首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Two 160-d feedlot experiments, each consisting of 20 Angus-Hereford steers (216 +/- 5 kg BW, Exp. 1; 258 +/- 5 kg BW, Exp. 2) and 20 Angus-Hereford heifers (208 +/- 5 kg BW, Exp. 1; 236 +/- 5 kg BW, Exp. 2), were used to investigate the effects of supplementing diets with either roasted soybeans (RSB, roasted at 127 degrees C for 10 min) or soybean meal (SBM) and implanting or not implanting with an estrogenic growth promoter (SYN; Synovex-S, 20 mg of estradiol benzoate plus 200 mg of progesterone or Synovex-H, 20 mg of estradiol benzoate plus 200 mg of testosterone) on performance. The cattle were fed a basal diet of 15% orchardgrass silage, 15% corn silage, and 70% corn-based concentrate. Treatments were 1) no SYN and fed a SBM-supplemented diet, 2) no SYN and fed a RSB-supplemented diet, 3) SYN and SBM, and 4) SYN and RSB. Cattle in the SYN groups were reimplanted at 80 d. Four additional Angus-Hereford steers were used in a digestion and nitrogen balance experiment conducted during the first half of Exp. 1. For the total 160-d feedlot experiments, DMI for RSB compared with SBM was lower (P < .01; 8.5 vs 9.2 kg/d, SEM = .07) and ADG/DMI tended to be higher (P < .10; 165 vs 157 g/kg, SEM = 1.3). Final BW of steers fed RSB was similar (P > .10) to that of steers fed SBM (473 vs 478 kg, SEM = 5.6), as was ADG (1.39 vs 1.43 kg/d, SEM = .02). Dry matter intake for SYN-implanted steers was higher (P < .01) than for steers not implanted (9.2 vs 8.5 kg/d). Likewise, final BW (491 vs 460 kg) and ADG (1.49 vs 1.33 kg/d) were higher (P < .01), and ADG/DMI (166 vs 157 g/kg) tended to be higher (P < .10), for SYN-implanted steers than for steers not implanted. During the more rapid muscle growth period (0 to 80 d), DMI for RSB compared with SBM was lower (P < .01; 7.8 vs 8.6 kg/d, SEM = .07) and ADG/DMI was similar (P > .10; 181 vs 172 g/kg, SEM = 1.8). Dry matter intake for SYN-implanted steers was higher (P < .05) than for steers not implanted (8.4 vs 8.0 kg/d), as was ADG/DMI (P < .01, 182 vs 171 g/kg). During this more rapid growth period, the supplement x implant interaction for ADG was significant (P < .05; 1.35, 1.36, 1.59, and 1.44 kg/d for Treatments 1, 2, 3, and 4, respectively, SEM = .04). There were no differences in digestibilities or N balance. The results suggest that there is no improvement in performance under feedlot conditions when RSB replaces SBM in the diet of beef cattle, and, in young cattle, RSB may reduce the response expected by an estrogenic growth promoter.  相似文献   

2.
The separate and combined effects of Synovex-S (SYN) ear implants and thyroxine (T4)-5'-monodeiodinase inhibition (Trial 1) and T3 injection to create a mild elevation in circulating T3 concentrations (Trial 2) on BW gain and composition of gain were studied. Trial 1 used 24, 285-kg Angus steers in two experimental phases. Low-level feeding of propylthiouracil (PTU, 1.5 mg/kg BW daily) was used to achieve inhibition of T4-5'-monodeiodinase activity (TMA). Twelve steers received neither treatment (control) and 12 received SYN+PTU (hypothesized to maximize weight gain) from 0 to 56 d (phase 1) in a single factor treatment comparison. Subsequently, PTU was fed to six control steers and not fed to six of the original SYN+PTU steers from 56 to 175 d (phase 2) in a 2 x 2 arrangement of treatments. Trial 2 used 24, 302-kg Angus-Hereford steers. Treatments were without or with SYN and without or with sc injections of T3 in polyethylene glycol (2 micrograms/kg BW every 48 hr) in a 2 x 2 factorial arrangement of treatments. In both trials, all steers were individually fed a diet of a corn-based concentrate and silage mixture at an equal metabolizable energy intakes per unit of metabolic body weight (.25 Mcal/kg BW.75). Measurements of daily dry matter intakes, weekly BW, 28-d estimates of empty body components (measured by urea dilution), final TMA (trial 1) and plasma thyroid hormone concentrations were obtained. In both trials, SYN increased BW gain and protein accretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effects of diethylstilbestrol (DES, 10 mg/d orally, Trial 1) or Synovex-S (SYN, 220 mg ear implant, Trial 2) on gain and N balance (g/d) were determined in steers that consumed 1.3, 2.7, 4.4 and 7.4 kg DM/d (Trial 1) and 1.3, 2.9, 4.3 and 6.6 kg DM/d (Trial 2). Each trial was a replicated 4 x 4 Latin square with four pairs of steers per trial (BW:322 kg, Trial 1; 278 kg Trial 2) and a control and growth promoter steer in each pair. Steers were fed a pelleted 75% concentrate diet containing 16.7% (DM basis). Each period consisted of 1 wk of intake adaptation, 5 wk of feeding and 1 wk in metabolism crates (2-d adjustment and 5-d collection). Steers were switched among DMI but not among promoter treatments. Intercept and slope, respectively, for the regression of BW gain (kg/d) on DMI (kg/d) were -.66 and .276 for control vs -.84 and .328 for DES steers and -.69 and .276 for control vs -.89 and .356 for SYN steers. Similar regression values for N balance (g/d) on DMI (kg/d) were -10.3 and 6.91 for control vs -17.2 and 9.10 for DES steers and -4.5 and 4.67 for control vs -7.6 and 5.85 for SYN steers. Across trials, slopes differed from zero (P less than .01), and promoter slopes differed from controls for gain (P less than .01) and N balance (P less than .10). During an extra period at the end of each trial, all steers were fed the high intake level for 6 wk, followed by N balance determinations the last 3 d of a 7-d fast.