首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
瘤胃纤维降解的研究进展   总被引:2,自引:0,他引:2  
瘤胃微生物群降解和发酵粗料细胞壁的结构性碳水化合物,为宿主动物提供挥发性脂肪酸和蛋白质。但是,瘤胃降解纤维的速度和程度受到微生物对底物的可及性、粗料的物理和化学特性及瘤胃消化动力学等因素的调控。本文对瘤胃纤维降解微生物降解纤维的机制和调控作一介绍,并阐明今后的研究方向。  相似文献   

2.
反刍动物瘤胃纤维降解微生物能分泌大量的纤维素酶和半纤维素酶,在瘤胃纤维降解过程中发挥着重要作用,是反刍动物高效利用粗饲料资源的基础。该文简要介绍了纤维素酶组成、瘤胃纤维素酶基因多样性研究进展,综述了纤维素酶降解纤维素的作用机制以及厌氧真菌对纤维物质的降解过程,概述了近年来瘤胃纤维降解微生物的分离筛选研究进展,以及碳水化合物、饲料加工和添加剂对瘤胃纤维降解微生物的调控作用,以期为相关研究提供参考。  相似文献   

3.
参与瘤胃内纤维素降解过程的主要微生物研究进展   总被引:3,自引:2,他引:1  
纤维素是反刍动物的必需营养素之一,反刍动物主要通过瘤胃微生物降解纤维素。研究者们希望通过全面深入地了解纤维素在瘤胃内的降解过程及相关微生物的信息去调控瘤胃发酵,最终提高动物生产性能。因此,纤维素在瘤胃内的降解过程及相关微生物是反刍动物营养研究的重要内容之一。目前,人们对瘤胃内个别种属纤维分解菌的个别菌株研究较为深入,并建立了纤维小体模型,但是缺乏对瘤胃微生物这个复杂系统整体的了解,同时人们对纤维降解菌和纤维素酶的研究还停留在理论阶段。作者综述了纤维素降解过程及主要相关微生物,其中重点介绍纤维分解菌及相应的纤维素酶的分类、结构和功能,以及固相黏附微生物的洗脱方法等。  相似文献   

4.
奶牛属反刍动物(草食动物),最主要的消化特点是有4个胃,即能够利用纤维和非蛋白氮。瘤胃中生活着大量的微生物,饲料可被微生物降解及合成各种营养物质。使用一定的手段对瘤胃中降解与合成过程进行调控是可能的,也是必要的。人们养牛实际上是在养瘤胃微生物。如何维护良好且稳定的瘤胃环境,保持微生物的活性及其菌系的相对平衡,是奶牛饲养技术中非常重要的环节。调控内容主要有以下几个方面:1供给瘤胃微生物必要的、平衡的、稳定的营养物质瘤胃内微生物蛋白质的合成主要取决于瘤胃内碳水化合物和氮的利用效率。如果蛋白质的降解速度超过碳水…  相似文献   

5.
浅谈奶牛瘤胃功能的调控   总被引:1,自引:0,他引:1  
奶牛属反刍动物(草食动物),最主要的消化特点是有4个胃,即能够利用纤维和非蛋白氮。瘤胃中生活着大量的微生物,饲料可被微生物降解及合成各种营养物质。使用一定的手段对瘤胃中降解与合成过程进行调控是可能的,也是必要的。人们养牛实际上是在养瘤胃微生物。如何维护良好且稳定的瘤胃环境,保持微生物的活性及其菌系的相对平衡,是奶  相似文献   

6.
反刍动物瘤胃微生物在饲料降解过程中发挥着重要作用。水牛与其他品种牛相比具有耐粗性的优势,推测其瘤胃内可能含有更高效的特殊的微生物系统,能为水牛的耐粗性提供保障。另外,通过日粮对瘤胃微生物群落的调控,可以了解瘤胃微生物与日粮之间的关系,从而为改善瘤胃系统、充分利用饲料资源、提高反刍动物生产性能提供理论依据与数据支持。  相似文献   

