首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
基于叶面积指数改进双作物系数法估算旱作玉米蒸散   总被引:7,自引:3,他引:4  
为准确估算和区分黄土高原旱作春玉米蒸散(evapotranspiration,ET),该文基于实测叶面积指数(leaf area index,LAI)动态估算基础作物系数,利用LAI修正土壤蒸发系数,并基于修正后的双作物系数法估算和区分黄土高原地区旱作春玉米ET,并以2012、2013年寿阳站基于涡度相关系统和微型蒸渗仪实测的春玉米ET和土壤蒸发(soil evaporation)对修正后的双作物系数法的适用性进行评估。结果表明:修正后的双作物系数法能够较为准确的估算春玉米ET,2012年春玉米全生育期ET估算值、实测值分别为365.3、372.6 mm,2013年分别为385.6、369.4 mm;2012年全生育期改进双作物系数法决定系数、均方根误差、模型效率系数和平均绝对误差分别为0.824、0.561 mm/d、0.817和0.449 mm/d,2013分别为0.870、0.381 mm/d、0.871和0.332 mm/d;同时,修正后的双作物系数法可对春玉米各生育期ET进行准确区分,土壤蒸发估算值与实测值有较好的一致性,2012年全生育期估算和实测土壤蒸发分别为0.98和0.99 mm/d,分别占ET的38.12%和37.08%;2013年估算和实测土壤蒸发分别为0.86和0.89 mm/d,分别占ET的33.59%和35.90%。因此,修正后的双作物系数法能够较为准确地估算和区分黄土高原地区旱作春玉米ET。该研究可为黄土高原区农田水分精准管理提供科学指导。  相似文献   

2.
基于气象-生理的夏玉米作物系数及蒸散估算   总被引:1,自引:1,他引:0  
准确估算作物系数对预测作物实际蒸散量和制定精准的灌溉计划至关重要。为反映作物逐日作物系数变化,综合考虑气象和生物因子对作物生长的共同影响,采用五道沟水文实验站大型蒸渗仪夏玉米实测蒸散及气象数据,基于地温及叶面积指数建立了气象-生理双函数乘法模型,并结合梯度下降法对模型进行了精度优化。结果表明,在整个玉米生长期中,作物系数实测值和计算值平均绝对误差为0.12,均方根误差为0.15,相关性为0.91,蒸散量实测值与计算值平均绝对误差为1.0 mm/d,均方根误差为4.5 mm/d,相关性为0.75。该模型计算的全生育期蒸散量准确率(误差在2~3 mm/d以内)相比使用联合国粮农组织(FAO)推荐的作物系数计算所得准确率提高了3倍以上,可更精确用于作物系数及蒸散量计算。  相似文献   

3.
覆膜滴灌棉田蒸散量的模拟研究   总被引:5,自引:1,他引:4  
通过综合考虑影响作物蒸散量的土壤、作物、大气3方面因子,结合新疆滴灌棉田覆膜栽培的生产实际,设计了不同覆盖度和品种试验,以Penman-Montieth方程估算参考作物蒸散量,确定了不同覆盖度及品种条件下的作物系数,并在此基础上实现了覆膜滴灌棉田蒸散量较为准确地估计。试验结果认为覆膜滴灌棉田全生育期蒸散量在540~620 mm之间,全生育期蒸散量和作物系数都随着覆盖度的增加而减小,叶面积指数与日蒸散量及作物系数关系密切,品种间由于品种特性的差异而引起的叶面积指数变化,最终导致了品种间作物系数Kc的不同。  相似文献   

