2011 in Amposta (Ebro Delta, NE Spain). Intermittent irrigation of rice paddies significantly stimulated (N2O + N2)–N emission, whereas no substantial N2O emission was observed when the soil was re-wetted after the dry phase. The cumulative emission of (N2O + N2)–N was significantly larger from the II plots (0.73 kg N2O–N ha?1 season–1, P < 0.05) than from the CI plots (?1.40 kg N2O–N ha?1 season?1). Draining prior to harvesting increased N2O emissions. Draining and flooding cycles controlled CO2 emission. The cumulative CO2 emission from II was 8416.35 kg CO2 ha?1 season?1, significantly larger than that from CI (6045.26 kg CO2 ha?1 season?1, P < 0.05). Lower CH4 emission due to water drainage increased CO2 emissions. The soil acted as a sink of CH4 for both types of irrigation. Neither N2O–N nor CH4 emissions were affected by soil temperature. Global warming potential was the highest in II (4738.39 kg CO2 ha?1) and the lowest in CI (3463.41 kg CO2 ha?1). These findings suggest that CI can significantly mitigate the integrative greenhouse effect caused by CH4 and N2O from paddy fields while ensuring the highest rice yield.  相似文献   

5.
Soil and water pollution caused by organic waste is a concern for livestock-breeding areas. Nitrogen balance in a paddy-field water-purifying system in which cattle feces were applied was studied for 4 years to assess the suitability of the system for a subtropical area, Japan. Three successive harvestings using ratoon of forage rice following one rice transplanting were conducted with chemical fertilizer and high and low rates of cattle-feces application. Nitrogen load was 81.3–495.0 kg N ha?1 year?1, while nitrogen uptake was highly dependent on the yield of the first harvesting. Annual variation of forage rice yields was large, ranging from 15.5 to 26.8 Mg ha?1 owing to fluctuation in the yield at second and later harvestings. On average, nitrogen was lost by leaching at a rate of 2.3–3.4 kg N ha?1 year?1. The nitrogen content in soil at a depth of 0–5 cm increased up to 12.2 kg N ha?1 over the 4-year period compared with that before the field experiment. However, continuous application of cattle feces could slightly increase the nitrogen content in soil at a depth greater than 35 cm. Our results showed the ability of flooded forage rice to remove nitrogen at up to 320.1 kg ha?1 year?1 for a field to which cattle feces were applied. Further investigation is needed to produce a high and stable yield at second harvesting each year, to prevent the accumulation of soil nitrogen, and to assess gaseous nitrogen loss.  相似文献   

6.
Rice is a major agricultural crop and accounts for 40 % of the total food grain production of India. A field experiment was conducted for two successive seasons (December–June, 2012–13 and December–June, 2013–14) to assess the efficiency of rice varieties for methane (CH4) emission in relation to atmospheric carbon fixation, partitioning of carbon, and storage in the soil. Six high yielding rice varieties, Bahadur, Cauvery, Dinanath, Joymoti, Kanaklata, and Swarnabh were grown under irrigated condition. Results of the present investigation depicted differences in photosynthetic rate among the varieties accompanied by differential ability for plant biomass partitioning between the shoots and the roots. Stomatal frequency of flag leaf at panicle initiation stage was found to have strong influence on photosynthesis. Low CH4-emitting rice varieties, Bahadur and Dinanath, were found to have lower size of the xylem vessels than the high CH4-emitting rice varieties, Joymoti and Kanaklata, and found to influence the CH4 flux. Soil organic carbon storage of 0.505 Mg C ha?1 y?1 in the plough layer of soil (0–15 cm) confirmed that irrigated rice ecosystem is an effective sink of carbon. These findings suggest that selection of suitable rice varieties with higher photosynthetic efficiency and lower emission of CH4 can be a suitable biological mitigation of this greenhouse gas. Although an inverse relationship of CH4 with carbon dioxide (CO2) efflux was observed, irrigated rice ecosystem has a good potential to store substantial amount of carbon in the soil.  相似文献   