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We investigated the influence of DM and(or) energy intake and dietary CP levels on the performance and nitrogen (N) retention of beef steers with and without growth promoter implants. In Exp. 1, four implanted (Synovex-S, 200 mg of progesterone plus 20 mg of estradiol benzoate) Angus steers and four Angus steers that were not implanted were assigned to concurrent 4 x 4 Latin squares. Initial BW averaged 296 kg. Each square consisted of moderate and moderately high DM intake treatments (4 and 6 kg/d) and low and adequate CP intake treatments (450 and 600 g/d) in a 2 x 2 factorial arrangement. Periods were 2 wk of adaptation, 5 wk of growth, and 1 wk of balance collection. Experiment 2 consisted of two replicates of 32 Hereford steers each (initial BW 324 kg). Each replicate was a 4 x 2 factorial in which steers were individually fed for 63 d. All steers had ad libitum access to a 60% corn-based concentrate diet containing either 7.9, 10.0, 12.1, or 14.6% CP (DM basis), and steers were either implanted or not implanted with Synovex-S. Experiment 3 was similar to Exp. 2 except that all steers (initial BW 315 kg) received a low-protein diet (7.6% CP) with calculated energy densities of either 1.86, 2.04, 2.22, or 2.42 Mcal ME/kg DM, and steers were limited to an equalized DM intake of 9.5 kg daily. In Exp. 1, gains for the low CP, moderate and moderately high DM intakes and the adequate CP, moderate and moderately high DM intakes were 240, 555, 208, and 730 g/d, respectively, for steers not implanted and 333, 643, 488, and 988 g/d, respectively, for implanted steers (SEM = 102 g/d). Respective values for retained N were .13, .18, .16, and .26 g/kg BW.75 and .13, .15, .22, and .29 g/kg BW.75 (SEM = .04 g/kg BW.75). Implant response was greater (CP x implant, P < .01) for both gain and retained N when adequate CP compared to low CP diets were fed. For Exp. 2, the lowest CP diet reduced ADG (.97 vs 1.27 kg/d) and efficiency of gain (100 vs 120 g gain/kg DM). Synovex-S was less effective in improving efficiency for the lowest protein diet than for the other diets (11.7 vs 20.2%). During Exp. 3, neither Synovex-S nor dietary energy influenced gain and efficiency. We concluded that adequate dietary protein is necessary to optimize the response to estrogenic growth promoters and that the low response under inadequate protein and energy intake is not improved by increasing the energy density of the diet.  相似文献   

5.
The purpose of this experiment was to evaluate the effects of energy intake, implantation, and fat end point on feedlot performance and carcass composition of steers. Three hundred eighty-four yearling crossbred steers (368 +/- 23.1 kg) were allotted in a completely randomized design. Treatments were arranged in a 2 x 3 x 2 factorial experiment. Main effect factors were two levels of intake, three implant strategies, and two compositional fat end points at slaughter. The levels of intake were ad libitum (AL) and restricted (RS) intake (90% ad libitum). The three implant strategies were Revalor-S (REV) (120 mg trenbolone acetate, 24 mg estradiol), Synovex-Plus (SYN) (200 mg trenbolone acetate, 28 mg estradiol benzoate), and no implant (control). The compositional target end points were 1.0 and 1.4 cm s.c. fat cover over the 12th and 13th rib. Restricted-intake steers consumed 9.2% less (P < .01) DM than AL steers. Ad libitum-intake steers gained weight 15.5% more rapidly (P < .01) than RS-intake steers. Steers implanted with REV tended (P < .07) to gain faster than SYN steers, who in turn gained 15.2% more (P < .01) than control steers. Ad libitum-intake steers were 4.8% more (P < .01) efficient than RS steers. Steers fed to a targeted 1.4 cm s.c. backfat cover were 2.9% less (P < .05) efficient than steers fed to 1.0 cm, and steers implanted with either REV or SYN had similar (P = .47) feed efficiencies, whereas control steers had lower (P < .01) feed efficiencies. Steers fed to a targeted compositional fat end point of 1.4 cm had 1.3% higher (P < .01) dressing percentage (DP) than steers fed to 1.0 cm. Control and SYN steers had similar (P = .13) DP; however, REV steers had 6.1% greater (P < .01) DP than SYN steers. Steers fed to 1.4 cm s.c. fat end point had higher (P < .01) numerical yield grades than steers fed to 1.0 cm (3.34 vs 2.71). There was an interaction (P < .01) for intake level and implant for marbling score. Marbling scores were lower (P < .05) for RS x SYN and AL x REV than in other treatments. Steers on the RS x REV treatment were intermediate in marbling to all treatments except AL control, which was higher (P < .01) than RS x SYN, AL x REV, and RS x REV. No interaction for dry matter intake level and anabolic implants was observed for growth performance. The depression in carcass quality resulting from implanting is reduced as backfat increases from 1.0 to 1.4 cm at slaughter.  相似文献   

6.