4.
基于修正双作物系数模型估算温室黄瓜不同季节腾发量   总被引:6,自引:5,他引:1  
为估算温室黄瓜植株蒸腾与土面蒸发,该研究基于FAO-56推荐的双作物系数模型,应用温室内实测微气象、叶面积指数(LAI)及土壤水分数据,对模型中基础作物系数(Kcb)和土面蒸发系数(Ke)进行修正,并基于修正后FAO-56Penman-Monteith(P-M)模型,确定温室参考作物蒸发蒸腾量(ET0),进而估算温室黄瓜蒸发蒸腾量(ETc)和植株蒸腾(Tr)。基于Venlo型温室内黄瓜不同种植季节(春夏季和秋冬季)Lysimeter和茎流计观测的黄瓜ETc和Tr,对修正后的双作物系数模型预测结果进行验证。结果表明,应用修正后的双作物系数模型估算的温室黄瓜ETc和Tr与实测值具有较好地一致性,春夏季温室黄瓜全生育期ETc估算值与实测值的日均值分别为3.05和2.94 mm/d,秋冬季分别为2.53和2.76 mm/d。修正后的双作物系数模型估算春夏季温室黄瓜日ETc的决定系数(R2)、均方根误差(RMSE)和模型效率系数(Ens)分别为0.95、0.41 mm/d和0.93;估算秋冬季ETc的误差计算结果依次为0.91(R2)、0.48 mm/d(RMSE)和0.90(Ens)。修正后的双作物系数模型估算春夏季日平均Tr与实测值分别为2.37和2.19mm/d,秋冬季分别为1.43和1.34 mm/d。研究结果还显示,不同种植季节温室黄瓜全生育期日平均Tr占ETc的比例分别为64.62%(春夏季)和68.59%(秋冬季)。该研究成果不仅为制定准确的温室黄瓜灌溉制度提供了理论依据,而且对实现温室环境智能化控制及减少温室内无效的土面蒸发具有重要意义。  相似文献   

5.
用分时段修正双源模型估算南京地区冬小麦生育期蒸散量   总被引:2,自引:2,他引:2  
冬小麦是南京地区重要的粮食作物,模拟冬小麦蒸散量(evapotranspiration,ET)并研究其对气象因素的响应可为冬小麦田间水分管理提供参考。该文基于大型称重式蒸渗仪实际测定值分析了冬小麦ET变化规律,分别采用单源模型(Penman-Monteith,PM)和双源模型(Shuttleworth-Wallace,SW)模拟不同时期冬小麦ET,并探讨分时段修正SW模型的模拟方法,在此基础上,分析了ET对气象因素的响应。结果表明,生育初期,冬小麦的ET逐步增加,进入越冬期则逐步降低并保持在较低水平。返青期和拔节期ET迅速增加,开花和成熟期又保持稳定。2011-2012和2013-2014年分时段采用SW模型估算整个生育期冬小麦的蒸散量比整个生育期采用单一估算模型能够减小模拟平均绝对误差0.01~0.04 mm/h。小麦乳熟成熟期采用最小气孔阻力150 s/m计算的修正SW模型可以比整个生育期用单一最小气孔阻力的SW模型降低冬小麦蒸发蒸腾量的估算平均绝对误差0.03~0.13 mm/h。冬小麦蒸发蒸腾量与气象因素密切相关,与净辐射、空气温度和饱和水汽压差等环境因素决定系数顺序为净辐射饱和水汽压差空气温度风速。这表明南京地区冬小麦蒸发蒸腾量主要决定因素为净辐射。该研究能够为冬小麦蒸散量的模拟方法以及田间水分管理提供参考。  相似文献   

