首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Loess Plateau, which is located in the arid and semi-arid areas of China, experiences significant soil erosion due to intense human activities and soil erodibility. It is necessary to explore and identify the land-use types or land-use patterns that can control soil erosion and achieve certain agricultural production capabilities. This study established runoff plots with two slope gradients (5O and 15O) in north of Yan’an, one area of the Loess Plateau, with 3 single land-use types (cultivated land, CL; switchgrass, SG; and abandoned land, AL) and 2 composite land-use types (CL-SG and CL-AL). From 2006 to 2012, we continuously monitored the rainfall characteristics, runoff depth, soil loss, vegetation coverage, and soil physical properties. The results indicated a general trend in the number of runoff and soil loss events for the 5 land-use types: CL = CL-SG > CL-AL > SG> AL. The general trend for runoff depth, soil loss, their magnitudes of variation, and the slopes of rainfall-runoff regression equation was CL > CL-SG > CL-AL > SG > AL, whereas the rainfall threshold for runoff generation exhibited the opposite trend. Results of nonparametric test regarding runoff depth/EI30 and soil loss/EI30, where EI30 is the product of rainfall kinetic energy and the maximum rainfall intensity over 30 min, and the runoff depth-soil loss relationship regression indicated that the effect of CL-AL was similar to that of SG; SG was similar to AL; and CL-AL, SG, and AL were superior to CL with regard to soil and water conservation. Runoff depth and soil loss significantly increased as the slope gradient increased. Runoff depth and soil loss were significantly correlated with the soil particle size composition and bulk density, respectively. The strongest significant correlations were found between runoff depth and vegetation coverage as well as between soil loss and vegetation coverage, which showed that vegetation coverage was the primary factor controlling soil erosion. Therefore, the composite land-use type CL-AL and the artificial grassland (SG) are appropriate options because both soil conservation and a certain degree of agricultural production are necessary in the study area.  相似文献   

2.
黄土高原土壤养分的损失   总被引:4,自引:1,他引:4  
The soil nutrient losses due to excessive soil loss on Loess Plateau were studied by means of runoff plots and systematical determination of soil nutrients both in sediments and runoff.The results show that the amounts of nutrient losses depended on the amounts of ersoion sediments.Along with sediment,11-197kg nitrogen/hectare and 9-174kg phosphorus/hectare were lost,accounting for 92.46-99.47 percent of the total amount of nitrogen loss and 99.85-99.99 percent of the total amount of phosphorus loss respectively.The nutrient losses,very small in runoff,were mainly attributed to erosion of a few rainstorms during a year.The nutrient level in sediment was mostly higher than that in the original soil.Planting grass evidently redued the losses of soil nutrients.The N level was lower in runoff than in rainfall so that the N loss from runoff could be made up by rainfall.Fertilizer application to crops raised the nutrient level in runoff.  相似文献   

3.
由降雨事件引起的坡面产流和土壤侵蚀的元胞自动机模拟   总被引:2,自引:0,他引:2  
A novel quantitative cellular automata (CA) model that simulates and predicts hillslope runoff and soil erosion caused by rainfall events was developed by integrating the local interaction rules and the hillslope surface hydraulic processes. In this CA model, the hillslope surface was subdivided into a series of discrete spatial cells with the same geometric features. At each time step, water and sediment were transported between two adjacent spatial cells. The flow direction was determined by a combination of water surface slope and stochastic assignment. The amounts of interchanged water and sediment were computed using the Chezy-Manning formula and the empirical sediment transport equation. The water and sediment discharged from the open boundary cells were considered as the runoff and the sediment yields over the entire hillslope surface. Two hillslope soil erosion experiments under simulated rainfall events were carried out. Cumulative runoff and sediment yields were measured, respectively. Then, the CA model was applied to simulate the water and soil erosion for these two experiments. Analysis of simulation results indicated that the size of the spatial cell, hydraulic parameters, and the setting of time step and iteration times had a large impact on the model accuracy. The comparison of the simulated and measured data suggested that the CA model was an applicable alternate for simulating the hillslope water flow and soil erosion.  相似文献   