In each of two experiments, 70 crossbred steers were blocked by BW and assigned to initial slaughter groups or to treatments in a 2 x 2 design. In Exp. 1, treatments were 168 d of photoperiod (8 h of light [L]:16 h of dark [D] or 16L:8D) and plane of nutrition (high energy [HPN] or low energy [LPN]). On d -22, 67 and 155, blood was sampled every 20 min for 8 h. Relative to LPN, HPN increased (P less than .01) ADG by 28%, carcass weight by 26% and accretion of carcass fat by 109% and carcass protein by 20%. On d 155, compared with LPN, HPN increased (P less than .01) serum insulin (INS; 1.09 vs .64 ng/ml) and lowered (P less than .05) growth hormone (GH; 2.14 vs 3.70 ng/ml), but prolactin was not affected. Photoperiod did not affect BW gains, carcass composition or serum hormones. In Exp. 2, treatments were 113 d of photoperiod (8L:16D or 16L:8D) and Synovex-S implant (presence [IMP] or absence [NONIMP]). On d 93, blood was sampled every 30 min for 10 h. Relative to NONIMP, IMP increased (P less than .01) ADG by 12% and accretion of carcass protein by 16%. Implants did not affect carcass weight or accretion of fat. Compared with NONIMP, IMP increased (P less than .05) GH (3.16 vs 2.39 ng/ml) and INS (.68 vs .46 ng/ml) but did not affect PRL. Photoperiod did not affect BW gain, carcass composition or serum hormones. We conclude that photoperiod fails to influence growth and carcass composition of steers.  相似文献   

7.
Beef steer carcasses from three 2 x 2 factorial feeding experiments (Exp. 1, 20 carcasses; Exp. 2 and 3, 19 carcasses each) were evaluated to study the influence of supplementing with roasted soybeans (RSB; 127 degrees C for 10 min) vs soybean meal (SBM) and implanting with the estrogenic growth promoter Synovex-S (SYN, 20 mg estradiol benzoate and 200 mg progesterone) on carcass merit, composition of dissected 9-10-11th rib section, estimated edible carcass composition, and cooking characteristics of strip loin steaks. In all experiments, steers were fed diets consisting of 15% corn silage, 15% orchardgrass silage, and 70% corn-based concentrate. There were no treatment interactions found in this study. Final BW averaged 480.4, 498.5, and 500.7 kg for Exp. 1, 2, and 3, respectively, and hot carcass weights averaged 288.4, 296.4, and 309.1 kg. Across experiments, hot carcass weight was 8.3 kg less (P < .03) for RSB steers than for SBM steers. Fat weight (P < .01) and percentage of fat (P < .01) were less and percentage of bone (P < .04) was greater in the 9-10-11th rib section of RSB steers than of SBM steers. Estimated percentage of fat (P < .02) was less and percentage of bone (P < .04) was greater in edible carcass of RSB steers than in that of SBM steers. Total 9-10-11th rib section weight tended to be less for RSB steers (P < .08) than for SBM steers. Carcass merit measurements were not affected (P > .10) by supplement, but numerically the percentage of kidney, pelvic, and heart fat was 11% greater for RSB steers than for SBM steers in Exp. 2 and 3. Final BW and carcass weight were 38.7 and 22.6 kg greater (P < .01), respectively, for SYN-implanted steers than for steers not implanted. Longissimus muscle area was greater (P < .01), percentage of kidney, pelvic, and heart fat (P < .02) was less, USDA quality grade tended to be less (P < .09), and shear force of strip loin was greater (P < .01) for SYN-implanted steers than for steers not implanted. The 9-10-11th rib section and estimated carcass compositions were not different (P > .10) between SYN-implanted steers and steers not implanted but reflected a somewhat leaner carcass. The authors conclude from this study that in feedlot steers, either implanted or not implanted, there is no benefit from supplementing with RSB in place of SBM, and that the use of RSB in place of SBM in feedlot diets may reduce the amount of edible carcass.  相似文献   

8.