7.
The effect of controlled irrigation and drainage on N leaching losses from paddy fields was investigated by controlling root zone soil water content and water table depth using a lysimeter equipped with an automatic water table control system. Three treatments that combined irrigation and drainage managements were implemented: controlled irrigation (CI) + controlled water table depth 1 (CWT1), CI + controlled water table depth 2 (CWT2), and flooding irrigation (FI) + actual field water table depth (FWT). Controlled irrigation and drainage had significant environmental effects on the reduction of NH4 +–N and NO3 ?–N leaching losses from paddy fields by decreasing water leakage. The NH4 +–N leaching losses from CI + CWT1 and CI + CWT2 were 3.68 and 4.45 kg ha?1, respectively, which significantly reduced by 59.2 and 50.7 % compared with FI + FWT (9.02 kg ha?1). The NO3 ?–N leaching losses from CI + CWT1 and CI + CWT2 were 0.88 and 0.43 kg ha?1 with a significant reduction of 45.2 and 73.2 %, respectively, compared with FI + FWT (1.61 kg ha?1). The application of CI + CWT1 can be a pollution-controlled water management method of reducing N leaching losses from paddy fields.  相似文献   

8.
System of rice intensification (SRI) is an alternate method of conventional puddled, transplanted, and continuously flooded rice cultivation for higher yield, water saving, and increased farmer’s income. The SRI may also have considerable impact on greenhouse gas emission because of difference in planting, water and nutrient management practices. A field experiment was conducted with three planting methods: conventional puddled transplanted rice (TPR), conventional SRI with 12-days-old seedling (SRI) and modified SRI with 18-days-old seedling (MSRI) to study their effect on methane and nitrous oxide emission. Seasonal integrated flux (SIF) for methane was highest in the conventional method (22.59 kg ha?1) and lowest in MSRI (8.16 kg ha?1). Methane emissions with SRI and MSRI decreased by 61.1 and 64 %, respectively, compared to the TPR method. Cumulative N2O–N emission was 0.69, 0.90, and 0.89 kg ha?1 from the TPR, SRI, and MSRI planting methods, respectively. An average of 22.5 % increase in N2O–N emission over the TPR method was observed in the SRI and MSRI methods. The global warming potential (GWP), however, reduced by 28 % in SRI and 30 % in MSRI over the TPR method. A 36 % of water saving was observed with both SRI and MSRI methods. Grain yield in the SRI and MSRI methods decreased by 4.42 and 2.2 %, respectively, compared to the TPR method. Carbon efficiency ratio was highest in the MSRI and lowest in the TPR method. This study revealed that the SRI and MSRI methods were effective in reducing GWP and saving water without yield penalty in rice.  相似文献   

9.
Many papers on measurements of greenhouse gases (GHGs) emission in rice paddies during a rice cropping season have been published. During a non-cropping season between Nov. and Apr., we investigated direct and indirect GHGs emissions in rice paddies. The indirect GHGs emission was evaluated as the amount of dissolved gases leaching from the paddy fields. Water management practices for the experiment were (1) continuous flooding (CF) and (2) non-flooding (NF). Although the direct CO2 emission in the CF treatment was remained nearly zero during the non-cropping period, direct CO2 emission in the NF treatment was continuously observed throughout the non-cropping period. The concentration of dissolved N2O in the NF treatment was below the detection limit of the instrument during the non-cropping period except immediately after the flooding and before the drainage. The concentration of dissolved N2O kept approximately 2 µg L?1 during the non-cropping period in the CF treatment. The direct CH4 emission and dissolved CH4 were not observed during the non-cropping period. Total gas emission in the NF treatment was 10 times as large as that in the CF treatment. Direct CO2 emission accounted for more than 90 % of the total emission in both treatments.  相似文献   

10.
Methane (CH4) emission and water productivity were estimated in an experiment conducted during wet (rainy) season of 2010 at the research farm of Indian Agricultural Research Institute, New Delhi, India. Treatments comprising three methods of crop establishment viz., conventional transplanting (CT), system of rice intensification (SRI) and double transplanting (DT) were laid out in randomized block design with four replications. Scented rice (Oryza sativa L) variety ‘Pusa Basmati 1401’ was transplanted in puddle field. In CT and SRI 21 and 12-day-old seedlings, respectively, were transplanted while in DT overall 45-day-old seedlings were transplanted. In CT and DT flooded conditions while in SRI saturated conditions were maintained. Results indicated that among the methods of crop establishment, CT had maximum cumulative CH4 emission (32.33 kg ha?1) followed by DT (29.30 kg ha?1) and SRI (19.93 kg ha?1). Temporal CH4 flux fluctuated between 79.7 and 482.0 mg m?2 day?1 under CT; 46.0 and 315.0 mg m?2 day?1 in SRI and 86.7 and 467.3 mg m?2 day?1 in DT. Considerable temporal variations in the individual CH4 fluxes were observed. Flux of CH4 was generally higher in early stage of crop and peaked about 21 days after transplanting coinciding with tillering stage of crop. CH4 flux declined gradually from 75 days after transplanting and stabilized at the harvest stage of rice in all the three methods of transplanting. Global warming potential was highest in CT (807.4 kg CO2 ha?1) and lowest in SRI (498.25 kg CO2 ha?1). However, a reverse trend was observed with carbon efficiency ratio. The water savings to the extent of six irrigations was recorded in SRI over CT. A saving of 27.4 % irrigation water and 18.5 % total water was recorded in SRI over CT while the corresponding values of DT over CT were 14.5 and 9.8 %. Water productivity of SRI (3.56 kg/ha mm) was significantly higher as compared to DT (2.87 kg/ha mm) and CT (2.61 kg/ha mm).  相似文献   