6.
基于机器学习的遮荫设施内参考作物蒸散量估算   总被引:2,自引:2,他引:0  
为高效准确地估算遮荫设施内参考作物蒸散量(Reference Evapotranspiration, ET0),该研究通过分析三七栽培遮荫设施(四周及顶部均由黑色遮阳网遮盖,通风性较好)内及设施外气象参数的关系,采用Sobol敏感性分析方法筛选出设施外有效的气象参数,并将其作为模型输入,以Penman-Monteith(FAO-56 PM)模型计算的值为标准值,采用贝叶斯优化(Bayesian Optimization, BO)算法优化机器学习方法(支持向量回归机(Support Vector Regression, SVR)、随机森林(Random Forest, RF)和极限学习机(Extreme Learning Machine, ELM))中的参数,建立3种遮荫设施内ET0估算模型(BO-SVR、BO-RF和BO-ELM)。结果表明:遮荫设施内ET0对设施外平均相对湿度、平均风速、最高气温和平均气温的敏感性较高,一阶敏感系数分别为0.450、0.304、0.064和0.026,故基于4组气象参数建立模型。BO-ELM模型的测试精度整体优于BO-SVR和BO-RF,其中BO-ELM模型基于平均相对湿度、平均风速、最高气温和平均气温的气象参数组合估算精度最高,决定系数、均方根误差和平均绝对误差分别为0.928、0.069 mm/d和0.046 mm/d,BO-ELM模型也能很好地适应少量气象参数(平均相对湿度和平均风速)估算设施内ET0,决定系数、均方根误差和平均绝对误差分别为0.910、0.078 mm/d和0.057 mm/d。综合考虑计算精度和计算代价,可将BO-ELM模型作为气象参数缺失情况下遮荫设施内ET0的估算方法。研究为遮荫设施内ET0的估算提供有效方法。  相似文献   

7.
华北平原旱稻作物系数试验研究   总被引:19,自引:5,他引:14  
该文依据2001~2004年4年田间试验资料,利用Penman-Monteith公式计算了北京地区旱稻出苗~成熟期间参考作物蒸散量,并利用农田水量平衡方程及土壤水分胁迫系数计算了作物实际蒸发蒸腾量,由此计算了旱稻各生育阶段的作物系数,并分析了旱稻作物系数变化规律。结果表明:北京地区旱稻出苗~成熟期间参考作物蒸散量平均为560.1 mm;日平均孕穗~开花期最高为6.8 mm/d,年际变化幅度很小。旱稻作物系数全生育期平均为1.07,在孕穗~开花期最大,为1.49,其次为开花~成熟阶段,平均为1.20,拔节~孕穗最小为0.87;在北京气候背景下,旱稻作物系数与出苗后天数和大于0℃积温具有较好的三次多项式关系。  相似文献   

8.
为提高作物生长条件下潜水蒸发强度计算精度,引入作物影响系数概念,提出2种阿维里扬诺夫潜水蒸发改进公式。采用河南惠北水利科学试验站2005-2007年的逐日潜水蒸发量与水面蒸发量试验数据和最小二乘法率定改进公式中各参数值,并用平均绝对误差、均方根误差和相关系数等3个统计指标对改进公式的计算精度进行评价,利用2007-2008年的试验数据对改进公式进行了验证。结果表明,提出的改进公式一的经验指数、潜水蒸发极限埋深以及各生育阶段的作物影响系数等参数值较为合理;验证期平均绝对误差0.30~0.59mm/d,均方根误差0.57~0.87mm/d,相关系数0.58~0.72,各统计指标值基本优于前人的研究,提高了潜水蒸发计算精度。  相似文献   

9.
构建华北地区设施茄子蒸散量估算模型,可为制定其优化灌溉制度提供理论依据。本研究设灌水定额15 mm(W1)、22.5 mm(W2)、30 mm(W3)和37.5 mm(充分灌溉, CK)4个处理,在设施茄子苗期、开花座果期和成熟采摘期土壤含水率分别达田间持水量的70%、80%和70%时进行灌溉,以保证土壤供水充足。基于修正后的Penman-Monteith方程,通过分析CK处理的作物系数与叶面积指数的关系,建立了基于气象数据与叶面积指数的蒸散量估算模型,利用W1、 W2和W3实测蒸散量对其进行验证。结果表明:修正后的Penman-Monteith方程可用于设施参考作物蒸散量的估算,W1、W2和W3蒸散量的实测值与新建模型的模拟值平均相对误差分别为17.81%、18.31%和17.97%。作物系数与叶面积指数呈显著线性关系,可通过叶面积指数确定作物系数。分析W1、W2、W3和CK处理的产量和水分利用效率(WUE)得出, W2与CK产量差异性不显著,而WUE差异性显著,较CK提高31.59%,表明W2兼顾产量和WUE。W2处理下茄子的作物系数,苗期为0.21~0.46,开花座果期为0.62~0.94,成熟采摘期为0.70~0.92。本研究认为,新建模型在估算设施茄子实际蒸散量上具有较好适用性,计算出的作物系数在节水灌溉条件下具有实际应用价值。  相似文献   