To compare the effects of time of daily protein supplementation on grazing behavior, forage intake, digesta kinetics, ruminal fermentation, and serum hormones and metabolites, 12 ruminally cannulated Holstein steers (449 and 378 kg average initial and final BW, respectively) were allotted to three groups. Treatments consisted of CON = no supplement, AM = cottonseed meal (.25% of BW) at 0600, and PM = cottonseed meal (.25% of BW) at 1200. Steers grazed a dormant (1.1% N) intermediate wheatgrass (Thinopyrum intermedium Host) pasture. Sampling trials occurred in December, January, and February. Supplementation altered (P = .01) time spent grazing; CON steers grazed approximately 1.5 h longer than supplemented steers. Supplemented steers lost less (P = .02) BW (-40 kg) than CON steers (-75 kg) did. Supplementation did not alter (P greater than .15) forage OM intake; however, total OM intake was greater (P = .01) for supplemented steers (22.3 g/kg of BW) than for CON (18.4 g/kg of BW) steers. Supplementation did not affect (P greater than .15) digesta kinetics. Extent of in situ NDF (96 h) and rate (%/h) of disappearance for supplemented steers was greater (P = .01) than for CON steers. Across all periods, ruminal NH3 N and total VFA concentrations were lower (P = .01) for CON steers than for supplemented steers. Serum insulin (ng/mL) concentration was lower (P = .03) and concentration of serum growth hormone (ng/mL) was higher (P = .02) for CON steers than for supplemented steers. Cottonseed meal supplementation enhanced utilization of intermediate wheatgrass; however, supplementation time had minimal effects on the variables measured.  相似文献   

9.
The effects of anabolic implants on rate, composition and energetic efficiency of growth were determined in steers fed diets varying in forage and grain content. Santa Gertrudis-cross steers averaging 337 kg were group-fed (n = 72) or individually fed (n = 45) ad libitum one of three diets and either not implanted or implanted (90-d intervals) with Ralgro or Synovex-S implants. Steers were fed to a similar empty body weight (463 kg). Initial empty body composition of individually fed steers was determined via D2O dilution, and final composition of all steers was determined by carcass specific gravity. Rate of empty body gain increased (P less than .05) from 695 g/d for nonimplanted steers to 798 and 844 g/d for Ralgro- and Synovex-implanted steers. Anabolic implants increased (P less than .01) daily empty body protein gain from 91 to 119 and 133 g for Ralgro and Synovex, an increase of 31 and 46%, respectively. The fraction of protein in empty body gain increased (P less than .01) from 13.8% to 15.6 and 15.9%, and the percentage of fat in empty body gain decreased (P less than .01) from 41.7% to 32.9 and 31.3% with Ralgro and Synovex, respectively. Daily rates of protein deposition increased at a decreasing rate, and rates of fat deposition increased at an increasing rate with increasing rate of empty body gain. Implanted steers deposited more protein and less fat at any rate of growth; the magnitude of this shift in nutrient partitioning from fat to protein growth increased with rate of growth.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ten multicatherized steers were used in a completely random design to determine the effect of previous BW gain on blood flow, acid-base balance, and oxygen consumption across portal-drained viscera and liver of growing beef steers fed a high-grain diet. Treatments were high (1.31 +/- 0.09 kg/d) or low (0.68 +/- 0.07 kg/d) daily BW gain during an 82-d winter wheat pasture grazing period and a subsequent 37-d transition period. Blood flow, blood gas measurements, and oxygen consumption were determined on d 0, 14, 28, 42, and 64 of a high-grain finishing period. Compensatory growth was evident in low-gain steers; ADG (1.50 vs. 1.11 kg/d, P < 0.05) and gain efficiency (0.221 vs. 0.109 kg/kg, P < 0.01) were greater from d 14 through 28 than for high-gain steers. Arterial base tended (P < 0.12) to be greater in low-gain than in high-gain steers, whereas calculated HCO3- (mmol/L; P < 0.20) did not differ between treatments. Arterial O2 concentration was not different (P < 0.97) between treatments but increased (P < 0.001) with increasing days on feed. Portal blood flow increased with days on feed (P < 0.001) but did not differ (P < 0.34) between treatments. Hepatic blood flow scaled to metabolic BW was 19.7% greater (P < 0.02) in low-gain than in high-gain steers. Across the feeding period, O2 consumption and CO2 flux by PDV, liver, and total splanchnic tissue (TST) did not differ (P < 0.33) between treatments. However, TST O2 consumption (mmol/[h x kg BW(0.75)]) tended (P < 0.12) to be greater in low- than in high-gain steers. Compensating steers' arterial blood acid-base measurements did not change with days on feed, indicating that they were not more susceptible to metabolic acidosis than high-gain steers. However, steers that had lower BW gain before high-grain feeding exhibited increased hepatic blood flow and TST O2 consumption (metabolic BW basis) during the finishing period compared with high-gain steers. Greater hepatic blood flow and energy expenditure by TST of previously restricted steers might have facilitated compensatory growth.  相似文献   

11.