7.
日粮精粗比对瘤胃微生物合成效率的影响   总被引:29,自引:2,他引:27  
本文用瘤胃持续模拟装置研究了精粗比为7:3、1:1和3:7时对日粮有机物、中洗纤维和酸洗纤维的降解、蛋白质的转化和微生物合成效率的影响。结果表明,精粗比不影响瘤胃微生物对可发酵能的利用效率(P〉0.05),但是显著影响瘤胃微生物对可降解氮的利用效率(P〈0.05);最后探讨了瘤胃内可降解氮和可发酵能与微生物氮合成量之间的定量模型。  相似文献   

8.
奶牛属反刍动物(草食动物),最主要的消化特点是有4个胃,即能够利用纤维和非蛋白氮。瘤胃中生活着大量的微生物,饲料可被微生物降解及合成各种营养物质。使用一定的手段对瘤胃中降解与合成过程进行调控是可能的,也是必要的。人们养牛实际上是在养瘤胃微生物。如何维护良好且稳定的瘤胃环境,保持微生物的活性及其菌系的相对平衡,是奶牛饲养技术中非常重要的环节。调控内容主要有以下几个方面:  相似文献   

9.
安娟  赵小刚 《饲料工业》2005,26(2):21-24
瘤胃微生物、饲料特性以及动物饲喂方式等都能够影响反刍动物对纤维素的消化,日粮中纤维的降解程度和降解速度主要取决于微生物与饲料纤维发酵基质的接触程度。文中就瘤胃微生物和动物自身对纤维降解的影响进行了讨论。  相似文献   

10.
反刍动物瘤胃中栖居有大量的微生物,这些微生物对纤维物质的降解起着重要作用。微量元素铜不仅是反刍动物生长发育繁殖所必需的,也是瘤胃微生物生长所必需的。适当剂量铜的添加有助于瘤胃纤维降解菌群数量的增加,从而促进纤维物质的降解。  相似文献   

11.
We hypothesized that bacterial species capable of metabolizing phenolic monomers may act as catalysts for forage fiber breakdown by increasing microbial access to cell wall polysaccharides. Ruminal cellulolytic bacteria alone and in combination with phenolic-degrading bacteria were examined for differences in their ability to degrade fiber fractions of alfalfa or bromegrass. Electron micrographs of Fibrobacter succinogenes S85 cultured in combination with the ruminal phenolic-degrading organisms Eubacterium oxidoreducens G41 and Syntrophococcus sucromutans S195 indicated that bromegrass was degraded more extensively by the triculture than by the monoculture. The sequential detergent system was used to quantify the digestibility of fiber components from alfalfa and bromegrass. F. succinogenes incubated with the two phenolic-degrading organisms did not degrade more cell wall material than did F. succinogenes alone. However, with two other ruminal cellulolytic organisms, Clostridium longisporum B6405 and Ruminococcus albus B6403, greater (P less than .05, P less than .10, respectively) amounts of hemicellulose were degraded (72 h in vitro fermentation) from whole-plant alfalfa when E. oxidoreducens and S. sucromutants were combined with the cellulolytic species than when their monocultures were tested. Similar increases were not observed using a NDF preparation of alfalfa as the substrate. Based on these in vitro experiments, it does not seem that E. oxidoreducens and S. sucromutans play an important role in improving forage fiber degradation by cellulolytic ruminal bacteria.  相似文献   

12.
Adequate forage amounts in both physical and chemical forms are necessary for proper ruminal function in dairy cows. Under conditions in which total amounts of forage or particle size of the forage are reduced, cows spend less time ruminating and have a decreased amount of buoyant digesta in the rumen. These factors reduce saliva production and allow ruminal pH to fall, depressing activity of cellulolytic bacteria and causing a prolonged period of low ruminal pH. Insufficient particle size of the diet decreases the ruminal acetate-to-propionate ratio and reduces ruminal pH. The mean particle size of the diet, the variation in particle size, and the amount of chemical fiber (i.e., NDF or ADF) are all nutritionally important for dairy cows. Defining amounts and physical characteristics of fiber is important in balancing dairy cattle diets. Because particle size plays such an important role in digestion and animal performance, it must be an important consideration from harvest through feeding. Forages should not be reduced in particle size beyond what is necessary to achieve minimal storage losses and what can be accommodated by existing equipment. Forage and total mixed ration (TMR) particle sizes are potentially reduced in size by all phases of harvesting, storing, taking out of storage, mixing, and delivery of feed to the dairy cow. Mixing feed causes a reduction in size of all feed particles and is directly related to TMR mixing time; field studies show that the longest particles (>27 mm) may be reduced in size by 50%. Forage and TMR particle size as fed to the cows should be periodically monitored to maintain adequate nutrition for the dairy cow.  相似文献   