11.
We studied the effects of water regimes and nutrient amendments on CH4 and N2O emissions in a 2 × 3 factorial, completely randomised growth chamber experiment. Treatments included continuously flooded (CF) and alternate wetting and drying (AWD), and three organic amendments: no amendment-control, rice straw (RS) and biochar (BC). Compound fertiliser was applied to all treatments. Rice was grown in columns packed with a paddy soil from Cambodia. Results revealed faster mineralisation of organic carbon (RS and BC) when applied in water-saturated conditions lasting for 2 weeks instead of flooding. This resulted in lower total CH4 emissions in treatments under AWD than those under the CF water regime, namely 44 % in RS treatments and 29 % in BC treatments. Nitrous oxide fluxes were generally non-detectable during the experimental period except after fertilisation events, and the total N2O–N emissions accounted for on average 1.7 % of the total applied mineral fertiliser N. Overall, the global warming potentials (GWPs) were lower in treatments under AWD than those under the CF water regime except for the control treatment with only mineral fertiliser application. Grain yields were slightly higher in treatments under AWD than the CF water regime. Hence, the yield-scaled GWP was also lower in the treatments under the AWD water regime, namely 51 % in RS, 59 % in BC and 17 % in control treatments. Control treatments had the lowest GWP, but provided the highest yield. The yield-scaled GWP under these treatments was therefore lower than under the other treatments.  相似文献   

12.
To study the radiation utilization efficiency, latent heat flux, and simulate growth of rice during post-flood period in eastern coast of India, on-farm trial was conducted with three water regimes in main plots (W 1 = continuous flooding of 5 cm, W 2 = irrigation after 2 days of water disappearance, and W 3 = irrigation after 5 days of water disappearance) and five nitrogen levels in subplots (N 1 = 0 kg N ha?1, N 2 = 60 kg N ha?1, N 3 = 90 kg N ha?1, N 4 = 120 kg N ha?1, and N 5 = 150 kg N ha?1) on a rice cultivar, ‘Lalat’. Average maximum radiation utilization efficiency (RUE) in terms of above ground dry biomass of 2.09 (±0.05), 2.10 (±0.02), and 1.9 (±0.08) g MJ?1 were computed under W 1, W 2, and W 3, respectively. Nitrogen increased the RUE significantly, mean RUE values were computed as 1.60 (±0.07), 1.78 (±0.02), 2.060 (±0.08), 2.30 (±0.07), and 2.34 (±0.08) g MJ?1 when the crop was grown with 0, 60, 90, 120, and 150 kg ha?1 nitrogen, respectively. Midday average latent heat flux (on clear days) varied from 7.4 to 14.9 and 8 to 13.6 MJ m?2 day?1 under W 2 and W 3 treatments, respectively, at different growth stages of the crop in different seasons. The DSSAT 4.5 model was used to simulate phenology, growth, and yield which predicted fairly well under higher dose of nitrogen (90 kg and above), but the model performance was found to be poor under low-nitrogen dose.  相似文献   

13.
Maintenance of organic carbon in soil (SOC) is critically important for sustained agricultural productivity and environmental quality. This paper presents SOC resulting from differences in tillage types and demonstrates how mulch and nitrogen (N) application can mediate the tillage functions on SOC and crop productivities. The results are derived from a 4-year field-scale study carried out in a low-land under sub-tropical hot and humid environment of Nepal. It compared eight treatment combinations, viz., tillage (no-tillage and conventional tillage), mulch (no-mulch and 12 Mg ha?1 year?1 of mulch), and N application (recommended versus leaf color chart method) under rice–wheat cropping system. Seasonal grain and biomass yields of these crops were recorded and at the end of the 4-year study, quantified the organic carbon stock of soil; Within 15 cm of surface soil, SOC stock (Mg C ha?1) was statistically (p < 0.05) higher on no-tillage plots (11.2–11.8) than on conventional tillage plots (9.2–10.5). The treatment effect was more pronounced on winter wheat productivity where conventional tillage combined with straw-mulch exceled the performance of no-tillage. Clearly, no-tillage had the environmental benefit, and conventional tillage had the crop productivity benefit.  相似文献   