4.
不同土壤管理措施下基于水蚀过程的含沙量变异及其驱动   总被引:2,自引:0,他引:2  
In order to prevent soil erosion in southern China, a study was performed to determine the drivers of sediment concentration variation using simulated rainfall and four soil management systems under field condition. Four soil management systems, i. e., forest and grass coverage (FG), forest coverage with disturbed soil surface (FD), contour tillage (CT) and downslope tillage (DT), were exposed to two rainfall intensities (40 and 54 mm h-1) using a portable rainfall simulator. The drivers of sediment concentration variation were determined by the variations of runoff rate and sediment concentration as well as their relationships. The effects of the four soil management systems in preventing water and soil losses were compared using runoff rates and sediment concentrations at steady state. At runoff initial stage, sediment concentration variation was mainly driven by rainfall and management. The degree of sediment concentration variation driven by flow varied with different soil management systems. Three best relationships between runoff rate and sediment concentration were identified, i. e., reciprocal (CT), quadratic (FG and FD) and exponential (DT). At steady state, runoff rates of the four soil management systems varied slightly, whereas their sediment concentrations varied greatly. FG and CT were recommended as the best soil management systems for preventing water and soil losses.  相似文献   

5.
《土壤圈》2016,(2)
The Loess Plateau,which is located in the arid and semi-arid areas of China,experiences significant soil erosion due to intense human activities and soil erodibility.It is necessary to explore and identify the land-use types or land-use patterns that can control soil erosion and achieve certain agricultural production capabilities.This study established runoff plots with two slope gradients(5°and 15°) in north of Yan'an,one area of the Loess Plateau,with 3 single land-use types(cultivated land,CL;switchgrass,SG;and abandoned land,AL) and 2 composite land-use types(CL-SG and CL-AL).Prom 2006 to 2012,we continuously monitored the rainfall characteristics,runoff depth,soil loss,vegetation coverage,and soil physical properties.The results indicated a general trend in the number of runoff and soil loss events for the 5 land-use types:CL = CL-SG CL-AL SG AL.The general trend for runoff depth,soil loss,their magnitudes of variation,and the slopes of rainfall-runoff regression equation was CL CL-SG CL-AL SG AL,whereas the rainfall threshold for runoff generation exhibited the opposite trend.Results of nonparametric test regarding runoff depth/EI_(30) and soil loss/EI_(30),where EI_(30) is the product of rainfall kinetic energy and the maximum rainfall intensity over 30 min,and the runoff depth-soil loss relationship regression indicated that the effect of CL-AL was similar to that of SG;SG was similar to AL;and CL-AL,SG,and AL were superior to CL with regard to soil and water conservation.Runoff depth and soil loss significantly increased as the slope gradient increased.Runoff depth and soil loss were significantly correlated with the soil particle size composition and bulk density,respectively.The strongest significant correlations were found between runoff depth and vegetation coverage as well as between soil loss and vegetation coverage,which showed that vegetation coverage was the primary factor controlling soil erosion.Therefore,the composite land-use type CL-AL and the artificial grassland(SG) are appropriate options because both soil conservation and a certain degree of agricultural production are necessary in the study area.  相似文献   

6.
中国云南滇池流域农田径流磷污染负荷影响因素研究   总被引:10,自引:1,他引:10  
Effects of factors such as slope, surface soil texture, fertilization and crop cover with different rainfall intensities on phosphorus (P) losses in farmland runoff of the Dianchi Lake Watershed in Yunnan Province of China were studied through a rainfall simulation test using a red soil, one of the most widely distributed soils of the study area. Results showed that the runoff concentrations of total phosphorus (TP) and P losses differed with the slope, being highest when the slope was 18°. At two different rainfall intensities, the runoff TP and P losses had a similar decreasing trend as the surface soil texture became coarser, therefore applying the grit would decrease P in runoff from soils of farmland on slopes with heavier textures. With wheat as a crop cover the runoff TP concentrations and P losses were significantly lower than those of the bare soil. This showed that plant cover would greatly decrease P in runoff from the farmland of the study area. The TP concentration in runoff from the soil two days after fertilization doubled when compared with that from the non-fertilized soil, indicating that fertilization could mean a dramatic rise in P runoff if irrigation or heavy rainfall occurred immediately after application and that no fertilization before a rain and no irrigation immediately after fertilization would reduce runoff P loss from the farmland of the study area.  相似文献   