13.
Two trials were conducted to evaluate the influence of forage level on the response of feedlot cattle to salinomycin. Diets containing 10, 15 and 20% forage were compared with 0 or 11 mg/kg salinomycin. In trial 1, treatment effects on feedlot performance were evaluated using 108 crossbred steers (295 kg) in a crossover design experiment. There were no salinomycin X forage level interactions (P greater than .20). Weight gain response to salinomycin supplementation averaged 5.4, 5.3 and 6.9%, respectively, for diets containing 10, 15 and 20% forage. Corresponding values for feed conversion response to salinomycin supplementation were 5.1, 3.9 and 5.9%. Averaged across forage level, salinomycin supplementation improved rate of weight gain and feed conversion by 5.9 and 5.2%, respectively (P less than .01). In trial 2, treatment effects on characteristics of ruminal and total tract digestion were evaluated in a 6 X 6 Latin-square design trial involving six crossbred steers (191 kg) with cannulae in the rumen and proximal duodenum. There were no interactions between salinomycin supplementation and forage level on characteristics of ruminal digestion (P greater than .20). Salinomycin supplementation did not influence synthesis of microbial N, ruminal digestion of organic matter, acid detergent fiber and starch, or molar proportions of acetate, propionate and butyrate (P greater than .20). Salinomycin supplementation increased passage of non-ammonia N to the small intestine (5.4%, P less than .10) and increased ruminal escape of feed N (24%, P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
With the objective of developing a rational approach for the selection of feed enzymes for ruminants, 22 commercial enzyme products were examined in terms of protein concentration, enzymic activities on model substrates, and hydrolytic capacity, the latter determined from the release of reducing sugars from alfalfa hay and corn silage. An in vitro ruminal degradation assessment was carried out using the same substrates, untreated or treated with the 22 enzyme products at 1.5 microL/g forage DM. Stepwise regressions were then performed to establish relationships between these factors. Protein concentration and enzymic activities explained at least 84% (P < 0.01) of the variation in the release of reducing sugars from alfalfa and corn silage. Alfalfa DM degradation after incubation with ruminal fluid for 18 h was positively related to xylanase activity (R2 = 0.29, P < 0.01), but the same activity was negatively related to DM degradation of corn silage (R2 = 0.19, P < 0.05). Protease activity explained a further 10% of the alfalfa DM degradation (P < 0.10). Following sequential steps involving the determination of rate and extent of DM and fiber degradation, the best candidates for alfalfa and corn silage were selected. Enzyme products effective with alfalfa hay seemed to exert part of their effect during the pretreatment period, whereas enzymes effective with corn silage worked exclusively after ruminal fluid was added. This finding suggests that different modes of action of exogenous enzymes are attacking different substrates and may partly explain enzyme-feed specificity. In alfalfa, it seems that effective enzymes work by removing structural barriers that retard the microbial colonization of digestible fractions, increasing the rate of degradation. In corn silage, effective enzymes seem to interact with ruminal enzymes to degrade the forage more rapidly, which is consistent with previous findings of synergism between exogenous and ruminal enzymes.  相似文献   

15.
The evaluation of red bean hulls (RBH) as a non‐forage fiber source on ruminal mat formation, chewing activity and milk production was determined using two experiments. In experiment 1, four non‐lactating, rumen‐cannulated Holstein cows were offered a control diet of 60.1% forage, and an RBH diet of 51.6% forage and 9.4% RBH. Although the neutral detergent fiber (NDF) intake was higher with the RBH diet than the control diet, the physically effective NDF (peNDF) intake was lower. The rumination period tended to be longer with the RBH diet than with the control diet and the ruminal mat was formed even when the RBH diet was consumed. Ruminal fermentation parameters were not affected by treatment. In experiment 2, 40 lactating cows were fed a control diet of 53.4% forage or an RBH diet of 50.3% forage and 8.1% RBH. Dry matter intake, chewing activity and milk production were not affected by diet. Cows sorted against NDF in the control diet, but not in the RBH diet. It is concluded that normal ruminal function can be maintained because the ruminal mat was stratified and rumination activity was not reduced even when a low peNDF diet that contained RBH was given to dairy cows.  相似文献   