Eighty Charolais-cross steer calves (283 kg) were fed a moderately high-energy (2.89 Mcal ME/kg) diet for 189 d to examine the effects of reimplantation of 36 mg of zeranol (Ralgro) or 200 mg progesterone plus 20 mg estradiol benzoate (Synovex-S) on the rate, composition and efficiency of gain, skeletal size and carcass parameters in a comparative slaughter trial. The implant treatments included unimplanted controls (C), Ralgro initially (R1), Synovex-S initially (S1), Ralgro initially and a reimplant at 84 d (R2) and Synovex-S initially and a reimplant at 84 d (S2). Both implants increased (P less than .06) gains by 8.1% from 0 to 84 d. Ralgro and Synovex-S increased (P less than .01) daily gains by 11.5% and 25.2%, respectively, from 84 to 189 d. The duration of the response to a single implant appeared to be in excess of 140 d; thus, reimplantation did not further increase daily gains. Reimplantation did improve (P less than .05) feed utilization in Ralgro implanted steers, however. Ralgro and Synovex-S increased (P less than .01) the rate of empty body (EB) protein accretion by 14.1% and 24%, respectively, without affecting EB fat growth. The efficiency of protein gain per unit protein (P less than .05) or energy intake (P less than .04) was improved, but the efficiency of energy gain per unit energy intake was not affected by implantation. Carcass weights of implanted steers were 5% greater (P less than .04) when adjusted to an equal carcass fatness. Both growth stimulants increased hip height (P less than .02), wither height (P less than .08) and body length (P less than .08) over C steers at slaughter.  相似文献   

12.
The effects of anabolic implants, growth phase (growing vs finishing) and rate of growth on the priorities for protein and fat deposition were determined in yearling cattle. Santa Gertrudis crossbred yearling steers weighing 290 kg were individually fed diets varying in forage and grain content and either not implanted (n = 16) or implanted (90-d intervals) with Ralgro (n = 13) or Synovex-S (n = 12) implants. The cattle were fed toward a similar expected final empty BW (455 kg). Initial and interim empty body composition was measured via deuterium oxide dilution; final composition was determined by carcass specific gravity. During a 100-d growing phase, rates of protein gain were increased (P less than .12) to 118 and 131 g/d from 98 g/d for Ralgro and Synovex vs nonimplanted cattle, respectively. Concurrently, the fraction of protein in empty body growth was increased (P less than .09) from 17.5% for controls to 23.8 and 19.7% for Ralgro- and Synovex-implanted steers, respectively. This change in protein growth occurred concomitant with mobilization of fat and a reduction (P less than .04) in fat gain with Ralgro and Synovex implants. During the 136-d finishing phase, protein accretion was 115 and 132 vs 93 g/d for Ralgro- and Synovex-implanted cattle vs nonimplanted cattle; this represented a 24 and 42% increase (P less than .03) with Ralgro and Synovex, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Hormones within the somatotropin cascade influence several physiological traits, including growth and reproduction. Active immunization against growth hormone-releasing factor (GRFi) initiated at 3 or 6 mo of age decreased weight gain, increased deposition of fat, and delayed puberty in heifers. Two experiments were conducted to investigate the effects of GRFi on puberty and subsequent ovulation rate in gilts. Crossbred gilts were actively immunized against GRF-(1-29)-(Gly)2-Cys-NH2 conjugated to human serum albumin (GRFi) or against human serum albumin alone (HSAi). In Exp. 1, gilts were immunized against GRF (n = 12) or HSA (n = 12) at 92 +/- 1 d of age. At 191 d of age, antibody titers against GRF were greater (P < .05) in GRFi (55.5 +/- 1.3%) than in HSAi (.4 +/- 2%) gilts. The GRFi decreased (P < .05) BW (86 +/- 3 vs 104 +/- 3 kg) by 181 d of age and increased (P < .05) backfat depth (15.7 +/- .4 vs 14.8 +/- .4 mm) by 130 d of age. At 181 d of age, GRFi reduced the frequency of ST release (1.0 +/- .5 vs 5.0 +/- .5, peaks/24 h; P < .0001) and decreased (P < .01) ST (1.1 +/- .06 vs 1.7 +/- .06 ng/mL), IGF-I (29 +/- 2 vs 107 +/- 2 ng/mL), and insulin concentrations (3.5 +/- .2 vs 6.3 +/- .2 ng/mL). The GRFi decreased (P < .05) feed conversion efficiency but did not alter age at puberty (GRFi = 199 +/- 5 d vs HSAi = 202 +/- 5 d) or ovulation rate after second estrus (GRFi = 10.7 +/- .4 vs HSAi = 11.8 +/- .5). In Exp. 2, gilts were immunized against GRF (n = 35) or HSA (n = 35) at 35 +/- 1 d of age. The GRFi at 35 d of age did not alter the number of surface follicles or uterine weight between 93 and 102 d of age, but GRFi decreased (P < .05) ovarian weight (.41 +/- .08 vs 1.58 +/- .4 g) and uterine length (17.2 +/- 1.1 vs 25.3 +/- 2.3 cm). Immunization against GRF reduced (P < .05) serum IGF-I (GRFi = 50 +/- 4 vs HSAi = 137 +/- 4 ng/mL) and BW (GRFi = 71 +/- 3 vs HSAi = 105 +/- 3 kg) and increased (P < .05) backfat depth (GRFi = .38 +/- .03 vs HSAi = .25 +/- .02 mm/kg). Age at puberty was similar in GRFi and HSAi gilts, but ovulation rate was lower (P < .05) after third estrus in GRFi (11.3 +/- .8) than in HSAi (13.8 +/- .8) gilts. Thus, GRFi at 92 or 35 d of age decreased serum ST, IGF-I, and BW in prepubertal gilts without altering age of puberty. However, GRFi at 35 d of age, but not 92 d of age, decreased ovulation rate. These results indicate that alterations in the somatotropic axis at 1 mo of age can influence reproductive development in pubertal gilts.  相似文献   

14.