7.
大型蒸渗仪和径流小区中红壤的水量平衡   总被引:1,自引:0,他引:1  
The daily soil water budgets in the red soil areas of central Jiangxi Province, southern China, were investigated with a large-scale weighing lysimeter and runoff plots. From 1998 to 2000, peanuts (Arachis hypogaea L.) and rape (Brassica napus L.) were planted in the lysimeter and in 1999, peanuts were planted in the runoff plots. The soil water budget components including rainfall, runoff, percolation and evapotranspiration were measured directly or calculated by Richards' equation and water balance equation. The results showed that most rainfall, including rainstorms, occurred from March to July, and induced the greatest soil water percolation during the year. The evapotranspiration was still large from July to September when rainfall was minimal. Thus, the lack of synchronization in soil water inputs and losses was disadvantageous to crops growing in this region. Among the soil water losses, percolation was the largest, followed by evapotranspiration, and then soil runoff. Runoff was very small on farmland with crops. It was significantly different from the uncultivated uplands where large-scale runoff was usually reported. The soil water storage fluctuated sinusoidally, with a large amplitude in the rainy season and a small amplitude in the dry season.  相似文献   

8.
Vegetation and rainfall are two important factors affecting soil erosion and thus resulting in nutrient loss in the Chinese Loess Plateau.A field experiment was conducted to investigate the effects of rainfall intensities(60,100 and 140 mm h-1) and vegetation(Caragana korshinskii) coverages(0%,30% and 80%) on soil loss,nutrient loss,and the composition and volume fractal dimension of eroded sediment particles under simulated rainfall conditions.The results showed that vegetation cover,rainfall intensity and their interaction all had significant effects on sediment transport and the sedimentbound nutrient loss.Higher rainfall intensity and lower coverage led to higher sediment and nutrient losses.Positive linear relationships were observed between soil loss and nutrient loss.The treatments showed more significant effects on the enrichment ratio(ER) of nitrogen(ERN) than organic matter(EROM) and phosphorus(ERP).Compared with the original surface soil,the eroded sediment contained more fine particles.Under the same coverage,the clay content significantly decreased with increasing rainfall intensity.The ER of sediment-bound nutrients was positively correlated with that of clay,suggesting that the clay fraction was preferentially eroded and soil nutrients were mainly adsorbed onto or contained within this fraction.There were increments in the fractal dimension of the sediment particles compared to that of the original surface soil.Moreover,the fractal dimension was positively correlated with clay,silt,and sediment-bound OM,N,and P contents,whereas it was negatively correlated with sand content.This study demonstrated that fractal dimension analysis can be used to characterize differences in particle-size distribution and nutrient loss associated with soil erosion.  相似文献   

9.
中国亚热带地区土地利用和磷释放的数量关系   总被引:10,自引:0,他引:10  
The increase of phosphorus concentration is a crucial factor causing the eutrophication of water body.while land use has an important impact on agricultural non-point sources(NPS) phosphorus discharge,Seven sites controlling the water in four sub-watersheds and the main exit of the Meicun Watershed of Xuancheng County,Anhui Provinec,were investigated by dynamic monitoring of stream water and nutrient discharge,integrating interpretation of areial image and GIS analysis to find out how the land use affects phosphorus loss with stream water in typical agriculture-forest watershed in subtropica China.These monitored sites are different in structure of typical agriculture-forest watershed in subtropical China.These monitored sitess are different in structure of land use,Phosphorus concentration of the stream water was analyzed every week and at the next day of rainfall,The velocity of flow was measured by kinemometer to calculate the runoff flux and phosphorus discharge.The results showed that the runoff flux and the discharges of dissolved phosphorus(DP),particle-associated phosphorus(PAP) and total phosphorus(TP) had significant exponential relationships with the area percentages of forest,pond and paddy field.There existed a significant exponential relationships with the area percentages of forest,pond and paddy field.There existed a significant linear relationship between the TP and PAP concentrations in stream water and the area percentages of forest,pond and paddy field,and the discharge of PAP was also significantly linearly correlated with the discharge of suspended soil particles.There was a logarithmic linear relationship between DP and PAP discharges,The study indicated that the adjustment of land used patterns and construction of ecologically sound aldnscape would be an important measure to reduce the runoff discharge of phosphorus,The results would be very useful in building the best management practices(BMPs) of agricultural watershed in subtropics.  相似文献   