10.
冬小麦拔节抽穗期作物系数的研究   总被引:4,自引:1,他引:4  
在2000~2004年4个冬小麦生长季节研究了冬小麦拔节抽穗期农田蒸散量和参考作物腾发量(FAO56 PM方法计算)的关系,以及作物系数和叶面积指数及作物株高的关系。研究发现在冬小麦拔节抽穗前期,参考作物腾发量要大于或者接近于农田蒸散量,而在后期则要明显小于农田蒸散量。作物系数随着叶面积指数的增加和株高的增加而增加。用2003和2004年的数据回归建立了叶面积指数和株高与作物系数的数学表达式,并计算了2001和2002年的农田蒸散量。结果显示用叶面积和株高两种方法都能够很好的估算农田蒸散量。但是当农田蒸散量小于3 mm/d时,计算值要小于观测值。用叶面积指数和株高两种方法计算的农田蒸散量没有明显差别,说明用株高计算农田蒸散量是可行的。  相似文献   

11.
东北春玉米单株茎流变化规律及其农田尺度提升方法   总被引:2,自引:1,他引:1  
为揭示春玉米单株茎流速率规律,明确单株茎流提升至群体蒸腾的尺度转换因子,2017和2018年连续在东北典型黑土区开展了春玉米田间试验,对春玉米灌浆期内茎流速率、气象数据、棵间蒸发及土壤剖面含水率进行观测和分析。结果表明:春玉米茎流速率有明显的昼夜变化规律,降雨对玉米茎流有较强的抑制作用,降雨后茎流速率明显升高;在晴、阴、雨天气情况下玉米白天茎流差异较大,且在阴雨天气情况下,茎流曲线呈多峰曲线,峰值较低。玉米茎流的变化是各种环境因素综合作用的结果,其中茎流速率与空气温度、光合有效辐射、相对湿度间相关系数的绝对值皆在0.8以上,表明他们是影响东北黑土区茎流速率的主要环境因素。以茎粗、茎干截面面积、叶面积为尺度转换因子将单株茎流尺度提升得到春玉米农田尺度群体蒸腾量,将2 a灌浆期春玉米群体蒸腾量与棵间蒸发之和,与水量平衡法计算得到的蒸发蒸腾量进行比较,误差均在20%以内。3种尺度提升方法和水量平衡法得到2 a春玉米灌浆期内日均蒸发蒸腾量分别在4.22~4.78、3.91~4.56 mm/d范围内。其中以叶面积为尺度转换因子计算的蒸发蒸腾量与水量平衡法的结果最为接近,相对误差在5%左右,表明东北高寒黑土区春玉米农田适合采用叶面积作为单株向农田尺度提升的转换因子。  相似文献   

12.
基于FAO-Blaney-Criddle方法的河套灌区参考作物蒸散发量估算   总被引:2,自引:0,他引:2  
实时灌溉预报是河套灌区管理科学化与信息化的要求,利用天气预报中相对准确的气温数据估算参考作物蒸散发量对实时灌溉预报非常重要,因此需要建立一种基于温度的参考作物蒸散发量估算方法。利用 FAO-Penman-Monteith方法估算河套灌区解放闸灌域历史参考作物蒸散发量,以此作为标准值率定 FAO-Blaney-Criddle 公式中逐旬的修正系数,得到基于温度的参考作物蒸散发量估算方法。结果表明,在作物的生长季(4-9月),FAO-Blaney-Criddle 方法与FAO-Penman-Monteith 方法的估算结果相近。率定期各旬相对误差均<5%,标准误差<0.65 mm/d,验证期各旬相对误差均<9%,标准误差<0.70 mm/d。10 d 滑动平均的参考作物蒸散发量估算精度,Nash 效率系数达到0.75,误差0.5 mm/d 的精确度达到了68%,误差在1 mm/d 以内的准确率达到95%。FAO-Blaney-Criddle 方法可以应用于河套灌区的灌溉预报中。另外,FAO-Blaney-Criddle 方法的参数具有较强的地区差异性,需要针对不同地区的气象数据进行率定和验证。  相似文献   