Four trials were conducted to determine the effects of adding various levels and types of fat to dry-rolled corn (DRC) finishing diets containing 0 or 7.5% forage. In Trial 1, 88 yearling steers (mean BW = 352 +/- 38 kg) and 176 heifers (mean BW 316 +/- 15 kg) were blocked by sex and weight into four replications. Treatments were 0, 2, 4, or 6% (DM basis) bleachable fancy tallow (BT) fed with 0 or 7.5% (DM basis) forage. Addition of BT to the 7.5% forage diet had no effect on ADG or gain/feed (G/F). However, adding BT to the all-concentrate diet decreased ADG (linear, P < .01) and G/F (linear, P = .08). In Trial 2, 184 yearling steers (mean BW = 347 +/- 21 kg) and 144 heifers (mean BW 322 +/- 8 kg) were blocked by sex and weight into six replications. Fat treatments were 0% fat, 4% BT, or 4% animal-vegetable oil blend (A-V); each fat treatment was fed with 0 or 7.5% forage. Across forage levels, the addition of fat increased (P < .01) ADG and G/F for cattle fed DRC. In Trial 3, 18 crossbred wether lambs (mean BW = 44.4 +/- 2.5 kg) were fed DRC and 7.5% forage and allotted randomly to the same fat treatments fed in Trial 2. Apparent total tract fat digestibility increased (P < .01) with the addition of BT or A-V. In Trial 4, 40 crossbred wethers (mean BW = 25 +/- 4.1 kg) and 16 ewes (mean BW = 23 +/- 2.7 kg) were individually fed 7.5% forage diets containing 0, 1, 2, or 4% BT. Addition of BT increased (linear, P = .10) G/F. In summary, fat addition to DRC finishing diets fed to yearling cattle did not consistently affect gain/feed, feed intake, and ADG.  相似文献   

15.
Kochia hay that had elicited mild toxicosis in sheep and cattle when fed for 21 d was fed to young, growing steers to evaluate the efficacy of metoclopramide for preventing kochia toxicosis. Twelve steers (271 +/- 39 kg) were given ad libitum access to Kochia hay for 38 d. Six steers were dosed orally with 15 mg of metoclopramide/kg of BW three times each week in gelatin capsules, and six steers received empty gelatin capsules. Steers were housed in individual outside pens for the first 28 d, then inside in metabolism stalls for the last 10 d. Kochia intake averaged 1.2 +/- .04 and 1.1 +/- .05% of BW throughout 38 d for kochia-fed control and kochia plus metoclopramide-dosed steers, respectively. During the last 10 d, metoclopramide had no effect (P greater than .15) on digestibility of DM, OM, NDF, ADF, or CP. However, metoclopramide reduced N retention (P less than .01; 20 vs 8 g/d). Kochia hay decreased serum prolactin and insulin concentrations (P less than .01) from 12.4 to 1.5 ng/ml and from .53 to .23 ng/ml, respectively. Metoclopramide had no effect (P greater than .50) on prolactin or insulin in steers fed kochia hay. Serum growth hormone was not affected by kochia but was suppressed by metoclopramide in steers fed kochia hay (P less than .07). Serum bilirubin (total and unconjugated) was elevated (P less than .05), indicating early, mild hepatotoxicosis characteristic of kochia toxicosis. Kochia also increased serum concentrations of iron, total protein, albumin, globulin, and creatinine and decreased urea N (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Fall-weaned crossbred steer calves (n = 300; 184 +/- 2.9 kg) received either no implant (Control) or were implanted with Synovex-C (SC = 10 mg estradiol benzoate + 100 mg progesterone), Synovex-S (SS = 20 mg estradiol benzoate + 200 mg progesterone), or Revalor-G (RG = 8 mg estradiol-17beta + 40 mg trenbolone acetate) to determine the effects of implants on weight gain during winter grazing on dormant tallgrass prairie, subsequent grazing and finishing performance, and carcass characteristics. Steers grazed two dormant tallgrass prairie pastures from October 16, 1996, until March 29, 1997 (164 d), and received 1.36 kg/d of a 25% CP supplement that supplied 100 mg of monensin/steer. Following winter grazing, all steers were implanted with Ralgro (36 mg zeranol) and grazed a common tallgrass prairie pasture until July 17 (110 d). After summer grazing, all steers were implanted with Revalor-S (24 mg estradiol-17beta + 120 mg trenbolone acetate), and winter implant treatment groups were equally allotted to four feedlot pens. Steers were harvested November 17, 1997, after a 123-d finishing period. Daily gains during the winter grazing phase averaged .28, .32, .32, or .35 kg/d, respectively, for Control, SC, SS, or RG steers and were greater (P < .01) for implanted steers than for Controls. Summer daily gains were similar (1.05 +/- .016 kg/d; P > or = .61) for all treatment groups. Feedlot daily gains were also similar (1.67 +/- .034 kg/d; P > or = .21), with implanted steers weighing 14 kg more than Control steers (P = .05) at harvest, despite similar management