10.
Soil erosion affects soil productivity and environmental quality.A laboratory research experiment under simulated heavy rainfall with tap water was conducted to investigate the effects of anionic polyacrylamide(PAM) application rates(0,0.5,1.0,and 2.0 g m-2) and molecular weights(12 and 18 Mg mol-1) on runoff,soil erosion,and soil nutrient loss at a slope of 5°.The results showed the two lower rates of PAM application decreased runoff while the highest rate increased runoff as compared with the control.Sediment concentration and soil mass loss increased significantly with the increasing PAM application rate.Compared with the control,PAM application decreased K+,NH4+,and NO3-concentrations in sediment and K+ and NH+4 concentrations in runoff,but significantly increased the mass losses of K+,NH4+,and NO-3 over soil surface except for the NH4+ at PAM application rate lower than 1.0 g m-2.PAM application decreased the proportion of K+ loss with runoff to its total mass loss over soil surface from 60.1% to 16.4%.However,it did not affect the NH4+ and NO3-losses with runoff,and more than 86% of them were lost with runoff.A higher PAM molecular weight resulted in less soil erosion and K+ mass loss but had little effect on runoff and NH+4 and NO3-losses.PAM application did not prevent soil erosion and the mass losses of K+ and NO3-under experimental conditions.  相似文献   

11.
雨强和坡度对黄土坡面土壤侵蚀及氮磷流失的影响   总被引:10,自引:6,他引:4  
采用人工模拟降雨的手段,在2种雨强(50,75mm/h)、4种坡度(5°,10°,15°,20°)条件下,研究了雨强和坡度对黄土坡面土壤侵蚀和养分流失的影响。结果表明:(1)降雨强度从50mm/h增大到75mm/h,相同坡度的坡面开始产流时间提前了2.75~4.79min。(2)随着雨强的增大,同一坡度的坡面径流量增加了12.53~15.80mm/m2,增加幅度为1.24~1.31倍;同一坡度的坡面产沙量增加了0.47~3.61kg/m2,增加幅度为0.77~2.90倍。坡面侵蚀过程中,存在临界坡度,为15°左右。(3)氮素流失以径流流失为主,泥沙中总氮的流失量较低,仅占径流总氮流失量的1.4%~9.7%。坡度较小时,磷素流失途径以径流流失为主,随着坡度的增加,磷素的流失途径以泥沙流失为主。(4)径流总氮流失浓度与径流强度呈线性正相关,泥沙总氮和总磷流失浓度与产沙率也分别呈显著的线性正相关。  相似文献   

12.
坡度与种植方式对紫色土侵蚀与养分流失的影响研究   总被引:5,自引:0,他引:5  
在涪陵区水土保持监测分站内建立6个径流小区,对紫色土坡耕地水土流失进行试验监测,结果表明:各小区径流量、产沙量总体随降雨量的增大而增大.自然生态修复措施防治水土流失效果显著,3.66 m3的径流量仅有0.41 kg·m3的产沙量,可有效防治紫色土坡耕地的水土流失.采用顺坡耕作措施的小区径流量与降雨量达显著正相关,而产沙量与降雨量未显著相关.径流量和产沙量大小顺序均为25°坡耕地>20°坡耕地>10°坡耕地>15°坡耕地,在15°耕地上径流量与产沙量均为最小,但15°是否是涪陵区最适宜的耕地坡度,仍有待今后收集更多的降雨资料加以分析说明.对一次强降雨进行养分流失观测,养分流失量与径流量及产沙量大小顺序基本一致.开发建设项目弃土弃渣监测点径流量与产沙量均大大高于其他小区,说明开发建设水土保持项目中防治水土流失的重要性.  相似文献   

13.
为揭示不同耕作措施对岩溶地区坡耕地产流产沙的影响,采用独立设计土槽、室内人工模拟降雨的方法,通过设定一定雨强下研究不同耕作措施对西南岩溶区裸坡耕地径流与土壤流失特征。结果表明:雨强为63mm/h,坡度小于10°时,翻耕措施能够加快地下孔隙的产流时间,而免耕能够滞缓其产流,翻耕的产沙量为免耕的66%;当坡度大于10°时,翻耕措施能够延缓地下孔隙的产流时间,而免耕则加速其产流,翻耕的产沙量分别为免耕的16%和6%。雨强为100mm/h,坡度小于10°时,随着坡度的增大,翻耕措施会加速地下孔隙流的汇流过程,免耕的产沙量是翻耕的41%;坡度大于10°时,翻耕措施能延缓地表径流的汇流过程,且翻耕的产沙量为免耕的68%和0.9%。同一坡度和雨强下,翻耕措施较免耕措施可减少土壤随径流流失。  相似文献   