16.
A computer model was developed to predict responses of lactating ewes to concentrate supplementation, whether on pasture or stall-fed, given concentrate once per day or in multiple feedings, and suckling multiple lambs. The model considers effects of concentrate supplementation on organic acid production, saliva flow, ruminal pH, and forage intake. The user defines ewe BW, feed composition, and concentrate feeding times and amounts. The reference ewe has free access to forage and water. Upon consumption, forages and concentrates enter into lag pools for 2.0 and 0.24 h, respectively. Carbohydrates then enter ruminal pools of degradable fiber, undegradable fiber, or nonstructural carbohydrate, from which they are degraded or pass to the lower gut. Rapid dissociation of organic acids from carbohydrate fermentation and buffers from rumination are simulated to determine ruminal pH according to the Henderson-Hasselbach equation. The pH, in turn, affects fiber degradation rates. Forage intake continues during daylight hours until ruminal NDF exceeds 1.0% of BW, or organic acid concentration exceeds 130 mM. A circadian pattern of organic acid concentrations and pH of rumen contents with multiple concentrate feedings was simulated by the model with root mean square prediction error of 7.7 and 3.0 to 4.0% of the observed mean, respectively. However, ignoring fermentation of dietary protein may have caused an underestimation of organic acid production rates. The model predicted the increase in total DMI and the substitution effect on forage intake of increasing levels of concentrate supplementation. Simulations suggested that a single concentrate meal daily was best fed in the evening to minimize the substitution effect, and that there was no benefit in forage intake to feeding 2 kg/d concentrate in more than two meals per day.  相似文献   

17.
According to climate change scenarios, central Europe may expect extending drought periods during summer. Lower water availability may influence the ruminal digestion of individual forage legume species differently. To test this hypothesis, Lotus corniculatus L. (var. Bull), Medicago lupulina L. (var. Ekola), Medicago falcata L. (wild seeds) and Trifolium repens L. (var. Rivendel) were each grown in parallel lots of control and drought‐stressed monocultures. Rainout shelters (installed in May 2011 on a regrowth after first cut until harvest in mid of June) withheld rainfall of 40 mm in the drought stress treatment. Samples of dried (60°C) and milled (5 mm screen) forage legumes were incubated in a simulation experiment using Rusitec to assess drought effects on parameters for microbial metabolism. Degradability of dry matter and organic matter as well as methane production decreased in incubations with drought‐stressed compared to control variants of legume species. Degradability of crude protein, neutral detergent fibre, acid detergent fibre and residual organic matter including non‐fibre carbohydrates and lipids were affected by interactions between drought stress and species. Significant interactions were also found for ammonia concentrations, molar SCFA proportions and the microbial communities. It is concluded that drought stress for growing forage legumes influences their ruminal degradation and fermentation as well as the ruminal microbial communities of Bacteria and Archaea differently in a legume species‐dependent manner.  相似文献   

18.
Eight Angus x Gelbvieh heifers (445 +/- 74.5 kg) fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square double double-crossover designed experiment to assess the effect of restricted forage intake on site and extent of digestion and flow of essential AA amino acids to the small intestine. Heifers were fed chopped (2.54 cm) bromegrass hay (9.2% CP, 64% NDF on an OM basis) at one of four percentages of maintenance (30, 60, 90, and 120%). Experimental periods were 21 d in length, with 17 d of adaptation followed by 4 d of intensive sample collection, after which maintenance requirements and subsequent level of intake were adjusted for BW change. True ruminal OM, NDF, and N digestion (g/d) decreased linearly (P < 0.001) with decreasing forage intake. When expressed as a percentage of OM intake, true ruminal OM and N digestibility were not affected (P = 0.23 to 0.87), whereas ruminal NDF digestibility tended to increase (P = 0.09) as forage intake decreased. Total and microbial essential amino acid flow to the duodenum decreased linearly (P = 0.001) from 496.1 to 132.1 g/d and 329.1 to 96.0 g/d, as intake decreased from 120 to 30% of maintenance intake, respectively. Although the profile of individual essential amino acids in duodenal digesta (P = 0.001 to 0.07) and isolated ruminal microbes differed (P = 0.001 to 0.09) across treatment, the greatest difference noted for total and microbial essential amino acid profile was only 0.3 percentage units. Because total and microbial flow of essential amino acids to the small intestine decreased as OM intake decreased, but true ruminal degradability of individual essential amino acids (P = 0.17 to 0.99) and digesta essential amino acid profile were comparable across treatments, total essential amino acid supply to the small intestine was predicted using OM intake as the independent variable. The resulting simple linear regression equation was: total essential amino acid flow = (0.055 x OM intake) + 1.546 (r2 = 0.91). The model developed in this experiment accounted for more of the variation in the data set than the current beef cattle NRC model, which under-predicted total flow of essential amino acids to the duodenum. The prediction equation developed herein can be used to estimate the supply of essential amino acids reaching the small intestine when formulating supplements to compensate for potential amino acid deficiencies resulting from restricted forage intake.  相似文献   