13.
参考作物腾发量(reference evapotranspiration, ET0)是农业生产中一项重要的参数,对评估未来的干旱程度和实现农业精细化管理具有重要意义。为进一步提高ET0的预报精度,该研究将多模式集成方法应用于ET0的预报,运用遗传算法-回归型支持向量机对欧洲中期天气预报中心、美国国家环境预报中心、日本气象厅和韩国气象厅4个中心全球集合预报模式输出的天气变量进行多模式集成处理,基于最优的模式和方案使用Penman-Monteith公式对山西运城站未来1~7 d的ET0进行预报,并对其在站点附近农业试验田的适用性进行验证。结果表明,多模式集成能够调和单一模式在气象预报中的优劣,从而提高ET0预报的精度和长预见期下的稳定性;在ET0预报中,多模式方案的性能明显优于原始单一模式,由最优模式和方案组成的重组方案预报性能最好,具有最小的均方根误差、平均绝对百分比误差,分别为0.65~0.81 mm/d和19.43%~23.78%,以及最高的决定系数(0.83~0.89)。在对试验田未来1~7 d的ET0预报中,重组方案仍表现出良好的预报性能,均方根误差、平均绝对百分比误差不超过0.83 mm/d和34.57%。该研究能有效提升数值天气预报在运城站下属乡镇地区的适应性,为当地农业实际生产提供准确的ET0预报信息,对于农业需水预测以及水资源优化管理具有重要意义。  相似文献   

14.
基于塔里木盆地19个气象站2000−2019年生长季逐日气象数据,采用FAO−56PM公式计算各站逐日ET0,运用敏感系数、ArcGIS反距离权重插值、气候倾向率和Mann-Kendall非参数检验等方法,对该地区ET0的时空变化规律及ET0对关键气象因子的敏感性进行分析。结果表明:(1)近20a来,塔里木盆地生长季ET0日均值在空间上呈北低南高的趋势,多年ET0日均值从大到小依次为6、7、5、8、4、9和10月,其值分别为5.84、5.73、5.29、4.95、4.23、3.65和2.17mm⋅d−1,气候倾向率分别为−0.09、0.24、0.11、−0.07、0.16、0.07和0.08mm⋅10a−1,ET0日均值在盆地中、西部以负倾向率为主,盆地东部则以正倾向率为主。(2)整个生长季,塔里木盆地的相对湿度逐月增加,2m处风速逐月减小,日照时数则呈先增加后降低的趋势,最低气温和最高气温均呈倒U形分布,且均在7月达到最大值。相对湿度的变化以负倾向率为主,2m处风速和最低气温的变化以正倾向率为主,日照时数和最高气温变化的倾向率无明显规律。(3)在生长季(4−10月),塔里木盆地ET0对关键气象因子的敏感性表现为最高气温>相对湿度>日照时数>2m处风速>最低气温,ET0对最低气温的敏感性以较低敏感性为主,对其余气象因子均以高敏感性为主。ET0对最低气温和最高气温最敏感的月份是7月,而对相对湿度、2m处风速和日照时数最敏感的月份分别是10月、4月和8月。ET0对相对湿度的敏感系数绝对值的空间分布呈由北向南递减的趋势,对2m处风速和最高气温的敏感系数均以塔克拉玛干沙漠为高值中心,对日照时数无明显规律,对最低气温则呈由西向东递减的趋势。  相似文献   