14.
人工降雨条件下耕翻面积对水土流失的影响   总被引:1,自引:0,他引:1  
[目的]探讨耕翻面积对水土流失的影响,为黄土高原地区农田水土流失防治提供依据。[方法]通过人工模拟降雨试验,研究了3种坡度下不同耕翻面积的产流和产沙特性。[结果]耕地的产流和产沙特征除了与坡度、雨强以及土壤前期含水量等因素有关外,还与耕翻面积有密切关系。坡度相同时,随耕翻面积的增加初始产流逐渐延后;耕翻面积相同时,随着坡度的增大径流量有增大的趋势,在坡度15°的情况下,耕翻50%时径流量最大。相同坡度下,随耕翻面积的增加,产沙量呈持续上升趋势;坡度为10°时,耕翻面积对产沙量的影响表现最为明显,翻耕的产沙量平均为不耕翻的8.66倍。15°坡度下径流量对累积产沙量的影响最显著。不同耕翻面积下的产流率在产流开始后10min左右趋于稳定。在不同坡度下全耕的产沙率均最大,不耕翻的最小。[结论]随着耕翻面积逐渐增大,初始产流时间逐渐延后,径流量逐渐减小,产沙量逐渐增大。  相似文献   

15.
不同雨强及坡度对华南红壤侵蚀过程的影响   总被引:7,自引:3,他引:4  
[目的]研究不同雨强及坡度对华南红壤侵蚀过程的影响,为认识红壤侵蚀过程和水土流失防治提供科学依据。[方法]通过人工模拟降雨试验,研究了不同降雨强度、不同坡度对华南红壤坡面降雨产流过程和侵蚀产沙过程的影响。[结果](1)相同坡度条件下,坡面径流量、侵蚀产沙量均随着雨强的增大而线性增大;相同雨强下,径流量随坡度的增加而减小,而产沙量随着坡度的变化比较复杂;(2)雨强和坡度共同影响着坡面产沙过程,当雨强小于等于180mm/h时,产沙量随坡度的增加而增大,在240mm/h出时呈现先增加后减小的趋势,在15°附近出现临界坡度。在降雨初期,径流率表现为波动增加过程,15min后趋于平稳,一直持续到降雨结束,其中雨强为240,180mm/h时波动较为剧烈,而产沙率呈现急剧而短暂的上升后迅速下降,在大雨强、陡斜坡条件下此现象尤为明显;(3)坡面径流平均流速与单宽流量、坡度比存在显著的幂函数关系,流速与径流量、侵蚀产沙量有着类似的变化规律。[结论]红壤侵蚀过程中雨强为主要影响因素,坡面流速可作为表征红壤坡面侵蚀特征的重要因子。  相似文献   

16.
为弄清干旱河谷区横垄坡面水土流失特征及水保效益,采用野外调查与室内人工模拟降雨相结合的方法,以坡耕地平作坡面为对照,开展了4种降雨强度(30,60,90,120 mm/h)和4种坡度(10°,15°,20°,25°)条件下横垄坡面产流产沙特征及减流减沙效益。结果表明:(1)横垄坡面产流时间随降雨强度和坡度的增大而提前,且受坡度影响远小于降雨强度;同等条件下,横垄坡面产流时间滞后平作坡面8.14%~55.60%。(2)随着降雨强度和坡度的增大,横垄坡面产流率和产沙率均表现为增加趋势。(3)坡度与横垄坡面减流减沙效益随降雨强度的增大由正相关关系转变为负相关关系,而降雨强度与横垄坡面减流减沙效益关系复杂,无明显变化规律。降雨强度和坡度对横垄坡面产流产沙过程和减流减沙效益有重要影响,横垄坡面能够延长坡面径流形成时间,有效减少坡面产沙率,但横垄坡面减流减沙作用存在临界条件。研究结果可为区域坡耕地横垄措施合理布设和水土流失有效防控提供数据支撑和理论依据。  相似文献   