during summer grazing and feedlot phases. Control steers tended (P = .06) to have lower yield grades. There were no differences (P = .99) in marbling between implanted and nonimplanted steers. Steers implanted during the wintering phase had increased skeletal and overall (P < .01) carcass maturities compared with nonimplanted steers, which resulted in more "B" and "C" maturity carcasses. Because carcass maturity score affects quality grade, the increased maturities of implanted steers resulted in a $9.04 decrease in carcass value/100 kg (P < .01) compared with Controls. The results of this study indicate that growth-promoting implants are efficacious for cattle wintered on dormant native range despite low daily gains. This increased weight is maintained through the summer grazing and feedlot phases; however, the benefit of the increased weight may be offset by decreased carcass quality grade and value due to increased carcass maturity.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic neuropeptide that stimulates release of growth hormone (GH) from cultured bovine anterior pituitary gland cells, but the role of PACAP on the regulation of in vivo secretion of GH in cattle is not known. To test the hypothesis that PACAP induces secretion of GH in cattle, meal-fed Holstein steers were injected with incremental doses of PACAP (0, 0.1, 0.3, 1, 3, and 10 microg/kg BW) before feeding and concentrations of GH in serum were quantified. Compared with saline, injection of 3 and 10 microg PACAP/kg BW increased peak concentrations of GH in serum from 11.2 ng/ml to 23.7 and 21.8 ng/ml, respectively (P < 0.01). Peak concentrations of GH in serum were similar in steers injected with 3 or 10 microg PACAP/kg BW. Meal-fed Holstein steers were then injected with 3 microg/PACAP/kg BW either 1 hr before feeding or 1 hr after feeding to determine if PACAP-induced secretion of GH was suppressed after feeding. Feeding suppressed basal concentrations of GH in serum. Injection of PACAP before feeding induced greater peak concentrations of GH in serum (19.2 +/- 2.6 vs. 11.7 +/- 2.6 ng/ml) and area under the response curve (391 +/- 47 vs. 255 +/- 52 ng. ml(-1) min) than injection of PACAP after feeding, suggesting somatotropes become refractory to PACAP after feeding similar to that observed by us and others with growth hormone-releasing hormone (GHRH). We concluded that PACAP induces secretion of GH and could play a role in regulating endogenous secretion of GH in cattle, perhaps in concert with GHRH.  相似文献   

18.
Two experiments were conducted to examine the effect of BW gain during winter grazing on mass, cellularity, and oxygen consumption of splanchnic tissues before and after the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range supplemented with 0.91 kg/d of a 41% CP supplement (NR). At the end of winter grazing, four steers were selected randomly from each treatment for initial slaughter to measure organ mass, cellularity, and oxygen consumption. All remaining steers were placed into a feedlot and fed to the same backfat end point (1.27 cm). Six steers were selected randomly from each treatment for final organ mass, cellularity, and oxygen consumption. Initial empty BW (EBW) was greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both Exp. 1 and 2 (355 > 263 > 207 +/- 6.5 kg and 337 > 274 > 205 +/- 8.7 kg, respectively). For both experiments, the initial total gastrointestinal tract (GIT; g/kg of EBW) proportional weight was greater (P < 0.05) in NR steers than in LGW, and LGW steers had greater (P < 0.05) initial GIT proportional weight than HGW steers. Proportional weight of total splanchnic tissues (TST; g/kg of EBW) did not differ (P < 0.19) among treatments. Initial duodenal RNA concentration and RNA:protein were greater (P < 0.02) in LGW than in HGW steers, and NR steers were intermediate. Initial in vitro liver O2 consumption was greater (P < 0.09) in HGW and LGW than in NR steers (34.5 > 16.9 mL/min), whereas initial small intestinal oxygen consumption was greater (P < 0.01) in LGW than in HGW and NR steers (12.1 > 5.2 mL/min). Ruminal papillae oxygen consumption did not differ (P < 0.55) among treatments. The rate of decrease of GIT (g x g EBW(-1) x d(-1)) during finishing was greater in NR than in HGW and LGW steers in both Exp. 1 and 2, but mesenteric fat (g x g EBW(-1) x d(-1)) increased for NR steers, resulting in a similar (P < 0.75) increase in TST across the finishing period for all treatments. Similar rates of increase in TST across the finishing phase corresponded with similar rates of live and carcass weight gain among treatments. Our data support the hypothesis that increased visceral organ mass increases maintenance energy requirements of growing cattle.  相似文献   

19.