14.
System of Rice Intensification (SRI) often achieved higher yield than conventional practice. We identified the high-yielding farmers from the yield records of 1909 paddy fields belonging to an organic farmers’ association. Farmers whose yields were from 8.4 to 10.4 t ha?1 were interviewed and their fields surveyed. Their yields had increased by an estimated average of 40% following the adoption of SRI practices. They applied 2–12 t ha?1 of compost. Compared to the conventional practice, they shortened seedling age at transplanting from 27.4 to 17.6 days and reduced the number of seedlings per hill from 4–6 to 2–3, while hill spacing remained unchanged. Instead of intermittent irrigation which is recommended in standard SRI, they kept shallow flooding of 1–2 cm. Although they applied a lot of compost, no correlation was found between the amount of compost application and the yields. Instead, high-yielding farmers returned rice straw into waterlogged paddy after harvest, which presumably is an ideal condition for biological nitrogen fixation. This may occur around rice straw during decomposition under waterlogged condition and might supplement the negative nitrogen balance, thereby enabling the high yield as compared with conventional practices where the fresh rice straw is removed and/or burned.  相似文献   

15.
以南方红壤区双季稻-紫云英为研究对象,利用静态箱-气相色谱法分别分析包括绿肥和稻草等秸秆还田条件下不同水分管理对稻田CH4和N2O排放、水稻产量以及综合温室效应(GWP)的影响。试验设持续淹水(F)、中期烤田(F-D-F)和间歇灌溉(F-D-F-M)处理。结果表明,秸秆还田条件下双季稻田周年CH4排放量介于208.3kg/hm2(F-D-F-M处理)和678.2kg/hm2(F处理)之间,其中,晚稻生长季占周年CH4排放量的60.6%~71.7%。F处理周年CH4排放量显著高于F-D-F和F-D-F-M处理(P0.05)。秸秆还田条件下双季稻田周年N2O排放量为4.75~8.19kg/hm2。与F处理相比,F-D-F-M处理周年N2O排放通量显著增加(60.9%);而F和F-D-F处理之间没有显著差异。早稻和晚稻各处理产量分别为7.76~8.02t/hm2和7.22~8.69t/hm2。秸秆还田条件下,双季稻单位面积GWP和单位产量GWP分别为7648.8~18471.8kg/hm2和0.48~1.12 kg/kg,其中F-D-F和F-D-F-M处理分别显著低于F处理(P0.05)。因此,在秸秆还田条件下采用中期烤田和间歇灌溉替代持续淹水,可以同步实现双季稻高产和减轻农业生产对气候的潜在影响。  相似文献   

16.
Vietnam is one of the world’s top two rice exporting countries. However, rice cultivation is the primary source of agriculture’s greenhouse gas (GHG) emissions in Vietnam. In particular, strategies are required to reduce GHG emissions associated with the application of organic and inorganic fertilisers. The objective of this study was to assess the effects of various combinations of biochar (BIOC), compost (COMP) and slow-release urea (SRU) on methane (CH4) and nitrous oxide (N2O) emissions. In total, 1170 gas samples were collected from closed gas chambers in rice paddies at Thinh Long commune and Rang Dong farm in northern Vietnam between June and October 2014. The gas samples were analysed for CH4-C and N2O-N fluxes using gas chromatography. The application of BIOC alone resulted in the lowest CH4 emissions (4.8–59 mg C m?2 h?1) and lowest N2O emissions (0.15–0.26 µg N m?2 h?1). The combined application of nitrogen–phosphorus–potassium (NPK) + COMP emitted the highest CH4 (14–72 mg C m?2 h?1), while ½NPK + BIOC emitted the highest N2O (1.03 µg N m?2 h?1 in the TL commune), but it was the second lowest (0.495 µg N m?2 h?1) in the RD farm. Green urea and orange urea reduced N2O emissions significantly (p < 0.05) compared to white urea, but no significant differences were observed with respect to CH4 emissions. SRU fertilisers and BIOC alone measured the lowest greenhouse gas intensity, i.e. <2.5 and 3 kg CO2 eq. kg?1 rice grain, respectively. Based on these results, application of fertilisers in the form of BIOC and/or orange or green urea could be a viable option to reduce both CH4 and N2O emissions from rice paddy soils.  相似文献   