17.
[目的]研究黄土坡面草被覆盖对拦蓄水沙及调控养分的作用,为黄土坡面治理提供科学依据。[方法]通过模拟降雨试验,收集降雨过程中坡面的径流泥沙样品,采用数据对比与统计分析相结合的方法,分析在不同草被覆盖条件下坡面径流泥沙以及养分磷流失过程,探讨草被覆盖率和草被格局对坡面泥沙及养分流失的调控作用。[结果]随着降雨历时的增加,径流呈平稳增长过程,泥沙、径流总磷、泥沙速效磷均呈波动变化过程;25%,50%,75%覆盖率坡面径流总磷和泥沙速效磷分别为裸坡流失量的66%,85%,80%和62%,47%,21%;草被格局对水沙养分调控作用的差异性表现为:泥沙径流泥沙速效磷径流总磷。[结论]草被对径流总磷的调控作用不强,对泥沙速效磷的调控作用显著;草被格局对径流和径流总磷的调控作用有限,对泥沙与泥沙速效磷的调控作用显著。  相似文献   

18.
密云水库上游流域次降雨坡面产流产沙特征   总被引:4,自引:2,他引:4  
以北京市密云县石匣小流域为研究区,利用2006-2010年连续5 a的坡面径流试验小区观测资料,运用统计方法,分析了密云水库上游流域的降雨、产流产沙特征以及在不同土地利用和不同坡度条件下,降雨量、降雨强度与产流、产沙之间的关系。结果表明:1)该研究区域水土保持治理措施实施的关键时间为每年的7、8月份,当降雨量大于10 mm时,应注意采取水土保持措施;2)在裸地、耕地和林地条件下,高雨量、中雨强型降雨为导致产流、产沙的主要雨型,在草地条件下,中雨量、高雨强型降雨为导致产流、产沙的主要雨型;3)中雨量高雨强型降雨条件下,林地的减流效益最好,低雨量低雨强型降雨和高雨量中雨强型降雨条件下,耕地的减流效益相对较低,草地和林地的减流效益差异不大;在3种不同雨型条件下,耕地、草地和林地的减沙效益差别不大;4)裸地条件下,降雨量与产流量间的关系更为密切,尤其在14.4°坡面下相关性最高;耕地条件下,产流量与降雨量的相关性较好,产沙量则与降雨强度的相关性较好,11.4°的坡面产流量、产沙量与降雨因子间的相关系数最高;草地条件下,降雨强度与产流量间的关系较为密切;林地条件下,产流量、产沙量与降雨因子间的相关性均不显著。研究结果可为密云水库上游水土保持措施及农业面源污染管理措施的科学实施提供依据。  相似文献   

19.
淮北平原黄潮土多雨强变坡度产流产沙规律试验模拟   总被引:1,自引:0,他引:1  
针对淮北平原黄潮土水土流失严重的问题,为揭示其产流产沙规律,利用五道沟水文实验站大型人工模拟降雨径流试验场,开展了40,60,80mm/h 3个雨强及5°,10°,15°3个坡度产流产沙规律试验模拟。结果表明:坡面初始产流时间随坡度、雨强的增大而缩短,雨强、坡度越大缩短越不明显;单位时间产流、产沙量随降雨时间变化的转折点在产流后6~15min,单位时间产流量随降雨时间变化表现为前期快速增加,中期缓慢增加,后期平稳,其中40,60mm/h雨强单位时间产流量随坡度增加而减小,80mm/h雨强随坡度的增加而增加;单位时间产沙量随雨强、坡度的增大而增大;不同坡度累计产沙量及产流量随降雨时间变化呈幂函数或线性函数关系(R20.99);坡度及雨强与坡面产流、产沙总量分别呈多元线性和多元幂函数关系。  相似文献   

20.
ABSTRACT

Soil erosion and rainfall-induced runoff are well studied yet remain somewhat unpredictable from one natural rainfall to the next, due to interactions between erosion parameters. This study quantified the relationship between annual (2011–2016) and individual (2016) rain events with overland flow (runoff) and soil loss in China’s northern ‘corn-belt’. Two tillage practices and slopes were evaluated (no-till and conventional till, 5° and 7° slopes). Results showed 54 rainfall events for a total of 394 mm precipitation ranging between May and October 2016. Runoff occurred 13 times in the conventional till with 7° slope, accounting for 25.9% of the precipitation volume and caused 15.6 t ha?1 erosion. It occurred twice in the no-till with 5° slope plot and caused 0.2 t ha?1 erosion., Thus the no-till with 5° slope treatment is the best tillage system to protect soil in Mollisols in Northeast China. Broad analysis coupled with a detail review of three rainfall events demonstrates that water either runs off plots quickly or rapidly infiltrates while sediment moves in a pulsing manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号