One hundred forty spring-born Angus x Gelbvieh and purebred Angus steers were selected for study as early weaned (EW; average age at weaning = 90 +/- 30 d) or traditionally weaned (TW; average age at weaning = 174 +/- 37 d) steers that were non-implanted or implanted (Synovex-S, Fort Dodge Animal Health, Overland Park, KS). Initially, steers were sorted by age, sire, and farm, and then allotted randomly in a 2 x 2 factorial arrangement of treatments of EW implanted (EWI), EW nonimplanted (EWN), TW implanted (TWI), or TW nonimplanted (TWN). Ultrasound measurements (US) of LM area (LMA), 12th rib fat thickness (US-BF), and marbling (US-M) were collected every 28 d during the time that steers were on feed. At 202 d of age, EW calves had larger US-LMA, US-BF, and BW than TW calves (37.9 vs. 32.3 cm2, 0.38 vs. 0.26 cm, and 271.6 vs. 218.9 kg, respectively; P < 0.001). At slaughter, EW calves had heavier HCW (290.4 vs. 279.7 kg, respectively; P < 0.05) and greater USDA marbling scores (51.25 vs. 46.26, respectively; P < 0.05) than TW calves; more EW steers graded USDA Choice or greater (P = 0.05). However, no differences were detected in BW (P = 0.15), LMA (P = 0.39), BF (P = 0.45), or liver abscess scores (P = 0.41). Twenty-four implanted steers were selected from the original group of 140 and sorted into two slaughter groups of 12. Twelve implanted steers from each weaning group, matched in slaughter BW but differing in age, were subsampled at slaughter to assess the effect of weaning age and chronological age on muscle tenderness. Younger animals had lower Warner-Bratzler shear force values (P < 0.001) than older calves after 14 d of postmortem aging; however, no differences were found in tenderness after 21 d of aging. Furthermore, there was greater variance (P < 0.001) in Warner-Bratzler shear force values among younger, EW steers vs. older, TW steers. These data provide evidence that early weaning of beef calves may be used as a tool to more effectively manage the cow-calf production system without compromising the quality of the offspring.  相似文献   

20.
Performance and production of growing cattle (Bos taurus) on Coastal Bermudagrass [Cynodon dactylon (L.) Pers.] pasture are affected by forage allowance, but possible interactions with fertilizer nutrient source (i.e., inorganic vs. organic) and time have not been well described. We evaluated the effects of 3 nutrient sources with equivalent N rates: 1) inorganic, 2) crimson clover (Trifolium incarnatum L.) cover crop plus inorganic, and 3) chicken (Gallus gallus) broiler litter, factorially arranged with 2 residual forage mass levels [grazing to maintain high (4,528 +/- 1,803 kg/ha) and low (2,538 +/- 1,264 kg/ha) forage mass], on cattle stocking density, ADG, and BW gain during 5 consecutive summer grazing seasons. Across grazing seasons, residual forage mass and nutrient source both affected response variables, but interactions between these variables were rarely significant (P < or = 0.10). Across grazing seasons and nutrient sources, increasing grazing pressure to maintain a lower forage mass reduced ADG (0.67 vs. 0.88 kg/d; P < 0.001) but increased BW gain/ha (726 vs. 578 kg/ha; P < 0.001) due to greater stocking density (8.7 vs. 5.8 steers/ha, P < 0.001; mean BW of growing Angus steers of 212 kg). Inorganic fertilization led to greater stocking density than other nutrient sources (8.2 vs. 6.8 steers/ha, P < 0.001) because of greater forage production. Stocking density to achieve the 2 targeted forage mass levels was widely different during the initial grazing seasons of the study but nearly similar at the end of 5 yr. Cattle performance tended to decline with time during each grazing season under both residual forage mass levels, perhaps as a result of declining forage quality, because performance was positively associated with grazing season precipitation under high forage mass. Steer BW gain/ha was greater (P < 0.05) with lower forage mass early in the grazing season of all years but not necessarily later in the grazing season. Steer BW gain/ha was also greater (P < 0.05) with a lower forage mass during the early years of the study but was similar during the later years of the study. Significant variations in cattle performance and production with time confirmed the short-term seasonal effects but suggested that the long-term effects may also be of importance in maintaining productivity and environmental quality of grazed pastures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号