17.
Sugarcane is a crop of great economic, social, and environmental relevance in Brazil. The country is the largest sugar producer and the second largest bioethanol producer in the world. The goal of this study was to evaluate the efficiency of a sugarcane inoculant composed of five diazotrophic bacterial strains, as well as nitrogen fertilization of two sugarcane varieties. Two experiments were carried out on two varieties using an experimental design composed of complete randomized blocks in a factorial of two varieties and three treatments with four replicates. The treatments can be described as: inoculation with the consortium of five diazotrophic strains, or N fertilization with 120 kg ha?1, and one control treatment. The following parameters were then evaluated: stem yield, accumulation of total dry matter, nitrogen content, quality of the sugarcane juice, and 15N natural abundance on flag-leaves. Inoculation and N fertilization on the Sapucaia plantation promoted increases of stem yield equivalent to 22.3 and 26.5 Mg ha?1 in the RB867515 variety, in comparison to the control, respectively. Inoculation and N fertilizer used for the Coruripe plantation increased stem yield of 38.0 and 42.4 Mg ha?1, respectively, with the RB867515 variety, while RB72454 showed increases of 16.7 and 37.5 Mg ha?1, both compared to the control. Biological nitrogen fixation was not affected by the treatments, however, both treatments increased the total recoverable sugar yield. Benefits from inoculation appeared to promote plant growth due to the plant–bacteria interaction.  相似文献   

18.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

19.
Sewage contains several trace elements of environmental concern, and cadmium (Cd) is one of the most mobile elements in soil–plant system that can pose drastic effects on plants and human health due to its long persistence and non-biodegradability nature in environment. It is necessary to prevent its entry into food chain for better food quality and human health. Present study was designed to evaluate the effectiveness of different water management practices, viz. W1: flooding throughout the growing season, W2: flooding after 4 days of disappearance of standing water (DAD), W3: flooding till heading and after that flooding of soil after 4 days of DAD, W4: Aerobic condition throughout growing season (flooding after 8 days) for reducing Cd concentration in rice grain grown under varying levels of Cd (0, 20, 40 mg kg?1) spiked soil. Results revealed that grain yield declined with increasing Cd levels but maximum plant height (89.3 cm), straw yield (16.9 g) and grain yield (22.5 g pot?1) was observed where pots were flooded till heading and thereafter flooding. Cadmium concentration increased with increasing concentration of Cd in soil. Further, it is added that the lowest Cd concentration in shoot, grain and husk and translocation factor were observed under W3 when the soil was spiked with 40 mg kg?1. In crux, continuous flooding till heading and thereafter flooding after 4 DAD can significantly decrease the grain Cd concentration without compromise on yield.  相似文献   

20.
Manganese (Mn) deficiency is prevalent in rice-growing regions resulting in poor paddy yield and human health. In this study, role of Mn, applied through various methods, in improving the productivity and grain biofortification of fine grain aromatic rice was evaluated. Manganese was delivered as soil application (SA) (0.5 kg ha?1), foliar spray (FA) (0.02 M Mn), seed priming (SP) (0.1 M Mn) and seed coating (SC) (2 g Mn kg?1 seed) in conventional (puddled transplanted flooded rice) and conservation (direct seeded aerobic rice) production systems at two different sites (Faisalabad, Sheikhupura) in Punjab, Pakistan. Manganese application, through either method, improved the grain yield and grain Mn contents of fine grain aromatic rice grown in both production systems at both sites. However, Mn application as SC and FA was the most beneficial and cost effective in improving the productivity and grain biofortification in this regard. Overall, order of improvement in grain yield was SC (3.85 t ha?1) > FA (3.72 t ha?1) > SP (3.61 t ha?1) > SA (3.36 t ha?1). Maximum net benefits and benefit–cost ratio were obtained through Mn SC in flooded field at Faisalabad, which was followed by Mn SP in direct seeded aerobic rice at the same site. However, maximum marginal rate of return was noted with Mn SC in direct seeded aerobic rice at both sites. In crux, Mn nutrition improved the productivity and grain biofortification of fine grain aromatic rice grown in both conventional and conservation production systems. However, Mn application as seed treatment (SC or SP) was the most cost effective and economical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号