15.
基于BCC_CPSv2模式的淮河流域月参考作物蒸散概率订正预报   总被引:1,自引:1,他引:0  
参考作物蒸散(Reference Crop Evapotranspiration,ET0)预报在农业水资源配置、区域干湿演变评估方面有着重要作用。该研究基于国家气候中心第二代气候预测系统(Beijing Climate Center Second-Generation Climate Prediction System,BCC_CPSv2)模式预报数据和1991-2020年淮河流域地面气象观测数据,利用分位数映射法对模式预报的气象要素进行概率订正,采用Penman-Monteith公式计算ET0,并评估了订正前后BCC_CPSv2模式对淮河流域月ET0和气象要素的预报性能。结果表明:1)模式对平均气温、净辐射和相对湿度的预报值较观测值偏小,风速预报值在3-6月偏小,其他月份偏大,4个气象要素预报的均方根误差(Root Mean Square Error,RMSE)分别为1.84 ℃、1.70 MJ/m2d、15.79%和1.39 m/s;气象要素预报偏差导致2-6月ET0预报值较计算值偏小,1月和7-12月偏大,区域平均RMSE为0.59 mm/d,绝对百分比误差(Mean Absolute Percentage Error,MAPE)为21.9%。2)概率订正有效降低了气象要素和ET0的预报误差。气温、净辐射、相对湿度和风速预报订正值的RMSE均小于订正前;80%月份ET0预报订正值的RMSE小于订正前,区域平均RMSE减小了0.23 mm/d,MAPE减小了11.2%。3)夏半年和冬半年ET0预报误差的首要来源分别是净辐射和相对湿度,主要是由于模式对这2个要素的预报精度较低且ET0对其敏感,误差容易传递。可见,基于模式概率订正的月尺度ET0预报方法精度较高,可以为水资源优化管理、灌溉制度制定和农业中长期需水决策提供参考。  相似文献   

16.
基于天气预报的漳河灌区参考作物腾发量预报方法比较   总被引:7,自引:2,他引:5  
为了提出适合湖北省漳河灌区的参考作物腾发量预报方法,以FAO56-Penman-Monteith公式采用历史气象数据计算出的值为基准,利用天气预报数据,比较Hargreaves-Samani(HS)法、逐日均值修正法及该文改进的逐日均值修正法在该灌区钟祥站点的预报精度,并评价各方法适用性.结果表明:利用这3种方法进行参考作物腾发量预报时,1~7 d预见期平均绝对误差均值分别为0.75、0.80、0.76 mm/d,均方根误差分别为1.00、1.07、1.05 mm/d,相关系数分别为0.82、0.80、0.80.1 d预见期最优预报方法为改进逐日均值修正法,2~7 d预见期的最优方法均为HS法.总体而言,预报精度最好的为HS法、改进逐日均值修正法次之、逐日均值修正法最差.对于漳河灌区,建议采用HS法进行预报,可为灌溉预报提供较为准确的数据基础.  相似文献   

17.
为提高Hargreaves-Samani(H-S)模型对参考作物蒸散量(reference crop evapotranspiration,ET0)的计算精度,利用川中丘陵区13个代表站点1954~2013年近60 a逐日数据,依据贝叶斯原理并考虑辐射的影响对H-S模型进行改进,并以Penman-Monteith(P-M)模型为标准,对其在川中丘陵区的适用性进行评价。结果表明:1)H-S改进模型与P-M模型ET0计算结果变化趋势基本一致;2)与H-S模型相比,在3个区域H-S改进模型计算的ET0旬值平均绝对误差分别由0.93、0.95、0.93 mm/d下降到0.15、0.19、0.28 mm/d,且3个区域ET0旬值拟合方程斜率分别由1.45、1.39、1.45变为0.89、0.94、0.90,Kendall一致系数由0.70、0.80、0.82提高到0.88、0.92、0.94,拟合效果与计算精度均明显提高;3)在3~10月的作物主要生长期,3个区域ET0月值平均绝对误差分别由0.89、1.14、1.28 mm/d下降到0.46、0.29、0.21 mm/d,ET0月值回归拟合方程斜率及一致性均明显提高;4)H-S改进模型随海拔升高计算精度有所降低,H-S改进模型全年内计算精度最大可提高47%,尤其在作物主要生长期,精度最大提高了48%。因此,H-S改进模型可显著提高ET0计算精度,在海拔较低的区域尤为明显,可作为川中丘陵区ET0计算的简化推荐模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号