19.
Three Holstein heifers and one nonlactating cow, fitted with ruminal and duodenal cannulas, were arranged in a 4 x 4 Latin square design to determine the effects of degree of fat saturation on ruminal neutral detergent fiber digestion and microbial protein synthesis and to determine whether changes in the efficiency of microbial protein synthesis were related to protozoal populations in the rumen. Corn silage-based diets contained no added fat or 4.85% of diet dry matter as partially hydrogenated tallow, tallow, or animal-vegetable fat. Iodine values of fat sources were 12.8, 50.6, and 109.7 for partially hydrogenated tallow, tallow, and animal-vegetable fat, respectively. Cattle were fed every 2 h and consumed 1.5% of body weight as dry matter daily. Ruminal neutral detergent fiber digestibility was decreased by added fat but was not affected by increasing iodine value. Flows of microbial N and non-NH3-nonmicrobial N to the duodenum were not affected by treatment. Ruminal protozoa concentration decreased linearly as the iodine value of fats increased. The efficiency of microbial protein synthesis was increased and protozoa concentrations tended to decrease when fat was fed. Decreased ruminal protozoa concentration may have decreased intraruminal N recycling. Biohydrogenation of added fat may result in a low ruminal concentration of unsaturated fatty acids when cows are fed frequently, reducing the negative effects of unsaturated fat sources on ruminal neutral detergent fiber digestibility. Protozoa were inhibited by unsaturated fat, but it is not clear if biohydrogenation and frequent feeding lessened inhibition.  相似文献   

20.
Four Simmental steers with ruminal, duodenal, and ileal cannulas were used to examine effects of dietary forage: concentrate ratio and supply of ruminally degradable true protein on site of nutrient digestion and net ruminal microbial protein synthesis. Steers (345 kg) were fed ammoniated corn cob (high forage; HF)- or corn cob/ground corn/cornstarch (low forage; LF)-based diets supplemented with soybean meal (SBM) or a combination of corn gluten meal and blood meal (CB). Diets were fed at 2-h intervals with average DM intake equal to 2.2% of BW. Feeding LF vs HF increased (P less than .05) OM digestion (percentage of intake) in the stomach, small intestine, and total tract. Efficiency of microbial CP synthesis (EMCP; g of N/kg of OM truly fermented) decreased (P less than .05) for LF vs HF (24.1 vs 26.8), but microbial N and total N flows to the small intestine were similar (P greater than .05) between energy levels (average 112 and 209 g/d, respectively). Total N flows to the small intestine were 13.1% greater (P less than .05) for CB than for SBM because of increased (P less than .05) passage of nonmicrobial N. Feeding SBM vs CB increased (P less than .05) EMCP (27.3 vs 23.3) and microbial N flow to the small intestine (127.5 vs 112.5 g/d), but these increases were not likely due to increased ruminal concentrations of ammonia N (NH3 N). Decreased (P less than .05) incorporation of NH3 N into bacterial N and slower turnover rates of ruminal NH3 N for SBM vs CB suggest that direct incorporation of preformed diet components into cell mass increased when SBM was fed. Results of this study suggest that the inclusion of ruminally degradable protein in the diet may increase the supply of products from proteolysis and that this can increase EMCP and microbial protein flow to the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号